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Abstract 

The complexity inherent in gene regulatory network 
models, as well as their nonlinear nature make them 
difficult to analyze or validate/invalidate using conven- 
tional tools. Combining ideas from robust control the- 
ory, real algebraic geometry, optimization and semi- 
definite programming, SOSTOOLS provides a promis- 
ing framework to answer these robustness and model 
validation questions algorithmically. We adopt these 
tools in the study of the heat shock response in bacte- 
ria. For this purpose, we use a reduced order model of 
the bacterial heat stress response. We study the robust 
stability properties of this system to parametric uncer- 
tainty, and address the model validation/invalidation 
problem by proving the necessity for the existence of 
certain feedback loops to reproduce the known time 
behavior of the system. 

1 Introduction 

One of the predominant goals of systems biology is to 
uncover how all of the genetic information is organized 
in regulatory systems that control life, health, and dis- 
ease. The first step in this direction is to build accurate 
computer models that give reliable, both qualitative 
and quantitative, descriptions of the mechanisms un- 
der study. An intrinsic problem with this approach re- 
volves around model validation/invalidation. In biolog- 
ical modeling, model validation is usually carried out 
by comparing the model predictions to data. Implic- 
itly underlying this task is the assumption that models 
could be unambiguously compared with data, when in 
fact this comparison is even more computationally chal- 
lenging than modeling and analysis itself. Specifically, 
given a model with a large number of unknown pa- 
rameters, simulation plus local sensitivity analysis and 
search can sometimes produce parameter values that 
fit data or are locally maximally likely to fit. If this 
fails, however, there may be no short proof that the 
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model is incompatible with the data, mirroring the N P  
versus coNP distinction. Furthermore, with sufficiently 
complex models, it is well-known that almost any finite 
amount of data can be fit. -Furthermore, even if a model 
has been shown to agree well with the measured data, 
the ability to assess the robustness of such a model is 
still important for understanding the function of the 
overall system and the contribution of its component 
subsystems. Combining notions from dynamical sys- 
tems theory, real algebraic geometry and semi-definite 
programming, SOSTOOLS [9, 101 provides an ideal 
framework to handle these issues in an algorithmic way. 
The procedure is based on the construction of Lya- 
punov functions as certificates that guarantee stability 
for a system which may contain uncertain parameters, 
as well as barrier functions as invalidation certificates 
for proposed models. These barrier functions separate 
the evolution of the model from measured data. The 
positivity conditions in these methodologies, such as 
those in Lyapunov’s stability theorem, can be relaxed 
computationally to Sum of Squares conditions, as the 
former are in general NP-hard to test whereas the latter 
can be verified in polynomial time using Semi-Definite 
Programming. Several constraints on these conditions 
can be adjoined to the system using the general frame- 
work of Positivstellensatz, a central theorem in Real 
Algebraic Geometry. 
In this work, we approach the validation/invalidation 
and robustness analysis of a model of the bacterial heat 
stress response in the context of SOSTOOLS. The bac- 
terial heat shock response is a fairly complex, highly 
conserved regulatory network that is of crucial impor- 
tance in the survival of most organisms. This system 
possesses a hierarchy of feedforward and feedback loops 
that serve different functions, ranging from increasing 
robustness to parametric uncertainty, to achieving fast 
transients and rejecting intrinsic cellular noise. We re- 
port the results of a preliminary test pertaining to the 
validity of a reduced order model of the HS response, in 
addition to  results relevant to its robust stability fea- 
tures to  parametric uncertainty, all using SOSTOOLS. 



2 The Heat Shock Response in E. coli 

High temperatures cause cell proteins unfold from their 
normal shapes, resulting in malfunctioning and even- 
tually death of the cell. Cells have evolved gene regula- 
tory mechanisms to counter the effects of heat shock by 
expressing specific genes that encode heat shock pro- 
teins (hsps) whose role is to help the cell survive the 
consequence of the shock. Many hsps serve as molec- 
ular chaperones that assist in the refolding of dena- 
tured proteins; others are proteases that degrade and 
remove the denatured proteins. In E. coli, the heat 
shock (HS) response is implemented through an in- 
tricate architecture of feedback loops centered around 
the o- factor that regulates the transcription of the HS 
proteins under normal and stress conditions. The en- 
zyme RNA polymerase (RNAP) bound to this regula- 
tory sigma factor, a3', recognizes the HS gene promot- 
ers and transcribes specific HS genes. The HS genes 
encode predominantly molecular chaperones (DnaK, 
DnaJ, GroEL, GrpE, etc.) that are involved in refold- 
ing denatured proteins and proteases (Lon, FtsH, etc.) 
that function to degrade unfolded proteins. At phys- 
iological temperatures (3O0c to 37"C), there is very 
little cr32 present and hence little transcription of the 
HS genes. When bacteria are exposed to high tempera- 
tures, 03' first rapidly accumulates, allowing increased 
transcription of the HS genes and then declines to a new 
steady state level characteristic of the new growth tem- 
perature. There are two mechanisms by which a3'1evels 
are increased when the temperature is raised. First, 
the translation rate of the rpoH mRNA (encoding u3') 
increases immediately, resulting in a fast 10-fold in- 
crease in the concentration of a3' [ll]. This mecha- 
nism implements what we refer to as the feedforward 
control loop. Second, during steady state growth, u3' 
is rapidly degraded (tllz = 1 minute), but is stabilized 
for the first five minutes after temperature upshift, so 
that its concentration rapidly increases. In vivo evi- 
dence is consistent with the following titration model 
for the HS response. DnaK, and its cochaperone DnaJ 
are required for the rapid degradation of a3' by the 
HS protease FtsH. Raising the temperature produces 
an increase in the cellular levels of unfolded proteins 
that then titrate DnaK/J away from a3', allowing it to 
bind to RNA polymerase (resulting in increased tran- 
cription) and stabilizing it in the process. Together, 
increased translation and stabilization lead to a tran- 
sient 15-20 fold increase in the amount of u32 at the 
peak of the HS response. The accumulation of high 
levels of HS proteins leads to the efficient refolding of 
the denatured proteins thereby decreasing the pool of 
unfolded protein, freeing up DnaK/J to sequester this 
protein from RNA polymerase. This implements what 
is referred to as a sequestration feedback loop. Further- 
more, this sequestration itself promotes the degrada- 
tion of u3' and results in feedback regulated degrada- 

tion, mainly by the protease FtsH. We refer to this 
as the FtsH degradation feedback loop. The overall re- 
sult is a decrease in the concentration of a3' to a new 
steady state concentration that is dictated by the bal- 
ance between the temperature-dependent translation 
of the rpoH mRNA and the level of cr3' activity mod- 
ulated by the hsp chaperones and proteases acting in a 
negative feedback fashion. 

3 A Reduced Order Model  for the HS 
Response 

In a previous work, we have developed a detailed de- 
terministic mathematical model for the heat stress re- 
sponse in E. coli [Z, 41 The dynamics described above 
were modeled using differential rate equations, and the 
full model takes the form of a set of 31 Differential- 
Algebraic Equations (DAEs), which are of the form: 

X ( t )  = F ( t ; X ; Y )  
0 = G ( t ; X ; Y )  

X ( t  = t o )  = xo 
Y( t  = t o )  = yo, 

where X is a 11-dimensional vector whose elements are 
the differential variables and Y is a 20-dimensional vec- 
tor whose elements are algebraic variables. This form is 
known as a semi-explicit DAE. The model possesses 27 
kinetic rate parameters. It was simulated using the spe- 
cialized software DASSL 171. Validation of this model 
against biological data has been successfully carried 
out. Subsequently, a reduced order model was derived 
using insight into the system's architecture and separa- 
tion principles in time and concentrations (in prepara- 
tion). As in the full model, this reduced model involves 
the dynamics of the basic building blocks of the HS re- 
sponse, namely the g factor (S), the chaperones (D), 
and the protein folding mechanism. The model equa- 
tions are as follows 

dSt - 
dt  

S :  D = Ks.Sf .Df  
U :  D = K,.Uf.Df 

Dt = D f + U : D + S : D  
St = S f + S : D  
Pt = Pfolded + Uf  +U : D (1) 

where U : D is the complex formed by the binding of 
the unfolded proteins Uf to D, S : D is the complex 
formed by the binding of S to D, and Pt is the total 
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Value 
3 
0.015 
10 @ Ti & 60 63 T2 
0.03 
3 
0.05 
0.0254 
40 @ Ti & 80 63 T2 
6000 
2 x 106 

Table 1: Parameter Values for Heat Shock model 

number of proteins in the cell, considered here to be 
constant. The parameters used in this model are given 
in Table 1. We replace the algebraic constraints into 
the initial system ( l ) ,  then use the facts that St << Dt 
and that U, >> 1 in the wild type bacterial HS response 
and simplify the expression for S f  and D f .  Simple 
algebraic manipulations yield a compact description for 
the reduced order HS model: 

4 Robustness  Analysis of the Reduced  HS 
Model  

4.1 Robustness  Analysis Methodology Using 
SOSTOOLS 
Here we present how robustness analysis can be ad- 
dressed in general, and then specialize the analysis to 
the example of the HS response in E-coli. Consider the 
nonlinear system 

j . =  f ( 2 7  P I ,  (3) 

(4) 

P = { p  E Rm : qkl(p) 5 0,kl 1 , .  ..K1; 
r l l (p )  = 0,11 = 1, ... L1) 

D = {X E Rn : qkl (z) 5 0, ki K i  + 1 , .  . . K2X5) 

where x E Rn is the state of the system, constrained 
to D, p E Rm is a set of unknown parameters in a 
set P and f is a polynomial vector field. Without loss 
of generality, we assume that the origin of the state 
space is the equilibrium of interest of the system. We 
are first interested in proving that this equilibrium is 
stable for all parameters p E P and all states z E D. A 
standard method is to construct a Lyapunov function 
V [3] according to the following theorem. 

Theorem 1 Suppose that for  the above system de- 
scription we can find a function V ( x , p )  such that: 

- -  dDt - f l (D t ,u f , s t ) -QdDt  
d t  
- -  dSt 
dt  

dUf = K(T)[Pt - Uf] - [ K ( T )  + KfoidlDt (2) d t  . 

- rl(T) - Q0.St - f2(Dt, Uf, St) 

- 
V ( x , p )  > 0 vx E D \ {O},p E P 

As in the original equations, the feedforward con- 
trol is achieved by the temperature dependent func- 
tion q(T) in the ODE describing the dynamics of St. 
f l ( D t , u f , s t )  = K d  and f2(Dt,Uf,St)  = 

St 

1+ 1 X b f  
K a  Dt 

a, +,St describe the various feedback strategies 

implemented in the HS response. f 1  is the effect of 
the sequestration of S by D, while f 2  reflects the ef- 
fect of the regulated degradation of S through the ac- 
tion of the sequestration itself. The dynamics of the 
third state U, are much faster than those of St and 
Dt. Such stiffness (large differences in time scales with 
the fastest stable) is also strongly present in the full 
model and creates ill-conditioning and algorithms that 
don’t exploit stiffness are almost certainly doomed to 
suffer from it; thus the need for DASSL [7] to sim- 
ulate the full system. However, stiffness can also be 
exploited to robustly produce simplified models by sin- 
gular perturbation, as was done in deriving the 3-state 
from the full model. By further setting % = 0 to 
obtain a quasi-steady state approximation, the third 
equation is then replaced by an algebraic one, and the 
result is again a differential-algebraic equation (DAE). 
The validity of this approximation has been verified by 
simulation which showed virtually no difference in the 
solution of the ODE as compared to that of the DAE. 

1+ * 
Then the origin of the state space is a stable equilibrium 
of the system. 

Although Lyapunov functions are extremely important 
tools for stability and robust stability analysis of non- 
linear and hybrid systems, even testing the positivity 
conditions in Theorem 1 is NP-hard, and until recently 
no general methodology existed. A computational re- 
laxation to testing positivity is the existence of a Sum of 
Squares decomposition, which can be verified dgorith- 
mically in polynomial time by solving a Semi-Definite 
Program (SDP). We state without proof the following 
useful theorem: 

Theorem 2 Given a polynomial p ( x ) ,  x E Rn, a nec- 
essary and suficient condition for p(x) to be a Sum 
of Squares, i.e. p = f:(x) for  some polynomials 
fi(x) is that p(x) can be written as 

p(xC> = z (~ )~Qz(z )  ( 6 )  

where Z ( x )  is a vector of all monomials of degree less 
than or equal to and Q is a positive semi- 
definite matrix. 
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The search for Q in Theorem 2 is in fact a search in 
the cone of positive semi-definite matrices under affine 
constraints between its entries and the coefficients of 
the monomials of p ,  and is thus a Semi-Definite pro- 
gram [6] .  Based on Theorem 2 an effective method to 
test the conditions in Theorem 1 is: 

Proposition 3 For the sets P and D defined earlier, 
the two conditions in Theorem 1 can be tested as fol- 
lows: 

is a Sum of Squares, and 

is a Sum of Squares. V(z ,p) ,  b l i ( z , p )  and bai(z,p) are 
polynomials in ( z , p ) ,  p(z) is positive definite and ali(z,p), 
a ~ i  (z, p )  are Sum of Squares. 

This proposition is a generalization of the S-procedure 
[l] and duality, in that equality constraints on condi- 
tions are adjoined using polynomial multipliers, and 
inequality constraints using Sum of Squares (non- 
negative) multipliers. Note that the above reduces 
to the S-procedure when the multipliers are constants; 
when they are polynomials, the resulting conditions are 
at least as powerful as the S-procedure. 

4.2 Robustness  Analysis of the HS system 
For the heat shock model, we can consider the prob- 
Iem of proving robust stability for the system under 
parametric uncertainty. Note that the vector field 
is rational, but this case can be treated by multi- 
plying out the derivative condition in Theorem 1 by 
the (non-vanishing) common denominator of the vec- 
tor field. In the spirit of Theorem 1, robust sta- 
bility analysis is achieved by constructing parameter- 
dependent Lyapunov functions. We proceed by non- 
dimensionalizing the states of (2) by their equilibrium 
values (Dto , St,, U,,), followed by a shifting of the equi- 
librium of the system to the origin. We then obtain 
a system with states ( 2 1  , z 2 , 2 3 )  that is better condi- 
tioned, in the sense that the states are of the same 
order of magnitude: 

RSZl 
l + K , I R .  , and where K d  = KdSto/Dto, Ks = as52 Rsz3 

I+R,:, 

KsDto, = Kuufo, 77 = V / s t o ,  pt = P t / y o  y d  
KTot = Dto(K(T)  + Kfold)/Ufo. We then use 2 - 0 
to get a 2-D state-space (sl,z2). Now we can investi- 
gate robust stability of system (7) using the results in 
Theorem 1. For this, we need to define the region D: 

D = (st E R : (x,  - z , , )~  - 7," 5 0, i = 1,2} (8 )  

with T~ = 0.2 defining a square around the equilibrium 
where stability is to be proven, and xao is the equi- 
librium of the i-th state. For robust stability analysis 
purposes, we pick two crucial parameters, f j  and as. 
ij depicts the feedforward gain, while as is a crucial 
component of the feedback gain. We ask whether the 
system (2) is stable for all values of q and a, in a certain 
range for T = Tl: 

P = (6, (Ys E R2 : ( f j  - f j O ) 2  - (73771.))~ 5 0, 

(Qs - - (Y4Qso)2 I 0)  

with 73  and 7 4  measuring the percentage variation. 
This case can be handled using Theorem 1. The pro- 
cedure that one follows is to propose an upper bound 
on the degree of V and of the multipliers a and b, and 
then test whether the conditions in Proposition 3 are 
satisfied. The decision variables in the Semi-Definite 
programme are the coefficients of these unknown poly- 
nomials; when it is feasible, the various polynomials 
are constructed, and form proofs of Robust stability of 
the system as per Theorem 1. This is done easily us- 
ing SOSTOOLS [lo]. For this example, a parameter- 
dependent Lyapunov function V(x1, s ~ ;  @, a,) was con- 
structed in the region D under the uncertainty de- 
fined by P. In particular, by constructing a quadratic 
Lyapunov function we were able to prove stability for 
"13 = 74 = 0.14. The region P can be increased fur- 
ther if one considers quartic Lyapunov functions. Fig- 
ure 1 shows the level curves of the Lyapunov func- 
tion for two sets of parameters in a parameter set with 
y3 = y4 = 0.44. We see that by increasing the order 
of the certificate, we can prove robustness for a larger 
parameter range. The computational complexity in- 
creases in a polynomial manner with the number of the 
parameters, in contrast to any other method that in- 
volves simulation, where it increases exponentially. Dy- 
namic uncertainty is another type of uncertainty that 
is usually described by Integral Quadratic Constraints 
(IQCs). IQCs are a powerful tool in Robust Control 
analysis; simulation of such uncertainty however is not 
possible, whereas such uncertainty descriptions can be 
incorporated in the search for a Lyapunov function us- 
ing this methodology in a unified way. See [5] for more 
details. 

5 Validation/Invalidation of the HS Model  

The new methodology in conjunction with SOSTOOLS 
can be used to  address the critical issue of model valida- 
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Figure 1: Level curves for the parameter-dependent Lyapunov function V(s~,z2;jj,cyS) for system (2) for two sets of 
parameters. 

tion/invalidation in biological modeling. The key ideas 
of this methodology can be illustrated in the context 
of the heat-shock example, where at least two feed- 
back loops are involved in the regulation scheme. We 
will show rigorously that each loop adds its own im- 
portant function to the overall system and that both 
are necessary to explain the phenotypic behavior of the 
heat shock system. In previous work, we have used 
sensitivity analysis and confirmed that these feedback 
loops indeed increase the robustness to parametric un- 
certainty 121. However, upon disabling the degrada- 
tion (FtsH) feedback loop, one observes in simulation 
that the transient response to  a temperature increase 
becomes considerably slower. Achieving a faster tran- 
sient response in the absence of this (FtsH) feedback 
loop necessitates a substantial increase in the protein 
synthesis rate, and therefore, produces a larger number 
of chaperones. Therefore, it is reasonable to conjecture 
that the (FtsH) feedback loop is instrumental in achiev- 
ing a fast response to  the heat disturbance while using 
a relatively modest number of chaperones. To illus- 
trate how we might actually prove such a conjecture 
using our new invalidation scheme, we would perform 
an experiment with the system to obtain some data 
that will be used in the construction of a barrier func- 
tion to invalidate a model. Consider the system (3) 
with uncertain parameter p E P as before. Additional 
information about the system (for example: the state 
variables cannot be negative, cannot be too large, etc.) 
may be available. We include this information in D, de- 
fined in the same manner as before. Next, we assume 
that from experiments-performed at time t = 0 and 
t = T’, we obtain the following measurement results: 

(9) 

(IO) 
With this notation, our problem can be stated as fol- 
lows: given a priori information on the state space 

Yo = {x E Rn : QO(Z) 5 O,ro(z) = 0) 

= {X E Rn : qT,(z) 5 O,rT,(x) = 0). YT, 

model of the system, admissible parameter P,  provide 
a proof (if possible) that the measurement YO, Y T ~  is in- 
consistent with the a priori information. If such a proof 
is found then there is no parameter p E P for which the 
model considered produces measurements Yo, YT, , and 
thus the model is invalidated. For this, we need the 
following theorem (see [SI). 

Theorem 4 Assume that there is a function B : 
Rn+m+l -+ R such that 

v t  E [O,T’], 2 E D, p E P. (12) 

Then the measurements {YO, Y T ~  } is inconsistent with 
the system (3) and the parameter set P.  

To illustrate how this could apply to heat shock, we 
will assume that the “real system” is just the model 
with the degradation (FtsH) loop (2), and compare it 
to a hypothesized model lacking this feedback. If we 
denote the state variables (Dt ,  St, U,) by ( 2 1 , 2 2 ,  Q), 
then the hypothesized model will just be 2 = f ( s , p ) ,  
where the vector field are defined by (2), without the 
degradation loop. The parameters p will be defined be- 
low. We perform an experiment with the “real system” 
and observe that a typical time response of this system 
satisfies the following conditions (the notation is the 
same as in Theorem 4) : 

Yo = { ( 2 1 , 2 2 , 2 3 )  E R3 : 0.9Do 5 2 1  5 1.5& 
0.9So 5 22 5 1.5so,2.9uo 5 2 3  5 3.1Uo) (13) 
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where Do, SO, and U0 denote their steady state values 
at low temperature, and the final time Tf = 25. Note 
that we use intervals here to take into account the ef- 
fects of measurement uncertainty, variation of initial 
conditions, and so on. In addition, we also observe 

model, in addition to using the SOSTOOLS machinery 
in a more systematic model reduction scheme of the 
original detailed model. 

that between time t = 0 and t = Tf, the state variables 
satisfy the following conditions, which define D: 

D ((21, 2 2 ,  23) E R3 : 0.9Do I 2 1  5 2.5D0, 
0.9So 5 22 5 8So,O.2Uo _< 23 5 ~ U O } .  (15) 

As for the parameters, we will focus on three param- 
eters p = (Kd,ag,q(T)). Plausible ranges for these 
parameters define P: 

P = ((Kd,@o,q(T)) E R3 : 0.5Ed 5 Kd 5 5rd ,  
0.5ZFo I a0 5 1.550,0.5q(T) 5 q(T) 5 1.5~(2')}, (16) 

where Ed, EO, and rl(T) denote their nominal values. 
We deliberately make the upper bound for K d  quite 
large, since one obvious way for obtaining a fast re- 
sponse is to increase the number of chaperones, cor- 
responding to increasing this parameter. With our 
method, we can effectively prove that this nevertheless 
cannot be achieved without violating the other con- 
straints, namely that the model without the degrada- 
tion (FtsH) loop with parameters K d ,  ao, q(T) sat- 
isfying (16) cannot possibly generate a time response 
that satisfies (14)-(15). This indicates that an inher- 
ent mechanism is missing from this model. When the 
FtsH mechanism is included, obviously there are val- 
ues for parameters KUO, and q(T) (e.g. the nominal 
values E d ,  50, and q(T)) such that the model has a 
time response that satisfies (14)-(15). 

- - 

6 Conclusions and Future Work 

In this work, we use the procedure introduced in [5] 
and the software SOSTOOLS to investigate some of 
the robustness features of the heat shock response in 
E. coli. We also report the results of a model invalida- 
tion scheme which suggests the essential role of one of 
the feedback loops involved in this regulatory system. 
In addition to being yet another application of SOS- 
TOOLS, such an observation about the degradation 
loop is crucial from a biological perspective. Indeed, 
we were able to a r m  that the existence of such a loop 
is not necessarily explained by redundancy as was sug- 
gested in the heat shock literature. Rather, this loop 
seems to  play a crucial role in enhancing the transient 
response of the system after a heat disturbance. Such 
conclusions are valuable in guiding experiments and 
complementing biological knowledge. Finally, while 
the work reported in this paper is still preliminary, it 
proved to  be very promising. We plan to expand our 
investigation to include more complex variations of the 
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