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F
or many mathematicians and physicists,
the Internet has become a popular real-
world domain for the application and/or
development of new theories related to the
organization and behavior of large-scale,

complex, and dynamic systems. In some cases,
the Internet has served both as inspiration and
justification for the popularization of new models
and mathematics within the scientific enterprise.
For example, scale-free network models of the
preferential attachment type [8] have been claimed
to describe the Internet’s connectivity structure,
resulting in surprisingly general and strong claims
about the network’s resilience to random failures
of its components and its vulnerability to targeted
attacks against its infrastructure [2]. These models
have, as their trademark, power-law type node
degree distributions that drastically distinguish
them from the classical Erdős-Rényi type random
graph models [13]. These “scale-free” network
models have attracted significant attention within
the scientific community and have been largely
responsible for launching and fueling the new field
of network science [42, 4].

To date, the main role that mathematics has
played in network science has been to put the physi-
cists’ largely empirical findings on solid grounds
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by providing rigorous proofs of some of their more
highly publicized claims [14, 15, 16, 23, 11, 25].
The alleged scale-free nature of the Internet’s
topology has also led to mathematically rigorous
results about the spread of viruses over scale-free
graphs of the preferential attachment type, again
with strong and unsettling implications such as
a zero epidemic threshold [11, 25]. The relevance
of the latter is that in stark contrast to more
homogeneous graphs, on scale-free networks of
the preferential attachment type, even viruses with
small propagation rates have a chance to cause
an epidemic, which is about as bad as it can
get from an Internet security perspective. More
recently, the realization that large-scale, real-world
networks such as the Internet evolve over time has
motivated the mathematically challenging problem
of developing a theory of graph sequences and
graph limits [17, 19, 20]. The underlying idea is that
properly defined graph limits can be expected to
represent viable models for some of the enormous
dynamic graph structures that arise in real-world
applications and seem too unwieldy to be described
via more direct or explicit approaches.

The generality of these new network models
and their impressive predictive ability notwith-
standing, surprisingly little attention has been
paid in the mathematics and physics commu-
nities to parallel developments in the Internet
research arena, where the various non-rigorous
and rigorous results derived from applying the
scale-free modeling paradigm to the Internet have
been scrutinized using available measurements
or readily available domain knowledge. A driving
force behind these Internet-centric validation ef-
forts has been the realization that—because of its
engineered architecture, a thorough understanding
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of its component technologies, and the availability
of extensive (but not necessarily very accurate)
measurement capabilities—the Internet provides
a unique setting in which most claims about its
properties, structure, and functionality can be un-
ambiguously resolved, though perhaps not without
substantial efforts. In turn, models or theories
that may appeal to a more mathematically inclined
researcher because of their simplicity or generality,
but result in incorrect, misleading, or wrong claims
about the Internet, can and will be identified and
labeled accordingly, but it may take considerable
time (and efforts) to expose their specious nature.

In this article, we take a closer look at what
measurement-based Internet research in general,
and Internet-specific validation efforts in particular,
have to say about the popular scale-free modeling
paradigm and the flurry of mathematical develop-
ments it has inspired. In particular, we illustrate
why and how in the case of the Internet, scale-free
network models of the preferential attachment
type have become a classic lesson in how errors of
various forms occur and can add up to produce
results and claims that create excitement among
non-networking researchers, but quickly collapse
under scrutiny with real data or when examined
by domain experts. These opposite reactions have
naturally been a source of great confusion, but
the main conclusion is neither controversial nor
should it come as a big surprise: the scale-free
modeling paradigm is largely inconsistent with
the engineered nature of the Internet and the
design constraints imposed by existing technolo-
gy, prevailing economic conditions, and practical
considerations concerning network operations,
control, and management.

To this end, we document the main sources of
errors regarding the application of the scale-free
modeling approach to the Internet and then present
an alternative approach that represents a drastic
departure from traditional network modeling. In
effect, we motivate here the development of a
novel modeling approach for Internet-like systems
that (1) respects the highly designed nature of the
network; (2) reflects the engineering intuition that
exists about great many of its parts; (3) is fully
consistent with a wide range of measurements; and
(4) outlines a mathematical agenda that is more
challenging, more relevant, and ultimately more
rewarding than the type of mathematics motivated
by an alluring but largely misguided approach to
Internet modeling based on scale-free graphs of
the preferential attachment type. In this sense, this
article demonstrates the great potential that the
Internet has for the development of new, creative,
and relevant mathematical theories, but it is also
a reminder of a telling comment attributed to S.
Ulam [12] (slightly paraphrased, though), who said
“Ask not what mathematics can do for [the Internet];
ask what [the Internet] can do for mathematics.”

The Scale-free Internet Myth
The story recounted below of the scale-free nature
of the Internet seems convincing, sound, and al-
most too good to be true. Unfortunately, it turned
out to be a complete myth, but has remained a
constant source of enormous confusion within the
scientific community.

Somewhat ironically, the story starts with a
highly-cited paper in the Internet research arena by
Faloutsos et al. [27]. Relying on available measure-
ments and taking them at face value, the paper was
the first to claim that the (inferred) node degree
distributions of the Internet’s router-level topology
as well as AS-level topology are power-law dis-
tributions with estimated α-parameters between
1 and 2. To clarify, by router-level topology, we
mean the Internet’s physical connectivity structure,
where nodes are physical devices such as routers
or switches, and links are the connections between
them. These devices are further organized into
networks known as Autonomous Systems (ASes),
where each AS is under the administrative control
of a single organization such as an Internet Ser-
vice Provider (ISP), a company, or an educational
institution. The relationships among ASes, when
organized as a graph, produce what is known
as the Internet’s AS-level topology. Note that a
link between two nodes in the AS-level topology
represents a type of business relationship (either
peering or customer-provider). Also, in contrast
to the router-level topology that is inherently
physical, the AS topology is a logical construct that
reflects the Internet’s administrative boundaries
and existing economic relationships.

These reported power-law findings for the In-
ternet were quickly picked up by Barabási et al.,
who added the Internet to their growing list of
real-world network structures with an apparently
striking common characteristic; that is, their vertex
connectivities (described mathematically in terms
of node degrees) “follow a scale-free power-law
distribution” [8, 3]. This property is in stark con-
trast to the Poissonian nature of the node degrees
resulting from the traditional Erdős-Rényi random
graphs [13] that have been the primary focus of
mathematical graph theory for the last 50 years.
Naturally, it has fueled the development of new
graph models that seek to capture and reproduce
this ubiquitously reported power-law relationship,
thereby arguing in favor of these models as more
relevant for representing real-world network struc-
tures than the classical random graph models. In
fact, much of the initial excitement in the nascent
field of network science can be attributed to an ear-
ly and appealingly simple class of network models
that was proposed by Barabási and Albert [8] and
turned out to have surprisingly strong predictive
capabilities.
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Figure 1.

In short, Barabási and Albert [8] described a
network growth model in which newly added ver-
tices connect preferentially to nodes in the existing
graph that are already well connected. This pref-
erential attachment mechanism had been studied
over the previous 75 years by Yule [54], Luria and
Delbrück [38], and Simon [49], but it was its redis-
covery and application to networks by Barabási
and Albert that recently popularized it. Although
many variants of the the basic Barabási-Albert
construction have been proposed and studied, we
will focus in the following on the original version
described in [8], mainly because of its simplicity
and because it already captures the most important
properties of this new class of networks, com-
monly referred to as scale-free networks. The term
scale-free derives from the simple observation that
power-law node degree distributions are free of
scale—most nodes have small degree, a few nodes
have very high degree, with the result that the
average node degree is essentially non-informative.
A detailed discussion of the deeper meanings often
associated with scale-free networks is available in
[34]. To avoid confusion and to emphasize the fact
that preferential attachment is just one of many
other mechanisms that is capable of generating
scale-free graphs (i.e., graphs with power-law node
degree distributions), we will refer here to the net-
work models proposed in [8] as scale-free networks
of the preferential attachment (PA) type and show
an illustrative toy example with associated node
degree distribution in Figure 1.

The excitement generated by this new class of
models is mainly due to the fact that, despite
being generic and largely oblivious to system-
specific details, they share some key properties

that give them remarkable predictive power. These
properties were originally reported in [2], put on
mathematically solid footing by Bollobás and Rior-
dan in [14, 15, 16], and explain the key aspects of
the structure and behavior of these networks. For
one, a hallmark of their structure is the presence
of “hubs”; that is, centrally located nodes with
high connectivity. Moreover, the presence of these
hubs makes these networks highly vulnerable to
attacks that target the hub nodes. At the same time,
these networks are extremely resilient to attacks
that knock out nodes at random, since a randomly
chosen node is likely to be one of the low-degree
nodes that constitute the bulk of the nodes in
the power-law node degree distribution, and the
removal of such a node has typically minimal
impact on the network’s overall connectivity or
performance.

This property—simultaneous resilience to ran-
dom attacks but high vulnerability to targeted
worst-case attacks (i.e., attacks against the hub
nodes)—featured prominently in the original ap-
plication of scale-free networks of the PA type to
the Internet [2]. The underlying argument follows
a very traditional and widely-used modeling ap-
proach. First, as reported in [27], the Internet has
node degrees that follow a power-law distribution
or are scale-free. Second, scale-free networks of
the PA type are claimed to be valid models of the
Internet because they are capable of reproducing
the observed scale-free node degree distributions.
Lastly, when abstracted to a scale-free models of
the PA type, the Internet automatically inherits all
the emergent features of the latter, most notably
the presence of hub nodes that are critical to
overall network connectivity and performance and
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are largely responsible for the network’s failure tol-
erance and attack vulnerability. In this context, the
latter property has become known as the “Achilles’
heel of the Internet” and has been highly publicized
as a success story of network science—the dis-
covery of a fundamental weakness of the Internet
that went apparently unnoticed by the engineers
and researchers who have designed, deployed, and
studied this large-scale, critical complex system.

The general appeal of such surprisingly strong
statements is understandable, especially given the
simplicity of scale-free networks of the PA type
and the fact that, as predictive models, they do not
depend on the particulars of the system at hand, i.e.,
underlying technology, economics, or engineering.
As such, they have become the embodiment of a
highly popular statistical physics-based approach
to complex networks that aims primarily at discov-
ering properties that are universal across a range
of very diverse networks. The potential danger of
this approach is that the considered abstractions
represent simplistic toy models that are too generic
to reflect features that are most important to the
experts dealing with these individual systems (e.g.,
critical functionality).

Deconstructing the Scale-free Myth
Given that the scale-free story of the Internet is
grounded in real measurement data and based on
a widely-accepted modeling approach, why is it so
far from the truth? To explain and trace the various
sources of errors, we ask the basic question; i.e.,
“Do the available measurements, their analysis, and
their modeling efforts support the claims that are
made in [2]?” To arrive at a clear and simple answer
to this question, we address below the issues of
data hygiene and data usage, data analysis, and
mathematical modeling (including model selection
and validation).

Know your data

A very general but largely ignored fact about
Internet-related measurements is that what we can
measure in an Internet-like environment is typically
not the same as what we really want to measure (or
what we think we actually measure). This is mainly
because as a decentralized and distributed system,
the Internet lacks a central authority and does not
support third-party measurements. As a result,
measurement efforts across multiple ASes become
nontrivial and often rely on engineering hacks
that typically do not yield the originally desired
data but some substitute data. Moreover, using the
latter at face value (i.e., as if they were the data we
originally wanted) and deriving from them results
that we can trust generally involves a leap of faith,
especially in the absence of convincing arguments
or evidence that would support an “as-is” use of
the data.

1 2 1 2

)b()a(
Figure 2. The IP alias resolution problem.
Paraphrasing Fig. 4 of [50], traceroute does
not list routers (boxes) along paths but IP
addresses of input interfaces (circles) and
alias resolution refers to the correct mapping
of interfaces to routers to reveal the actual
topology. In the case where interfaces 1 and 2
are aliases, (b) depicts the actual topology
while (a) yields an “inflated” topology with
more routers and links than the real one.

Internet-specific connectivity measurements pro-
vide a telling example. To illustrate, consider the
data set that was used in [27] to derive the reported
power-law claim for the (inferred) node degrees of
the Internet’s router-level topology.1 That dataset
was originally collected by Pansiot and Grad [44]
for the explicitly stated purpose “to get some ex-
perimental data on the shape of multicast trees one
can actually obtain in [the real] Internet …” [44].
The tool of choice was traceroute, and the idea
was to run traceroute between a number of differ-
ent host computers dispersed across the Internet
and glue together the resulting Internet routes to
glean the shape of actual multicast trees. In this
case, the engineering hack consisted of relying on
traceroute, a tool that was never intended to be
used for the stated purpose, and a substantial leap
of faith was required to use Pansiot and Grad’s
data set beyond its original purpose and rely on it
to infer the Internet’s router-level topology [27].

For one, contrary to popular belief, running
traceroute between two host computers does not
generate the list of compliant (i.e., Internet Protocol
(IP)-speaking) routers encountered en route from
the source to the destination. Instead, since IP
routers have multiple interfaces, each with its own
IP address, what traceroute really generates is

1While the arguments and reasons differ for the data
sets used in [27] to derive the power-law claim for the
Internet’s AS-level topology, the bottom line is the same—
the available measurements are not of sufficient quality
for the purpose for which they are used in [27] (see for
example [31]).
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Figure 3. The IP alias resolution problem in practice. This is re-produced from [48] and shows a
comparison between the Abilene/Internet2 topology inferred by Rocketfuel (a) and the actual

topology (b). Rectangles represent routers with interior ovals denoting interfaces. The
histograms of the corresponding node degrees are shown in plot (c).

the list of (input interface) IP addresses, and a very
common property of traceroute-derived routes
is that one and the same router can appear on
different routes with different IP addresses. Unfor-
tunately, faithfully mapping interface IP addresses
to routers is a difficult open problem known as
the IP alias resolution problem [51, 28], and despite
continued research efforts (e.g., [48, 9]), it has
remained a source of significant errors. While the
generic problem is illustrated in Figure 2(a), its
impact on inferring the (known) router-level topol-
ogy of an actual network (i.e., Abilene/Internet2) is
highlighted in Figure 2(b)—the inability to solve the
alias resolution problem renders in this case the
inferred topology irrelevant and produces statistics
(e.g., node degree distribution) that have little in
common with their actual counterparts.

Another commonly ignored problem is that
traceroute, being strictly limited to IP or layer-3,
is incapable of tracing through opaque layer-2
clouds that feature circuit technologies such as
Asynchronous Transfer Mode (ATM) or Multipro-
tocol Label Switching (MPLS). These technologies

have the explicit and intended purpose of hiding
the network’s physical infrastructure from IP, so
from the perspective of traceroute, a network
that runs these technologies will appear to provide
direct connectivity between routers that are sep-
arated by local, regional, national, or even global
physical network infrastructures. The result is
that when traceroute encounters one of these
opaque layer-2 clouds, it falsely “discovers” a
high-degree node that is really a logical entity—a
network potentially spanning many hosts or great
distances—rather than a physical node of the
Internet’s router-level topology. Thus, reports of
high-degree hubs in the core of the router-level
Internet, which defy common engineering sense,
can often be easily identified as simple artifacts of
an imperfect measurement tool. While Figure 4(a)
illustrates the generic nature of this problem,
Figure 4(b) illuminates its impact in the case of an
actual network (i.e., AS3356 in 2002), where the
inferred topology with its highly connected nodes
says nothing about the actual physical infrastruc-
ture of this network but is a direct consequence of
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Figure 4. How traceroute detects fictitious high-degree nodes in the network core. (a) The actual
connectivity of an opaque layer-2 cloud, i.e., a router-level network running a technology such as
ATM or MPLS (left) and the connectivity inferred by traceroute probes entering the network at the
marked router (right). (b) The Rocketfuel-inferred backbone topology of AS3356 (Level3), a Tier-1
Internet service provider and leader in the deployment of MPLS (reproduced from [50]).

traceroute’s inability to infer the topology of an
MPLS-enabled network.

We also note that from a network engineering
perspective, there are technological and economic
reasons for why high-degree nodes in the core of
the router-level Internet are nonsensical. Since a
router is fundamentally limited in terms of the
number of packets it can process in any time
interval, there is an inherent tradeoff in router
configuration: it can support either a few high-
throughput connections or many low-throughput
connections. Thus, for any given router technology,
a high-connectivity router in the core will either
have poor performance due to its slow connections
or be prohibitively expensive relative to other
options. Conversely, if one deploys high-degree
devices at the router-level, they are necessarily
located at the edge of the network where the
technology exists to multiplex a large number
of relatively low-bandwidth links. Unfortunately,
neither the original traceroute-based study of
Pansiot and Grad nor any of the larger-scale ver-
sions that were subsequently performed by various

network research groups have the ability to detect
those actual high-degree nodes. The simple reason
is that these traditional traceroute studies lack
access to a sufficient number of participating host
computers in any local end-system to reveal their
high connectivity. Thus, the irony of traceroute is
that the high-degree nodes it detects in the network
core are necessarily fictitious and represent entire
opaque layer-2 clouds, and if there are actual
high-degree nodes in the network, existing tech-
nology relegates them to the edge of the network
where no generic traceroute-based measurement
experiment will ever detect them.

Lastly, the nature of large-scale traceroute
experiments also makes them susceptible to a
type of measurement bias in which some points
of the network are oversampled, while others are
undersampled. Ironically, although this failure of
traceroute experiments has received the most
attention in the theoretical computer science and
applied mathematics communities [32, 1] (most
likely, because it is the most amenable to mathe-
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matical treatment), it is the least significant from a
topology modeling perspective.

In view of these key limitations of traceroute,
it should be obvious that starting with the Pansiot
and Grad data set, traceroute-based measure-
ments cannot be taken at face value and are
of no or little use for inferring the Internet’s
router-level topology. In addition, the arguments
provided above show why domain knowledge in
the form of such traceroute-specific “details”
like IP aliases or layer-2 technology matters when
dealing with issues related to data hygiene and why
ignoring those details prevents us from deriving
results from such data that we can trust. Ironi-
cally, Pansiot and Grad [44] detailed many of the
above-mentioned limitations and shortcomings of
their measurements. Unfortunately, [27] failed to
revive these issues or recognize their relevance.
Even worse, the majority of subsequent papers in
this area typically cite only [27] and no longer [44].

Know your statistic

The inherent inability of traceroute to reveal
unambiguously the actual node degree of any
router (i.e., the number of different interfaces)
due to the IP alias resolution problem, combined
with the fundamental difficulties of the tool to
correctly infer even the mere absence or presence
of high-degree nodes (let alone their actual degrees)
makes it impossible to describe accurately statis-
tical entities such as node degree distributions.
Thus, it should come as no surprise that taking
traceroute-derived data sets “as is” and then
making them the basis for any fitting of a partic-
ular parameterized distribution (e.g., power-law
distribution with index α as in [27]) is statistical
“overkill”, irrespective of how sophisticated a fitting
or corresponding parameter estimation technique
has been used. Given the data’s limitations, even
rough rules-of-thumb such as a Pareto-type 80/20
rule (i.e., 80% of the effects come from 20% of the
causes) cannot be justified with any reasonable
degree of statistical confidence.

It is in this sense that the claims made in [27]
and subsequent papers that have relied on this
data set are the results of a data analysis that is
not commensurate with the quality of the available
data. It is also a reminder that there are important
differences between analyzing high-quality and
low-quality data sets, and that approaching the
latter the same way as the former is not only
bad statistics but also bad science, and doing
so bolsters the popular notion that “there are
lies, damned lies, and statistics.” Unfortunately,
the work required to arrive at this conclusion is
hardly glamorous or newsworthy, especially when
compared to the overall excitement generated by
an apparent straight-line behavior in the easily
obtainable log-log plots of degree vs. frequency.

Even if the available measurements were amenable
to such an analysis, these commonly-used and
widely-accepted log-log plots are not only highly
non-informative, but have a tendency to obscure
power-law relationships when they are genuine
and fabricate them when they are absent (see
for example [34]). In the case of the data set at
hand, the latter observation is compounded by
the unreliable nature of the traceroute-derived
node degree values and shows why the power-law
claims for the vertex connectivities of the Internet’s
router-level topology reported in [27] cannot be
supported by the available measurements.

When modeling is more than data-fitting

We have shown that the data set used in [27]
turns out to be thoroughly inadequate for deriv-
ing and modeling power-law properties for the
distribution of node degrees encountered in the
Internet’s router-level topology. As a result, the
sole argument put forward in [2] for the validity of
the scale-free model of the PA type for the Internet
is no longer applicable, and this in turn reveals the
specious nature of both the proposed model and
the sensational features the Internet supposedly
inherits from the model.

Even if the node degree distribution were a
solid and reliable statistic, who is to say that
matching it (or any other commonly considered
statistics of the data) argues for the validity of a
proposed model? In the case of scale-free models
of the PA type, most “validation” follows from the
ability of a model to replicate an observed degree
distribution or sequence. However, it is well-known
in the mathematics literature that there can be
many graph realizations for any particular degree
sequence [47, 29, 35, 10] and there are often signif-
icant structural differences between graphs having
the same degree sequence [6]. Thus, two models
that match the data equally well with respect to
some statistics can still be radically different in
terms of other properties, their structures, or their
functionality. A clear sign of the rather precarious
current state of network-related modeling is that
the same underlying data set can give rise to very
different, but apparently equally “good” models,
which in turn can give rise to completely opposite
scientific claims and theories concerning one and
the same observed phenomenon. Clearly, modeling
and especially model validation has to mean more
than being able to match the data if we want to be
confident that the results that we drive from our
models are valid.

At this point, it is appropriate to recall a quote
attributed to G.E.P. Box, who observed that “All
models are wrong, but some models are useful.”
Without being more specific about which models
are deemed useful and why, this comment is of
little practical value. A more constructive piece of
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advice that is more directly aligned with what we
envision modeling should mean in the presence of
imprecise data is from B.B. Mandelbrot [39], who
observed “If exactitude is elusive, it is better to be
approximately right than certifiably wrong.”

For complex network systems whose measured
features suffer from the types of fundamental
ambiguities, omissions, and/or systematic errors
outlined above, we argue that network modeling
must move beyond efforts that merely match
particular statistics of the data. Such efforts are
little more than exercises in data-fitting and are
particularly ill-advised whenever the features of
interest cannot be inferred with any reasonable
statistical confidence from the currently available
measurements. For systems such as the router-level
Internet, we believe this to be a more scientifically
grounded and constructive modeling approach. For
one, given the known deficiencies in the available
data sets, matching a particular statistic of the
data may be precisely the wrong approach, unless
that statistic has been found to be largely robust
with respect to these deficiencies. Moreover, it
eliminates the arbitrariness associated with de-
termining which statistics of the data to focus
on. Indeed, it treats all statistics equally. A model
that is “approximately right” can be expected to
implicitly match most statistics of the data (at least
approximately).

If we wish to increase our confidence in a
proposed model, we ought also to ask what new
types of measurements are either already available
(but have not been used in the present context)
or could be collected and used for validation.
Here, by “new” we do not mean “same type of
measurements as before, just more.” What we
mean are completely new types of data, with very
different semantic content, that have played no role
whatsoever in the entire modeling process up to
this point. A key benefit of such an approach is that
the resulting measurements are used primarily to
“close-the-loop”, as advocated in [53], and provide
a statistically clean separation between the data
used for model selection and the data used for
model validation—a feature that is alien to most
of today’s network-related models. However, a key
question remains: What replaces data-fitting as the
key ingredient and driver of the model selection and
validation process so that the resulting models are
approximately right and not certifiably wrong? The
simple answer is: rely on domain knowledge and
exploit the details that matter when dealing with
a highly engineered system such as the Internet.
Note that this answer is in stark contrast to the
statistical physics-based approach that suggests
the development of a system such as the Internet
is governed by robust self-organizing phenomena
that go beyond the particulars of the individual
systems (of interest) [8].

A first-principles approach to internet modeling

If domain knowledge is the key ingredient to build
“approximately right” models of the Internet, what
exactly is the process that helps us achieve our
goal? To illustrate, we consider again the router-
level topology of the Internet, or more specifically,
the physical infrastructure of a regional, national,
or international Internet Service Provider (ISP).

The first key observation is that the way an ISP
designs its physical infrastructure is certainly not
by a series of (biased) coin tosses that determine
whether or not two nodes (i.e., routers) are con-
nected by a physical link, as is the case for the
scale-free network models of the PA type. Instead,
ISPs design their networks for a purpose; that is,
their decisions are driven by objectives and reflect
trade-offs between what is feasible and what is
desirable. The mathematical modeling language
that naturally reflects such a decision making
process is constrained optimization. Second, while
in general it may be difficult if not impossible to
define or capture the precise meaning of an ISP’s
purpose for designing its network, an objective
that expresses a desire to provide connectivity
and an ability to carry an expected traffic demand
efficiently and effectively, subject to prevailing
economic and technological constraints, is unlikely
to be far from the “true” purpose. In view of this,
we are typically not concerned with a network
design that is “optimal” in a strictly mathematical
sense and is also likely to be NP-hard, but in
a solution that is “heuristically optimal” in the
sense that it results in “good” performance. That
is, we seek a solution that captures by and large
what the ISP can afford to build, operate, and
manage (i.e., economic considerations), given the
hard constraints that technology imposes on the
network’s physical entities (i.e., routers and links).
Such models have been discussed in the context of
highly organized/optimized tolerances/tradeoffs
(HOT) [18, 26]. Lastly, note that in this approach,
randomness enters in a very specific manner,
namely in terms of the uncertainty that exists
about the “environment” (i.e., the traffic demand
that the network is expected to carry), and the
heuristically optimal network designs are expected
to exhibit strong robustness properties with respect
to changes in this environment.

Figure 3 shows a toy example of an ISP router-
level topology that results from adopting the
mathematical modeling language of constrained
optimization and choosing a candidate network
as a solution of an heuristically optimal network
design problem. Despite being a toy example, it is
rich enough to illustrate the key features of our
engineering-driven approach to network modeling
and to contrast it with the popular scale-free net-
work models of the PA type. It’s toy nature is mainly
due to a number of simplifying assumptions we
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Figure 5. Generating networks using constrained optimization. (a) Engineers view network
structure as the solution to a design problem that measures performance in terms of the ability

to satisfy traffic demand while adhering to node and arc capacity constraints. (b) A network
resulting from heuristically optimized tradeoffs (HOT). This network has very different structural

and behavioral properties, even when it has the name number of nodes, links, and degree
distribution as the scale free network depicted in Fig. 1.

make that facilitate the problem formulation. For
one, by simply equating throughput with revenues,
we select as our objective function the maximum
throughput that the network can achieve for a
given traffic demand and use it as a metric for quan-
tifying the performance of our solutions. Second,
considering an arbitrary distribution of end-user
traffic demand xi , we assume a gravity model for
the unknown traffic demand; that is, assuming
shortest-path routing, the demands are given by the
traffic matrix X, where for the traffic Xij between
routers i and j we have Xij = ρxixj , for some con-
stant ρ. Lastly, we consider only one type of router
and its associated technologically feasible region;
that is, (router degree, router capacity)-pairs that
are achievable with the considered router type (e.g.,
CISCO 12416 GSR), and implicitly avoid long-haul
connections due to their high cost.

The resulting constrained optimization problem
can be written in the form

maxρ
∑
i,j
Xi,j

s.t. RX ≤ B
where X is the vector obtained by stacking all the
demands Xij = ρxixj ; R is the routing matrix ob-
tained by using standard shortest path routing and
defined by Rkl = 1 or 0, depending on whether or
not demand l passes through router k; and B is the
vector consisting of the router degree-bandwidths
constraints imposed by the technologically fea-
sible region of the router at hand. While all the
simplifying assumptions can easily be relaxed to
allow for more realistic objective functions, more
heterogeneity in the constraints, or more accurate

descriptions of the uncertainty in the environment,
Figure 3 illustrates the key characteristics inher-
ent in a heuristically optimal solution of such a
problem. First, the cost-effective handling of end
user demands avoids long-haul connections (due
to their high cost) and is achieved through traffic
aggregation starting at the edge of the network via
the use of high-degree routers that support the
multiplexing of many low-bandwidth connections.
Second, this aggregated traffic is then sent toward
the “backbone” that consists of the fastest or
highest-capacity routers (i.e., having small number
of very high-bandwidth connections) and that
forms the network’s mesh-like core. The result is
a network that has a more or less pronounced
backbone, which is fed by tree-like access networks,
with additional connections at various places to
provide a degree of redundancy and robustness to
failures.

What about power-law node degree distri-
butions? They are clearly a non-issue in this
engineering-based first-principles approach, just
as they should be, based on our understanding
illustrated earlier that present measurement
techniques are incapable of supporting them. Rec-
ognizing their irrelevance is clearly the beginning
of the end of the scale-free network models of
the PA type as far as the Internet is concerned.
What about replacing power-laws by the somewhat
more plausible assumption of high variability in
node degrees? While the answer of the scale-free
modeling approach consists of tweaks to the
PA mechanism to enforce an exponential cut-off
of the power-law node degree distribution at
the upper tail, the engineering-based approach
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demystifies high-variability in node degrees
altogether by identifying its root cause in the form
of high variability in end-user bandwidth demands
(see [33] for details). In view of such a simple
physical explanation of the origins of node degree
variability in the Internet’s router-level topology,
Strogatz’ question, paraphrasing Shakespeare’s
Macbeth, “... power-law scaling, full of sound and
fury, signifying nothing?” [52] has a resounding
affirmative answer.

Great Potential for Mathematics
Given the specious nature of scale-free networks
of the PA type for modeling Internet-related con-
nectivity structures, their rigorous mathematical
treatment and resulting highly-publicized proper-
ties have lost much of their luster, at least as far as
Internet matters are concerned. Considering again
our example of the router-level Internet, neither
the claim of a hub-like core, nor the asserted
error tolerance (i.e., robustness to random compo-
nent failure) and attack vulnerability (i.e., Achilles’
heel property), nor the often-cited zero epidemic
threshold property hold. In fact, as illustrated with
our HOT-based network models, intrinsic and un-
avoidable tradeoffs between network performance,
available technology, and economic constraints
necessarily result in network structures that are
in all important ways exactly the opposite of what
the scale-free models of the PA type assert. In this
sense, the HOT toy examples represent a class of
network models for the Internet that are not only
consistent with various types of measurements and
in agreement with engineering intuition, but whose
rigorous mathematical treatment promises to be
more interesting and certainly more relevant and
hence more rewarding than that of the scale-free
models of the PA type.

The Internet’s robust yet fragile nature

Because high-degree nodes in the router-level In-
ternet can exist only at the edge of the network,
their removal impacts only local connectivity and
has little or no global effect. So much for the
widely-cited discovery of the Internet’s Achilles’
heel! More importantly, the Internet is known to be
extremely robust to component failures, but this is
by design2 and involves as a critical ingredient the
Internet Protocol (IP) that “sees failures and routes
traffic around them.” Note that neither the presence
of protocols nor their purpose play any role in the
scale-free approach to assessing the robustness
properties of the Internet. At the same time, the
Internet is also known to be very fragile, but again
in a sense that is completely different from and
has nothing in common with either the sensational
Achilles’ heel claim or the zero epidemic threshold

2Being robust to component failures was the number one
requirement in the original design of the Internet [24].

property, both of which are irrelevant as far as the
actual Internet is concerned. The network’s true
fragility is due to an original trust model3 that
has been proven wrong almost from the get-go
and has remained broken ever since. While worms,
viruses, or spam are all too obvious and constant
reminders of this broken trust model, its more
serious and potentially lethal legacy is that it
facilitates the malicious exploitation or hijacking
of the very mechanisms (e.g., protocols) that ensure
the network’s impressive robustness properties.
This “robust yet fragile” tradeoff is a fundamental
aspect of an Internet architecture whose basic
design dates back some 40 years and has enabled
an astonishing evolution from a small research
network to a global communication infrastructure
supporting mission-critical applications.

One of the outstanding mathematical challenges
in Internet research is the development of a the-
oretical foundation for studying and analyzing
this robustness-fragility tradeoff that is one of the
single most important characteristics of complexity
in highly engineered systems. To date, this tradeoff
has been largely managed with keen engineering
insights and little or no theoretical backing, but as
the Internet scales even further and becomes ever
more heterogeneous, the need for a relevant math-
ematical theory replacing engineering intuition
becomes more urgent. The difficulties in develop-
ing such a theory are formidable as the “typical”
behavior of a system such as the Internet is often
quite simple, inviting naive views and models like
the scale-free network models of the PA type that
ignore any particulars of the underlying system,
inevitably cause confusion, result in misleading
claims, and provide simple explanations that may
look reasonable at first sight but turn out to be
simply wrong. Only extreme circumstances or rare
accidents not easily replicable in laboratory experi-
ments or simulations reveal the enormous internal
complexity in systems such as the Internet, and
any relevant mathematical theory has to respect
the underlying architectural design and account
for the various protocols whose explicit purpose is
in part to hide all the complexity from the user of
the system [5].

Network dynamics and system function

Real networks evolve over time in response to
changes in their environment (e.g., traffic, tech-
nology, economics, government regulation), and
currently proposed network models such as the
scale-free models of the PA type cannot account
for such interactions. They either ignore the notion
of network function (i.e., the delivery of traffic)
altogether or treat networks as strictly open-loop
systems in which modeling exists largely as an

3The original Internet architects assumed that all hosts
can be trusted [24].
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exercise in data-fitting. In stark contrast to the
scale-free models of the PA type, the proposed
HOT-based network models make the dependence
of network structure on network traffic explicit.
This is done by requiring as input a traffic demand
model in the form of a traffic matrix (e.g., gravity
model). A particular network topology is “good”
only if it can deliver traffic in a manner that satisfies
demand. When viewed over time, changes in the
environment (e.g., traffic demands), constraints
(e.g., available technologies), or objectives (e.g.,
economic conditions) are bound to impact the
structure of the network, resulting in an intricate
feedback loop between network traffic and network
structure.

The task at hand is to develop a mathematical
framework that enables and supports modeling
network evolution in ways that account for this
feedback loop between the structure of the net-
works and the traffic that they carry or that gets
routed over them. This new modeling paradigm
for networks is akin to recent efforts to model
the network-wide behavior of TCP or the TCP/IP
protocol stack as a whole: the modeling language
is (constrained) optimization; a critical ingredi-
ent is the notion of separation of time scales;
heuristic solution methods (with known robust-
ness properties to changes in the environment) are
preferred over mathematically optimal solution
techniques (which are likely to be NP-hard); and
the overall goal is to transform network modeling
from an exercise in data-fitting into an exercise
in reverse-engineering. In this sense, relevant re-
cent theoretical works includes network utility
maximization (e.g., see [30, 36, 37]), layering as
optimization decomposition (e.g., see [21, 22]), and
the price of anarchy (e.g., see [45]).

In view of this objective, developing a mathemat-
ical framework for studying sequences and limits
of graphs that arise in a strictly open-loop manner
(e.g., see [17, 19, 20]), while of independent mathe-
matical interest, is of little relevance for studying
and understanding real-world networks such as
the Internet, unless it is supported by strong and
convincing validation efforts. This difference in
opinions is fully expected: while mathematicians
and physicists tend to view the enormous dynamic
graph structures that arise in real-world applica-
tions as too complex to be described by direct
approaches and therefore invoke randomness to
model and analyze them, Internet researchers gen-
erally believe to have enough domain knowledge
to understand the observed structures in great
detail and tend to rely on randomness for the sole
purpose of describing genuine uncertainty about
the environment. While both approaches have
proven to be useful, it is the responsibility of the
mathematician/physicist to convince the Internet
researcher of the relevance or usefulness of their
modeling effort. The scale-free models of the PA

type are an example where this responsibility has
been badly lacking.

Multiscale network representations

Multiscale representations of networks is an area
where Ulam’s paraphrased quote “Ask not what
mathematics can do for [the Internet]; ask what [the
Internet] can do for mathematics.” is highly appro-
priate. On the one hand, there exists a vast literature
on mathematical multi-resolution analysis (MRA)
techniques and methodologies for studying com-
plex objects such as high-dimensional/semantic-
rich data and large-scale structures. However,
much less is known when it comes to dealing
with highly irregular domains such as real-world
graph structures or with functions or distribu-
tions defined on those domains. In fact, from an
Internet perspective, what is needed is an MRA
specifically designed to accommodate the vertical
(i.e., layers) and horizontal (i.e., administrative or
geographic domains) decompositions of Internet-
like systems and capture in a systematic manner
the “multi-scale” nature of the temporal, spatial,
and functional aspects of network traffic over
corresponding network structures. In short, the
mathematical challenge consists of developing an
MRA technology appropriate for dealing with mean-
ingful multi-scale representations of very large,
dynamic, and diverse Internet-specific graph struc-
tures; for exploring traffic processes associated
with those structures; and for studying aggregated
spatio-temporal network data representations and
visual representations of them.

The appeal of an Internet-specific MRA is that
the Internet’s architecture supports a number
of meaningful and relevant multi-scale network
representations with associated traffic processes.
For example, starting with our example of the
router-level Internet (and associated hypothetical
traffic matrix), aggregating routers and the traf-
fic they handle into Points-of-Presences, or PoPs,
yields the PoP-level Internet and PoP-level traffic
matrix. Aggregating PoPs and the traffic they han-
dle into Autonomous Systems (ASes) or domains
produces the AS-level Internet and corresponding
AS-level traffic matrix. Aggregating even further,
we can group ASes that belong to the same Internet
Service Provider (ISP) or company/institution and
obtain the ISP-level Internet. While the router- and
PoP-level Internet are inherently physical repre-
sentations of the Internet, the AS- and ISP-level
structures are examples of logical or virtual con-
structs where nodes and links say little or nothing
about physical connectivity. At the same time, the
latter are explicit examples that support a meaning-
ful view of the Internet as a “network of networks”
(see below). With finer-resolution structures and
traffic matrices also of interest and of possible
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use (e.g., BGP prefix-level, IP address-level), the ex-
pectations for an Internet-specific MRA technique
are that it is capable of recovering these multiple
representations by respecting the architectural,
administrative, and technological aspects that give
rise to this natural hierarchical decomposition and
representation of the Internet. While traditional
wavelet-based MRA techniques have proven to be
too rigid and inflexible to meet these expectations,
more recent developments concerning the use of
diffusion wavelets (e.g., see [40, 41]) show great
promise and are presently explored in the context
of Internet-specific structures.

Networks of networks

Changing perspectives, we can either view the
Internet as a “network of networks” (e.g., AS-level
Internet) or consider it as one of many networks
that typically partake in the activities of enterprises:
transportation of energy, materials, and compo-
nents; power grid; supply chains, and control of
transportation assets; communication and data
networks. The networks’ activities are correlated
because they are invoked to support a common
task, and the networks are interdependent because
the characteristics of one determine the inputs
or constraints for another. They are becoming
even more correlated and interdependent as they
shift more and more of their controls to be infor-
mation intensive and data network-based. While
this “networks of networks” concept ensures enor-
mous efficiency and flexibility, both technical and
economical, it also has a dark side—by requiring
increasingly complex design processes, it creates
vastly increased opportunities for potentially cata-
strophic failures, to the point where national and
international critical infrastructure systems are at
risk of large-scale disruptions due to intentional
attacks, unintentional (but potentially devastating)
side effects, the possibility of (not necessarily
deliberate) large cascading events, or their growing
dependence on the Internet as a “central nervous
system.”

This trend in network evolution poses serious
questions about the reliability and performability of
these critical infrastructure systems in the absence
of an adequate theory [46]. Thus the long-term
goal of any mathematical treatment of networked
systems should be to develop the foundation of a
nascent theory in support of such a “networks of
networks” concept. To this end, the Internet shows
great promise to serve as a case study to illustrate
how early verbal observations and arguments with
deep engineering insight have led via an interplay
with mathematics and measurements to increas-
ingly formal statements and powerful theoretical
developments that can be viewed as a precursor of
a full-fledged “network of networks” theory.

Conclusion
Over the last decade, there has been a compelling
story articulated by the proponents of network
science. Advances in information technology have
facilitated the collection of petabyte scale data
sets on everything from the Internet to biology
to economic and social systems. These data sets
are so large that attempts even to visualize them
are nontrivial and often yield nonsensical results.
Thus the “Petabyte Age” requires new modeling
approaches and mathematical techniques to iden-
tify hidden structures, with the implication that
these structures are fundamental to understand-
ing the systems from which the vast amounts of
measurements are derived. In extreme cases, this
perspective suggests that the ubiquity of petabyte
scale data on everything will fundamentally change
the role of experimentation in science and of
science as a whole [7].

In this article we have presented a retrospective
view of key issues that have clouded the popular
understanding and mathematical treatment of
the Internet as a complex system for which vast
amounts of data are readily available. Foremost
among these issues are the dangers of taking
available data “at face value” without a deeper
understanding of the idiosyncracies and ambigui-
ties resulting from domain-specific collection and
measurement techniques. When coupled with the
naive but commonly-accepted view of validation
that simply argues for replicating certain statistical
features of the observed data, such an “as is” use
of the available data reduces complex network
modeling to mere “data fitting,” with the expected
and non-informative outcome that given sufficient
parameterization, it is always possible to match
a model to any data set without necessarily cap-
turing any underlying hidden structure or key
functionality of the system at hand.

For systems whose measured features are sub-
ject to fundamental ambiguities, omissions, and/or
systematic errors, we have proposed an alternative
approach to network modeling that emphasizes
data hygiene (i.e., practices associated with de-
termining the quality of the available data and
assessing their proper use) and uses constrained
optimization as modeling language to account for
the inherent objectives, constraints, and domain-
specific environmental conditions underlying the
growth and evolution of real-world complex net-
works. We have shown that in the context of the
router-level Internet, this approach yields models
that not only respect the forces shaping the real
Internet but also are robust to the deficiencies
inherent in available data.

In this article, the Internet has served as a
clear case study, but the issues discussed apply
more generally and are even more pertinent in
contexts of biology and social systems, where
measurement is inherently more difficult and more
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error prone. In this sense, the Internet example
serves as an important reminder that despite the
increasing ubiquity of vast amounts of available
data, the “Garbage In, Gospel Out” extension of
the phrase “Garbage In, Garbage Out” remains as
relevant as ever; no amount of number crunch-
ing or mathematical sophistication can extract
knowledge we can trust from low-quality data sets,
whether they are of petabyte scale or not. Although
the Internet story may seem all too obvious in
retrospect, managing to avoid the same mistakes
in the context of next-generation network science
remains an open challenge. The consequences of
repeating such errors in the context of, say, biology
are potentially much more grave and would reflect
poorly on mathematics as a discipline.
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