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Abstract

There is a large, popular, and growing literature on “scale-free networks” with the Internet along with metabolic networks
representing perhaps the canonical examples. While this has in many ways reinvigorated graph theory, there is unfortunately
no consistent, precise definition of scale-free graphs and few rigorous proofs of many of their claimed properties. In fact, it is
easily shown that the existing theory has many inherent contradictions and that the most celebrated claims regarding the Internet
and biology are verifiably false. In this paper, we introduce a structural metric that allows us to differentiate between all simple,
connected graphs having an identical degree sequence, which is of particular interest when that sequence satisfies a power law
relationship. We demonstrate that the proposed structural metric yields considerable insight into the claimed properties of SF
graphs and provides one possible measure ofthe extent to which a graph is scale-free. This structural view can be related to
previously studied graph properties such as the various notions of self-similarity, likelihood, betweeness and assortativity. Our
approach clarifies much of the confusion surrounding the sensational qualitative claims in the current literature, and offers a
rigorous and quantitative alternative, while suggesting the potential for a rich and interesting theory. This paper is aimed at
readers familiar with the basics of Internet technology and comfortable with a theorem-proof style of exposition, but who may
be unfamiliar with the existing literature on scale-free networks.

1 Introduction

One of the most popular topics recently within the interdis-
ciplinary study of complex networks has been the investiga-
tion of so-called “scale-free” graphs. Originally introduced
by Barab́asi and Albert [14], scale-free (SF) graphs have been
proposed as generic, yet universal models of network topolo-
gies that exhibit power law distributions in the connectivity of
network nodes. As a result of the apparent ubiquity of such dis-
tributions across many naturally occurring and man-made sys-
tems, SF graphs have been suggested as representative mod-
els of complex systems ranging from the social sciences (col-
laboration graphs of movie actors or scientific co-authors) to
molecular biology (cellular metabolism and genetic regula-
tory networks) to the Internet (Web graphs, router-level graphs,
and AS-level graphs). Because these models exhibit features
not easily captured by traditional Erdös-Renýı random graphs
[39], it has been suggested that the discovery, analysis, and ap-
plication of SF graphs may even represent a “new science of
networks” [13, 37].

As pointed out in [23, 24], despite the popularity of the SF
network paradigm in the complex systems literature, the defi-
nition of “scale-free” in the context of network graph models
has never been made precise, and the results on SF graphs are
largely heuristic and experimental studies with“rather little
rigorous mathematical work; what there is sometimes confirms
and sometimes contradicts the heuristic results”[23]. Spe-
cific usage of “scale-free” to describe graphs can be traced to
the observation in Barabási and Albert [14] that“a common
property of many large networks is that the vertex connectiv-
ities follow a scale-free power-law distribution.”However,
most of the SF literature [4, 5, 6, 14, 15, 16, 17] identifies a

rich variety of additional (e.g. topological) signatures beyond
mere power law degree distributions in corresponding models
of large networks. One such feature has been the role of evo-
lutionary growth or rewiring processes in the construction of
graphs. Preferential attachment is the mechanism most often
associated with these models, although it is only one of several
mechanisms that can produce graphs with power law degree
distributions.

Another prominent feature of SF graphs in this literature is
the role of highly connected “hubs.” Power law degree distri-
butions alone imply that some nodes in the tail of the power
law must have high degree, but “hubs” imply something more
and are often said to “hold the network together.” The presence
of a hub-like network core yields a “robust yet fragile” con-
nectivity structure that has become a hallmark of SF network
models. Of particular interest here is that a study of SF models
of the Internet’s router topology is reported to show that“the
removal of just a few key hubs from the Internet splintered the
system into tiny groups of hopelessly isolated routers”[16].
Thus, apparently due to their hub-like core structure, SF net-
works are said to be simultaneously robust to the random loss
of nodes (i.e. “error tolerance”) since these tend to miss hubs,
but fragile to targeted worst-case attacks (i.e. “attack vulnera-
bility”) [6] on hubs. This latter property has been termed the
“Achilles’ heel” of SF networks, and it has featured promi-
nently in discussions about the robustness of many complex
networks. Albert et al. [6] even claim to“demonstrate that
error tolerance... is displayedonly by a class of inhomoge-
neously wired networks, called scale-free networks”(empha-
sis added). We will use the qualifier “SF hubs” to describe high
degree nodes which are so located as to provide these “robust
yet fragile” features described in the SF literature, and a goal
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of this paper is to clarify more precisely what topological fea-
tures of graphs are involved.

There are a number of properties in addition to power law
degree distributions, random generation, and SF hubs that are
associated with SF graphs, but unfortunately, it is rarely made
clear in the SF literature which of these features define SF
graphs and which features are then consequences of this defi-
nition. This has led to significant confusion about the defining
features or characteristics of SF graphs and the applicability of
these models to real systems. While the usage of “scale-free”
in the context of graphs has been imprecise, there is neverthe-
less a large literature on SF graphs, particularly in the highest
impact general science journals. For purposes of clarity in this
paper, we will use the termSF graphs(or equivalently,SF net-
works) to mean those objects as studied and discussed in this
“SF literature,” and accept that this inherits from that literature
an imprecision as to what exactly SF means. One aim of this
paper is to capture as much as possible of the “spirit” of SF
graphs by proving their most widely claimed properties using
a minimal set of axioms. Another is to reconcile these theo-
retical properties with the properties of real networks, and in
particular the router-level graphs of the Internet.

Recent research into the structure of several important
complex networks previously claimed to be “scale-free” has
revealed that, even if their graphs could have approximately
power law degree distributions, the networks in question do
not have SF hubs, that the most highly connected nodes do not
necessarily represent an “Achilles’ heel”, and that their most
essential “robust, yet fragile” features actually come from as-
pects that are only indirectly related to graph connectivity. In
particular, recent work in the development of a first-principles
approach to modeling the router-level Internet has shown that
the core of that network is constructed from a mesh of high-
bandwidth, low-connectivity routers and that this design re-
sults from tradeoffs in technological, economic, and perfor-
mance constraints on the part of Internet Service Providers
(ISPs) [59]. A related line of research into the structure of
biological metabolic networks has shown that claims of SF
structure fail to capture the most essential biochemical as well
as “robust yet fragile” features of cellular metabolism and
in many cases completely misinterpret the relevant biology
[95, 96]. This mounting evidence against the heart of the SF
story creates a dilemma in how to reconcile the claims of this
broad and popular framework with the details of specific ap-
plication domains. In particular, it is now clear that either the
Internet and biology networks are very far from “scale free”,
or worse, the claimed properties of SF networks are simply
false at a more basic mathematical level, independent of any
purported applications.

The main purpose of this paper is to demonstrate that when
properly defined, “scale-free networks” have the potential for
a rigorous, interesting, and rich mathematical theory. Our pre-
sentation assumes an understanding of fundamental Internet
technology as well as comfort with a theorem-proof style of
exposition, but not necessarily any familiarity with existing
SF literature. While we leave many open questions and con-
jectures supported only by numerical experiments, examples,
and heuristics, our approach reconciles the existing contradic-
tions and recovers many claims regarding the graph theoretic
properties of SF networks. A main contribution of this paper is
the introduction of a structural metric that allows us to differ-
entiate between all simple, connected graphs having an identi-
cal degree sequence, particularly when that sequence follows a
power law. Our approach is to leverage related definitions from

other disciplines, where available, and utilize existing methods
and approaches from graph theory and statistics. While the
proposed structural metric is not intended as a general mea-
sure of all graphs, we demonstrate that it yields considerable
insight into the claimed properties of SF graphs and may even
provide a view intothe extent to which a graph is scale-free.
Such a view has the benefit of beingminimal, in the sense that
it relies on few starting assumptions, yet yields a rich and gen-
eral description of the features of SF networks. While far from
complete, our results are consistent with the main thrust of the
SF literature and demonstrate that a rigorous and interesting
“scale-free theory” can be developed, with very general and
robust features resulting from relatively weak assumptions. In
the process, we resolve some of the misconceptions that exist
in the general SF literature and point out some of the defi-
ciencies associated with previous applications of SF models,
particularly to technological and biological systems.

The remainder of this article is organized as follows. Sec-
tion 2 provides the basic background material, including math-
ematical definitions for scaling and power law degree se-
quences, a discussion of related work on scaling that dates
back as far as 1925, and various additional work on self-
similarity in graphs. We also emphasize here why high vari-
ability is a much more important concept than scaling or
power laws per se. Section 3 briefly reviews the recent lit-
erature on SF networks, including the failure of SF meth-
ods in Internet applications. In Section 4, we introduce a
metric for graphs having a power-law in their degree se-
quence, one that highlights the diversity of such graphs and
also provides insight into existing notions of graph structure
such as self-similarity/self-dissimilarity, motifs, and degree-
preserving rewiring. Our metric is “structural”—in the sense
that it depends only on the connectivity of a given graph
and not the process by which the graph is constructed—and
can be applied to any graph of interest. Then, Section 5
connects these structural features with the probabilistic per-
spective common in statistical physics and traditional random
graph theory, with particular connections to graph likelihood,
degree correlation, and assortative/disassortative mixing. Sec-
tion 6 then traces the shortcomings of the existing SF theory
and uses our alternate approach to outline what sort of po-
tential foundation for a broader and more rigorous SF theory
may be built from mathematically solid definitions. We also
put the ensuing SF theory in a broader perspective by com-
paring it with recently developed alternative models for the
Internet based on the notion ofHighly Optimized Tolerance
(HOT) [28]. We conclude in Section 7 that many open prob-
lems remain, including theoretical conjectures and the poten-
tial relevance of rigorous SF models to applications other than
technology.

2 Background

This section provides the necessary background for our inves-
tigation of what it means for a graph to be “scale-free”. In
particular, we present some basic definitions and results in ran-
dom variables, comment on approaches to the statistical anal-
ysis of high variability data, and review notions of scale-free
and self-similarity as they have appeared in related domains.

While the advanced reader will find much of this section
elementary in nature, our experience is that much of the con-
fusion on the topic of SF graphs stems from fundamental dif-
ferences in the methodological perspectives between statisti-
cal physics and that of mathematics or engineering. The intent
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here is to provide material that helps to bridge this potential
gap in addition to setting the stage from which our results will
follow.

2.1 Power Law and Scaling Behavior

2.1.1 Non-stochastic vs. Stochastic Definitions

A finite sequencey = (y1, y2, . . . , yn) of real numbers, as-
sumed without loss of generality always to be ordered such
that y1 ≥ y2 ≥ . . . ≥ yn, is said to follow apower lawor
scaling relationshipif

k = cyk
−α, (1)

wherek is (by definition) therank of yk, c is a fixed constant,
and α is called thescaling index. Since log k = log(c) −
α log(yk), the relationship for the rankk versusy appears as
a line of slope−α when plotted on a log-log scale. In this
manuscript, we refer to the relationship (1) as thesize-rank(or
cumulative) form of scaling. While the definition of scaling
in (1) is fundamental to the exposition of this paper, a more
common usage of power laws and scaling occurs in the con-
text of random variables and their distributions. That is, as-
suming an underlying probability modelP for a non-negative
random variableX, let F (x) = P [X ≤ x] for x ≥ 0 de-
note the(cumulative) distribution function (CDF) ofX, and let
F̄ (x) = 1−F (x) denote thecomplementary CDF (CCDF). A
typical feature of commonly-used distribution functions is that
the (right) tails of their CCDFs decrease exponentially fast,
implying that all moments exist and are finite. In practice, this
property ensures that any realization(x1, x2, . . . , xn) from an
independent sample(X1, X2, . . . , Xn) of size n having the
common distribution functionF concentrates tightly around
its (sample) mean, thus exhibiting low variability as measured,
for example, in terms of the (sample) standard deviation.

In this stochastic context, a random variableX or its corre-
sponding distribution functionF is said to follow apower law
or is scalingwith indexα > 0 if, asx →∞,

P [X > x] = 1− F (x) ≈ cx−α, (2)

for some constant0 < c < ∞ and a tail index α > 0.
Here, we writef(x) ≈ g(x) asx → ∞ if f(x)/g(x) → 1
as x → ∞. For 1 < α < 2, F has infinite variance but
finite mean, and for0 < α ≤ 1, F has not only infinite
variance but also infinite mean. In general, all moments of
F of order β ≥ α are infinite. Since relationship (2) im-
plies log(P [X > x]) ≈ log(c) − α log(x), doubly logarith-
mic plots ofx versus1 − F (x) yield straight lines of slope
−α, at least for largex. Well-known examples of power law
distributions include the Pareto distributions of the first and
second kind [51]. In contrast,exponential distributions(i.e.,
P [X > x] = e−λx) result in approximately straight lines on
semi-logarithmic plots.

If the derivative of the cumulative distribution function
F (x) exists, thenf(x) = d

dxF (x) is called the(probability)
density functionof X and implies that the stochastic cumula-
tive form of scaling or size-rank relationship (2) has an equiv-
alentnoncumulativeor size-frequencycounterpart given by

f(x) ≈ cx−(1+α) (3)

which appears similarly as a line of slope−(1 + α) on a log-
log scale. However, as discussed in more detail in Section
2.1.3 below, the use of this noncumulative form of scaling has

been a source of many common mistakes in the analysis and
interpretation of actual data and should generally be avoided.

Power-law distributions are called scaling distributions be-
cause the sole response to conditioning is a change in scale;
that is, if the random variableX satisfies relationship (2) and
x > w, then the conditional distribution ofX given that
X > w is given by

P [X > x|X > w] =
P [X > x]
P [X > w]

≈ c1x
−α,

where the constantc1 is independent ofx and is given byc1 =
1/w−α. Thus, at least for large values ofx, P [X > x|X > w]
is identical to the (unconditional) distributionP [X > x], ex-
cept for a change in scale. In contrast, the exponential distri-
bution gives

P (X > x|X > w) = e−λ(x−w),

that is, the conditional distribution is also identical to the (un-
conditional) distribution, except for a change of location rather
than scale. Thus we prefer the termscalingto power law, but
will use them interchangeably, as is common.

It is important to emphasize again the differences between
these alternative definitions of scaling. Relationship (1) isnon-
stochastic, in the sense that there is no assumption of an under-
lying probability space or distribution for the sequencey, and
in what follows we will always use the termsequenceto re-
fer to such a non-stochastic objecty, and accordingly we will
usenon-stochasticto mean simply the absence of an under-
lying probability model. In contrast, the definitions in (2) and
(3) arestochasticand require an underlying probability model.
Accordingly, when referring to a random variableX we will
explicitly mean an ensemble of values or realizations sampled
from a common distribution functionF , as is common usage.
We will often use the standard and trivial method of viewing a
nonstochastic model as a stochastic one with a singular distri-
bution.

These distinctions between stochastic and nonstochastic
models will be important in this paper. Our approach allows
for but does not require stochastics. In contrast, the SF liter-
ature almost exclusively assumes some underlying stochastic
models, so we will focus some attention on stochastic assump-
tions. Exclusive focus on stochastic models is standard in sta-
tistical physics, even to the extent that the possibility of non-
stochastic constructions and explanations is largely ignored.
This seems to be the main motivation for viewing the Internet’s
router topology as a member of an ensemble of random net-
works, rather than an engineering system driven by economic
and technological constraints plus some randomness, which
might otherwise seem more natural. Indeed, in the SF litera-
ture “random” is typically used more narrowly than stochas-
tic to mean, depending on the context, exponentially, Poisson,
or uniformly distributed. Thus phrases like “scale-free versus
random” (the ambiguity in “scale-free” notwithstanding) are
closer in meaning to “scaling versus exponential,” rather than
“non-stochastic versus stochastic.”

2.1.2 Scaling and High Variability

An important feature of sequences that follow the scaling re-
lationship (1) is that they exhibithigh variability, in the sense
that deviations from the average value or (sample) mean can
vary by orders of magnitude, making the average largely unin-
formative and not representative of the bulk of the values. To
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quantify the notion ofvariability, we use the standard measure
of (sample) coefficient of variation, which for a given sequence
y = (y1, y2, . . . , yn) is defined as

CV (y) = STD(y)/ȳ, (4)

whereȳ = n−1
∑n

k=1 yk is the average size or (sample) mean
of y andSTD(y) = (

∑n
k=1(yk− ȳ)2/(n−1))1/2 is the (sam-

ple) standard deviation, a commonly-used metric for measur-
ing the deviations ofy from its averagēy. The presence of
high variability in a sequence of values often contrasts greatly
with the typical experience of many scientists who work with
empirical data exhibitinglow variability—that is, observations
that tend to concentrate tightly around the (sample) mean and
allow for only small to moderate deviations from this mean
value.

A standard ensemble-based measure for quantifying the
variability inherent in a random variableX is the(ensemble)
coefficient of variation CV(X) defined as

CV (X) =
√

Var(X)/E(X), (5)

whereE(X) andV ar(X) are the (ensemble) mean and (en-
semble) variance ofX, respectively. Ifx = (x1, x2, . . . , xn) is
a realization of an independent and identically distributed (iid)
sample of sizen taken from the common distributionF of X,
it is easy to see that the quantityCV (x) defined in (4) is sim-
ply an estimate ofCV (X). In particular, ifX is scaling with
α < 2, thenCV (X) = ∞, and estimatesCV (x) of CV (X)
diverge for large sample sizes. Thus, random variables having
a scaling distribution are extreme in exhibiting high variabil-
ity. However, scaling distributions are only a subset of a larger
family of heavy-tailed distributions(see [102] and references
therein) that exhibit high variability. As we will show, it turns
out that some of the most celebrated claims in the SF literature
(e.g. the presence of highly connected central hubs) have as a
necessary condition only the presence of high variability and
not necessarily strict scaling per se. The consequences of this
observation are far-reaching, especially because it shifts the
focus from scaling relationships, their tail indices, and their
generating mechanisms to an emphasis on heavy-tailed distri-
butions and identifying the main sources of “high variability.”

2.1.3 Cumulative vs. Noncumulative log-log Plots

While in principle there exists an unambiguous mathemati-
cal equivalence between distribution functions and their densi-
ties, as in (2) and (3), no such relationship can be assumed
to hold in general when plotting sequences of real or inte-
ger numbers or measured data cumulatively and noncumula-
tively. Furthermore, there are good practical reasons to avoid
noncumulative or size-frequency plots altogether (a sentiment
echoed in [69]), even though they are often used exclusively
in some communities. To illustrate the basic problem, we
first consider two sequences,ys andye, each of length 1000,
whereys = (ys

1, . . . , y
s
1000) is constructed so that its values

all fall on a straight line when plotted on doubly logarith-
mic (i.e., log-log) scale. Similarly, the values of the sequence
ye = (ye

1, . . . , y
e
1000) are generated to fall on a straight line

when plotted on semi-logarithmic (i.e., log-linear) scale. The
MATLAB code for generating these two sequences is available
for electronic download [63]. When ranking the values in each
sequence in decreasing order, we obtain the following unique
largest (smallest) values, with their corresponding frequencies

of occurrence given in parenthesis:

ys = {10000(1), 6299(1), 4807(1), 3968(1), 3419(1), . . .
. . . , 130(77), 121(77), 113(81), 106(84), 100(84)},

ye = {1000(1), 903(1), 847(1), 806(1), 775(1), . . .
. . . , 96(39), 87(43), 76(56), 61(83), 33(180)},

and the full sequences are plotted in Figure 1. In particular,
the doubly logarithmic plot in Figure 1(a) shows the cumula-
tive or size-rank relationships associated with the sequencesys

andye: the largest value ofys (i.e., 10,000) is plotted on the
x-axis and has rank 1 (y-axis), the second largest value ofys is
6,299 and has rank 2, all the way to the end, where the small-
est value ofys (i.e., 100) is plotted on the x-axis and has rank
1000 (y-axis). Similarly forye. In full agreement with the
underlying generation mechanisms, plotting on doubly loga-
rithmic scale the rank-ordered sequence ofys versus rankk
results in a straight line; i.e.,ys is scaling (to within integer
tolerances). The same plot for the rank-ordered sequence of
ye has a pronounced concave shape and decreases rapidly for
large ranks—strong evidence for an exponential size-rank re-
lationship. Indeed, as shown in Figure 1(b), plotting on semi-
logarithmic scale the rank-ordered sequence ofye versus rank
k yields a straight line; i.e.,ye is exponential (to within integer
tolerances). The same plot forys shows a pronounced convex
shape and decreases very slowly for large rank values—fully
consistent with a scaling size-rank relationship. Various met-
rics for these two sequences are

ye ys

(sample) mean 167 267
(sample) median 127 153
(sample) STD 140 504
(sample) CV .84 1.89

and all are consistent with exponential and scaling sequences
of this size.

To highlight the basic problem caused by the use of noncu-
mulative or size-frequency relationships, consider Figure 1(c)
and (d) that show on doubly logarithmic scale and semi-
logarithmic scale, respectively, the non-cumulative or size-
frequency plots associated with the sequencesys andye: the
largest value ofys is plotted on the x-axis and has frequency
1 (y-axis), the second largest value ofys has also frequency
1, etc., until the end where the smallest value ofys happens
to occur 84 times (to within integer tolerances). Similarly for
ye, where the smallest value happens to occur 180 times. It is
common to conclude incorrectly from plots such as these, for
example, that the sequenceye is scaling (i.e., plotting on dou-
bly logarithmic scale size vs. frequency results in an approx-
imate straight line) and the sequenceys is exponential (i.e.,
plotting on semi-logarithmic scale size vs. frequency results in
an approximate straight line)—exactly the opposite of what is
correctly inferred about the sequences using the cumulative or
size-rank plots in Figure 1(a) and (b).

In contrast to the size-rank plots of the style in Figure 1(a)-
(b) that depict the raw data itself and are unambiguous, the use
of size-frequency plots as in Figure 1(c)-(d), while straight-
forward to describe low variable data, creates ambiguities and
can easily lead to mistakes when applied to high variability
data. First, for high precision measurements it is possible that
each data value appears only once in a sample set, making raw
frequency-based data rather uninformative. To overcome this
problem, a typical approach is to group individual observations
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Figure 1: PLOTS OF EXPONENTIALye (BLACK CIRCLES) AND SCALING ys (BLUE SQUARES) SEQUENCES. (a) Doubly logarithmic size-rank plot:
ys is scaling (to within integer tolerances) and thus ys

k versus k is approximately a straight line. (b) Semi-logarithmic size-rank plot: ye is
exponential (to within integer tolerances) and thus ye

k versus k is approximately a straight line on semi-logarithmic plots (c) Doubly logarithmic
size-frequency plot: ye is exponential but appears incorrectly to be scaling (d) Semi-logarithmic size-frequency plot: ys is scaling but appears
incorrectly to be exponential.

into one of a small number ofbinsand then plot for each bin (x-
axis) the relative number of observations in that bin (y-axis).
The problem is that choosing the size and boundary values for
each bin is a process generally left up to the experimentalist,
and thisbinning processcan dramatically change the nature of
the resulting size-frequency plots as well as their interpretation
(for a concrete example, see Figure 10 in Section 6.1).

These examples have been artificially constructed specifi-
cally to dramatize the effects associated with the use of cumu-
lative or size-rank vs. noncumulative or size-frequency plots
for assessing the presence or absence of scaling in given se-
quence of observed values. While they may appear contrived,
errors such as those illustrated in Figure 1 are easy to make
and are widespread in the complex systems literature. In fact,
determining whether a realization of a sample of sizen gener-
ated from one and the same (unknown) underlying distribution
is consistent with a scaling distribution and then estimating
the corresponding tail indexα from the corresponding size-
frequency plots of the data is even more unreliable. Even un-
der the most idealized circumstances using synthetically gen-
erated pseudo-random data, size-frequency plots can mislead
as shown in the following easily reproduced numerical exper-
iments. Suppose that 1000 (or more) integer values are gen-
erated by pseudo-random independent samples from the dis-
tribution F (x) = 1 − x−1 (P (X ≥ x) = x−1) for x ≥ 1.
For example, this can be done with theMATLAB fragment
x=floor(1./rand(1,1000)) where rand(1,1000)
generates a vector of 1000 uniformly distributed floating point
numbers between 0 and 1, andfloor rounds down to the
next lowest integer. In this case, discrete equivalents to equa-
tions (2) and (3) exist, and forx À 1, the density function

f(x) = P [X = x] is given by

P [X = x] = P [X ≥ x]− P [X ≥ x + 1]

= x−1 − (x + 1)−1

≈ x−2.

Thus it might appear that the true tail index (i.e.,α = 1) could
be inferred from examining either the size-frequency or size-
rank plots, but as illustrated in Figure 2 and described in the
caption, this is not the case.

Though there are more rigorous and reliable methods for
estimatingα (see for example [79]), the (cumulative) size-
rank plots have significant advantages in that they show the
raw data directly, and possible ambiguities in the raw data
notwithstanding, they are also highly robust to a range of
measurement errors and noise. Moreover, experienced read-
ers can judge at a glance whether a scaling model is plau-
sible, and if so, what a reasonable estimate of the unknown
scaling parameterα should be. For example, that the scat-
ter in the data in Figure 2(a) is consistent with a sample
from P (X ≥ x) = x−1 can be roughly determined by
visual inspection, although additional statistical tests could
be used to establish this more rigorously. At the same
time, even when the underlying random variableX is scal-
ing, size-frequency plots systematically underestimateα, and
worse, have a tendency to suggest that scaling exists where it
does not. This is illustrated dramatically in Figure 2(b)-(c),
where exponentially distributed samples are generated using
floor(10*(1-log(rand(1,n)))) . The size-rank plot
in Figure 2(b) is approximately a straight line on a semilog
plot, consistent with an exponential distribution. The loglog
size-frequency plot Figure 2(c) however could be used incor-
rectly to claim that the data is consistent with a scaling dis-
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Figure 2: A COMMON ERROR WHEN INFERRING/ESTIMATING SCALING BEHAVIOR. (a) 1000 integer data points sampled from the scaling dis-
tribution P (X ≥ x) = x−1, for x ≥ 1. The lower size-frequency plot (blue circles) tends to underestimate the scaling index α; it supports a
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log-linear scale. The size-rank plot clearly shows that the data are exponential and that scaling is implausible. (c) The same data as in (b)
plotted on log-log scale. Based on the size-frequency plot, it is plausible to infer incorrectly that the data are consistent with scaling behavior,
with a slope estimate of about -2.5, implying an α-estimate of about 1.5.

tribution, a surprisingly common error in the SF and broader
complex systems literature. Thus even if one a priori assumes
a probabilistic framework, (cumulative) size-rank plots are es-
sential for reliably inferring and subsequently studying high
variability, and they therefore are used exclusively in this pa-
per.

2.1.4 Scaling: More “normal” than Normal

While power laws in event size statistics in many complex in-
terconnected systems have recently attracted a great deal of
popular attention, some of the aspects of scaling distributions
that are crucial and important for mathematicians and engi-
neers have been largely ignored in the larger complex systems
literature. This subsection will briefly review one aspect of
scaling that is particularly revealing in this regard and is a sum-
mary of results described in more detail in [61, 102].

Gaussian distributions are universally viewed as “normal”,
mainly due to the well-known Central Limit Theorem (CLT).
In particular, the ubiquity of Gaussians is largely attributed to
the fact that they are invariant and attractors under aggregation
of summands, required only to be independent and identically
distributed (iid) and have finite variance [43]. Another conve-
nient aspect of Gaussians is that they are completely specified
by mean and variance, and the CLT justifies using these statis-
tics whenever their estimates robustly converge, even when the
data could not possibly be Gaussian. For example, much data
can only take positive values (e.g. connectivity) or have hard
upper bounds but can still be treated as Gaussian. It is un-
derstood that this approximation would need refinement if ad-
ditional statistics or tail behaviors are of interest. Exponen-
tial distributions have their own set of invariance properties
(e.g. conditional expectation) that make them attractive mod-
els in some cases. The ease by which Gaussian data is gener-
ated by a variety of mechanisms means that the ability of any
particular model to reproduce Gaussian data is not counted as
evidence that the model represents or explains other processes
that yield empirically observed Gaussian phenomena. How-
ever, a disconnect often occurs when data have high variabil-
ity, that is, when variance or coefficient of variation estimates
don’t converge. In particular, the above type of reasoning is

often misapplied to the explanation of data that are approxi-
mately scaling, for reasons that we will discuss below.

Much of science has focused so exclusively on low vari-
ability data and Gaussian or exponential models that low vari-
ability is not even seen as an assumption. Yet much real world
data has extremely high variability as quantified, for example,
via the coefficient of variation defined in (5). When exploring
stochastic models of high variability data, the most relevant
mathematical result is that the CLT has a generalization that
relaxes the finite variance (e.g. finiteCV ) assumption, allows
for high variability data arising from underlying infinite vari-
ance distributions, and yieldsstable lawsin the limit. There
is a rich and extensive theory on stable laws (see for example
[83]), which we will not attempt to review, but mention only
the most important features. Recall that a random variableU
is said to have astable law (with index0 < α ≤ 2) if for any
n ≥ 2, there is a real numberdn such that

U1 + U2 + · · ·+ Un
d= n1/αU + dn,

whereU1, U2, . . . , Un are independent copies ofU , and

where
d= denotes equality in distribution. Following [83],

the stable laws on the real line can be represented as a four-
parameter familySα(σ, β, µ), with the indexα, 0 < α ≤ 2;
thescale parameterσ > 0; theskewness parameterβ, −1 ≤
β ≤ 1; and thelocation (shift) parameterµ, −∞ < µ < ∞.
When1 < α < 2, the shift parameter is the mean, but for
α ≤ 1, the mean is infinite. There is an abrupt change in
tail behavior of stable laws at the boundaryα = 2. While
for α < 2, all stable laws are scaling in the sense that they
satisfy condition (2) and thus exhibit infinite variance or high
variability; the caseα = 2 is special and represents a famil-
iar, not scaling distribution—the Gaussian (normal) distribu-
tion; i.e.,S2(σ, 0, µ) = N(µ, 2σ2), corresponding to the finite
variance or low variability case. While with the exception of
Gaussian, Cauchy, and Levy distributions, the distributions of
stable random variables are not known in closed form, they are
known to be the only fixed points of the renormalization group
transformation and thus arise naturally in the limit of properly
normalized sums of iid scaling random variables. From an un-
biased mathematical view, the most salient features of scaling
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distributions are this and additional strong invariance proper-
ties (e.g. to marginalization, mixtures, maximization), and the
ease with which scaling is generated by a variety of mecha-
nisms [61, 102]. Combined with the abundant high variability
in real world data, these features suggest that scaling distri-
butions are in a sense more “normal” than Gaussians and that
they are convenient and parsimonious models for high vari-
ability data in as strong a sense as Gaussians or exponentials
are for low variability data.

While the ubiquity of scaling is increasingly recognized
and even highlighted in the physics and the popular complex-
ity literature [10, 26, 13, 11], the deeper mathematical con-
nections and their rich history in other disciplines have been
largely ignored, with serious consequences. Models of com-
plexity using graphs, lattices, cellular automata, and sandpiles
preferred in physics and the standard laboratory-scale exper-
iments that inspired these models exhibit scaling only when
finely tuned in some way. So even when accepted as ubiq-
uitous, scaling is still treated as arcane and exotic, and “emer-
gence” and “self-organization” are invoked to explain how this
tuning might happen [8]. For example, that SF network mod-
els supposedly replicate empirically observed scaling node de-
gree relationships that are not easily captured by traditional
Erdös-Renýı random graphs [14] is presented as evidence for
model validity. But given the strong invariance properties of
scaling distributions, as well as the multitude of diverse mech-
anisms by which scaling can arise in the first place [69], it
becomes clear that an ability to generate scaling distributions
“explains” little, if anything. Once high variability appears in
real data then scaling relationships become a natural outcome
of the processes that measure them.

2.2 Scaling, Scale-free and Self-Similarity

Within the physics community it is common to refer to func-
tions of the form (3) asscale-freebecause they satisfy the fol-
lowing property

f(ax) = g(a)f(x). (6)

As reviewed by Newman [69], the idea is that an increase by a
factora in the scale or units by which one measuresx results
in no change to the overall densityf(x) except for a multi-
plicative scaling factor. Furthermore, functions consistent with
(3) are theonly functions that are scale-free in the sense of
(6)—free of a characteristic scale. This notion of “scale-free”
is clear, and could be taken as simply another synonym for
scaling and power law, but most actual usages of “scale-free”
appear to have a richer notion in mind, and they attribute addi-
tional features, such as some underlying self-similar or fractal
geometry or topology, beyond just properties of certain scalar
random variables.

One of the most widespread and longstanding uses of the
term “scale-free” has been in astrophysics to describe the frac-
tal nature of galaxies. Using a probabilistic framework, one
approach is to model the distribution of galaxies as a station-
ary random process and express clustering in terms of correla-
tions in the distributions of galaxies (see the review [41] for an
introduction). In 1977, Groth and Peebles [46] proposed that
this distribution of galaxies is well described by a power-law
correlation function, and this has since been called scale-free
in the astrophysics literature. Scale-free here means that the
fluctuation in the galaxy density have “non-trivial, scale-free
fractal dimension” and thus scale-free is associated with frac-
tals in the spatial layout of the universe.

Perhaps the most influential and revealing notion of “scale-
free” comes from the study ofcritical phase transitionsin
physics, where the ubiquity of power laws is often interpreted
as a “signature” of a universality in behavior as well in as un-
derlying generating mechanisms. An accessible history of the
influence of criticality in the SF literature can found in [13,
pp. 73-78]. Here, we will briefly review criticality in the con-
text of percolation, as it illustrates the key issues in a simple
and easily visualized way. Percolation problems are a canon-
ical framework in the study of statistical mechanics (see [92]
for a comprehensive introduction). A typical problem consists
of a squaren×n lattice of “sites”, each of which is either “oc-
cupied” or “unoccupied”. This initial configuration is obtained
at random, typically according to some uniform probability,
termed thedensity, and changes to the lattice are similarly de-
fined in terms of some stochastic process. The objective is
to understand the relationship among groups of contiguously
connected sites, calledclusters. One celebrated result in the
study of such systems is the existence of aphase transitionat a
critical density of occupied sites, above which there exists with
high probability a cluster that spans the entire lattice (termed
a percolating cluster) and below which no percolating cluster
exists. The existence of a critical density where a percolating
cluster “emerges” is qualitatively similar to the appearance of
a giant connected component in random graph theory [22].

Figure 3(a) shows an example of a random square lattice
(n = 32) of unoccupied white sites and a critical density
(≈ .59) of occupied dark sites, shaded to show their connected
clusters. As is consistent with percolation problems at criti-
cality, the sequence of cluster sizes is approximately scaling,
as seen in Figure 3(d), and thus there is wide variability in
cluster sizes. The cluster boundaries are fractal, and in the
limit of large n, the same fractal geometry occurs throughout
the lattice and on all scales, one sense in which the lattice is
said to be self-similar and “scale-free”. These scaling, scale-
free, and self-similar features occur in random lattices if and
only if (with unit probability in the limit of largen) the den-
sity is at the critical value. Furthermore, at the critical point,
cluster sizes and many other quantities of interest have power
law distributions, and these are all independent of the details
in two important ways. The first and most celebrated is that
they areuniversal, in the sense that they hold identically in
a wide variety of otherwise quite different physical phenom-
ena. The other, which is even more important here, is that all
these power laws, including the scale-free fractal appearance
of the lattice, is unaffected if the sites are randomly rearranged.
Suchrandom rewiringpreserves the critical density of occu-
pied sites, which is all that matters in purely random lattices.

For many researchers, particularly those unfamiliar with
the strong statistical properties of scaling distributions, these
remarkable properties of critical phase transitions have be-
come associated with more than just a mechanism giving
power laws. Rather, power laws themselves are often viewed
as “suggestive” or even “patent signatures” of criticality and
“self-organization” in complex systems generally [13]. Fur-
thermore, the concept ofSelf-Organized Criticality (SOC)has
been suggested as a mechanism that automatically tunes the
density to the critical point [10]. This has, in turn, given rise to
the idea that power laws alone could be “signatures” of specific
mechanisms, largely independent of any domain details, and
the notion that such phenomena are robust to random rewiring
of components or elements has become a compelling force in
much of complex systems research.

Our point with these examples is that typical usage of
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Figure 3: PERCOLATION LATTICES WITH SCALING CLUSTER SIZES. Lattices (a)-(c) have the exact same scaling sequence of cluster sizes (d) and
the same (critical) density ≈ .59). While random lattice such as in (a) have been be called “scale-free”, the highly structured lattices in (b) or (c)
typically would not. This suggests that, even within the framework of percolation, scale-free usually means something beyond simple scaling of
some statistics and refers to geometric or topological properties.

“scale-free” is often associated with some fractal-like geom-
etry, not just macroscopic statistics that are scaling. This dis-
tinction can be highlighted through the use of the percolation
lattice example, but contrived explicitly to emphasize this dis-
tinction. Consider three percolation lattices at the critical den-
sity (where the distribution of cluster sizes is known to be scal-
ing) depicted in Figure 3(a)-(c). Even though these lattices
have identical cluster size sequences (shown in Figure 3(d)),
only the random and fractal, self-similar geometry of the lat-
tice in Figure 3(a) would typically be called “scale-free,” while
the other lattices typically would not and do not share any of
the other “universal” properties of critical lattices [28]. Again,
the usual use of “scale-free” seems to imply certain self-similar
or fractal-type features beyond simply following scaling statis-
tics, and this holds in the existing literature on graphs as well.

2.3 Scaling and Self-Similarity in Graphs

While it is possible to use “scale-free” as synonymous with
simple scaling relationships as expressed in (6), the popular us-
age of this term has generally ascribed something additional to
its meaning, and the terms “scaling” and “scale-free” have not
been used interchangeably, except when explicitly used to say
that “scaling” is “free of scale.” When used to describe many
naturally occurring and man-made networks, “scale free” often
implies something about the spatial, geometric, or topological
features of the system of interest (for a recent example of that
illustrates this perspective in the context of the World Wide
Web, see [35]). While there exists no coherent, consistent lit-
erature on this subject, there are some consistencies that we
will attempt to capture at least in spirit. Here we review briefly
some relevant treatments ranging from the study of river net-
works to random graphs, and including the study of network
motifs in engineering and biology.

2.3.1 Self-similarity of River Channel Networks

One application area where self-similar, fractal-like, and scale-
free properties of networks have been considered in great de-
tail has been the study of geometric regularities arising in the
analysis of tree-branching structures associated with river or
stream channels [48, 94, 47, 62, 54, 76, 97, 36]. Following
[76], consider a river network modeled as a tree graph, and
recursively assign weights (the “Horton-Strahler stream order
numbers”) to each link as follows. First, assign order 1 to all
exterior links. Then, for each interior link, determine the high-
est order among its child links, say,ω. If two or more of the

child links have orderω, assign to the parent link orderω + 1;
otherwise, assign orderω to the parent link. Orderk streams or
channels are then defined as contiguous chains of orderk links.
A tree whose highest order stream has orderΩ is called a tree
of orderΩ. Using this Horton-Strahler stream ordering con-
cept, any rooted tree naturally decomposes into a discrete set
of “scales”, with the exterior links labeled as order 1 streams
and representing the smallest scale or the finest level of detail,
and the orderΩ stream(s) within the interior representing the
largest scale or the structurally coarsest level of detail. For ex-
ample, consider the order 4 streams and their different “scales”
depicted in Figure 4.

To define topologically self-similar trees, consider the
class of deterministic trees where every stream of orderω has
b ≥ 2 upstream tributaries of orderω − 1, andTω,k side trib-
utaries of orderk, with 2 ≤ ω ≤ Ω and1 ≤ k ≤ ω − 1. A
tree is called (topologically)self-similar if the corresponding
matrix (Tω,k) is a Toeplitz matrix; i.e., constant along diago-
nals,Tω,ω−k = Tk, whereTk is a number that depends onk
but not onω and gives the number of side tributaries of order
ω−k. This definition (with the further constraint thatTk+1/Tk

is constant for allk) was originally considered in works by
Tokunaga (see [76] for references). Examples of self-similar
trees of order 4 are presented in Figure 4(b-c).

An important concept underlying this ordering scheme can
be described in terms of a recursive “pruning” operation that
starts with the removal of the order 1 exterior links. Such re-
moval results in a tree that is more coarse and has its own set
of exterior links, now corresponding to the finest level of re-
maining detail. In the next iteration, these order 2 streams are
pruned, and this process continues for a finite number of iter-
ations until only the orderΩ stream remains. As illustrated in
Figure 4(b-c), successive pruning is responsible for the self-
similar nature of these trees. The idea is that streams of order
k are invariant under the operation of pruning—they may be
relabeled or removed entirely, but are never severed—and they
provide a natural scale or level of detail for studying the overall
structure of the tree.

As discussed in [81], early attempts at explaining the strik-
ing ubiquity of Horton-Strahler stream ordering was based on
a stochastic construction in which“it has been commonly as-
sumed by hydrologists and geomorphologists that the topologi-
cal arrangement and relative sizes of the streams of a drainage
network are just the result of a most probable configuration in
a random environment.”However, more recent attempts at ex-
plaining this regularity have emphasized an approach based
on different principles of optimal energy expenditure to iden-
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Figure 4: HORTON-STRAHLER STREAMS OF ORDER4. (a) Generic stream with segments coded according to their order. (b) Self-similar tree
without side tributaries: branching number b = 2 and Tk = 0 for all k. (c) Self-similar tree with side tributaries: branching number b = 2 but
Tk = 2k−1 for k = 1, 2, 3. (d) Toeplitz matrix of values Tω,ω−k = Tk, representing the side tributaries in (c).

tify the universal mechanisms underlying the evolution of “the
scale-free spatial organization of a river network” [81, 80].
The idea is that, in addition to randomness, necessity in the
form of different energy expenditure principles play a funda-
mental role in yielding the multiscaling characteristics in nat-
urally occurring drainage basins.

It is also interesting to note that while considerable atten-
tion in the literature on river or stream channel networks is
given to empirically observed power law relationships (com-
monly referred to as “Horton’s laws of drainage network com-
position”) and their physical explanations, it has been argued
in [54, 55, 56] that these “laws” are in fact a very weak test
of models or theories of stream network structures. The argu-
ments are based on the observation that because most stream
networks (random or non-random) appear to satisfy Horton’s
laws automatically, the latter provide little compelling evi-
dence about the forces or processes at work in generating the
remarkably regular geometric relationships observed in actual
river networks. This discussion is akin to the wide-spread be-
lief in the SF network literature that since SF graphs exhibit
power law degree distributions, they are capable of capturing
a distinctive “universal” feature underlying the evolution of
complex network structures. The arguments provided in the
context of the Internet’s physical connectivity structure [59]
are similar in spirit to Kirchner’s criticism of the interpreta-
tion of Horton’s laws in the literature on river or stream chan-
nel networks. In contrast to [54] where Horton’s laws are
shown to be poor indicators of whether or not stream channel
networks are random, [59] makes it clear that by their very
design, engineered networks like the Internet’s router-level
topology are essentially non-random, and that their randomly
constructed (but otherwise comparable) counterparts result in
poorly-performing or dysfunctional networks.

2.3.2 Scaling Degree Sequence and Degree Distribution

Statistical features of graph structures that have received exten-
sive treatment include the size of the largest connected compo-
nent, link density, node degree relationships, the graph diam-
eter, the characteristic path length, the clustering coefficient,
and the betweenness centrality (for a review of these and other
metrics see [4, 68, 37]). However, the single feature that has
received the most attention is the distribution of node degree
and whether or not it follows a power law.

For a graph withn vertices, letdi = deg(i) denote the de-
gree of nodei, 1 ≤ i ≤ n, and callD = {d1, d2, . . . , dn} the
degree sequenceof the graph, again assumed without loss of
generality always to be orderedd1 ≥ d2 ≥ . . . ≥ dn. We will
say a graph hasscaling degree sequence D(or D is scaling)
if for all 1 ≤ k ≤ ns ≤ n, D satisfies apower law size-rank
relationshipof the formk dα

k = c, wherec > 0 andα > 0 are

constants, and wherens determines the range of scaling [61].
Since this definition is simply a graph-specific version of (1)
that allows for deviations from the power law relationship for
nodes with low connectivity, we again recognize that doubly
logarithmic plots ofdk versusk yield straight lines of slope
−α, at least for largedk values.

This description of scaling degree sequence is general, in
the sense that it applies to any given graph without regard to
how it is generated and without reference to any underlying
probability distributions or ensembles. That is, a scaling de-
gree sequence is simply an ordered list of integers represent-
ing node connectivity and satisfying the above scaling rela-
tionship. In contrast, the SF literature focuses largely onscal-
ing degree distribution, and thus a given degree sequence has
the further interpretation as representing a realization of an iid
sample of sizen generated from a common scaling distribution
of the type (2). This in turn is often induced by some random
ensemble of graphs. This paper will develop primarily a non-
stochastic theory and thus focus on scaling degree sequences,
but will clarify the role of stochastic models and distributions
as well. In all cases, we will aim to be explicit about which is
assumed to hold.

For graphs that are not trees, a first attempt at formally
defining and relating the concepts of “scaling” or “scale-free”
and “self-similar” through an appropriately defined notion of
“scale invariance” is considered by Aiello et al. and described
in [3]. In short, Aiello et al. view the evolution of a graph as a
random process of growing the graph by adding new nodes and
links over time. A model of a given graph evolution process
is then called “scale-free” if “coarse-graining” in time yields
scaled graphs that have the same power law degree distribution
as the original graph. Here “coarse-graining in time” refers to
constructing scaled versions of the original graph by dividing
time into intervals, combining all nodes born in the same inter-
val into super-nodes, and connecting the resulting super-nodes
via a natural mapping of the links in the original graph. For
a number of graph growing models, including the Barabási-
Albert construction, Aiello et al. show that the evolution pro-
cess is “scale-free” in the sense of being invariant with respect
to time scaling (i.e., the frequency of sampling with respect
to the growth rate of the model) and independent of the pa-
rameter of the underlying power law node degree distribution
(see [3] for details). Note that the scale invariance criterion
considered in [3] concerns exclusively the degree distributions
of the original graph and its coarse-grained or scaled counter-
parts. Specifically, the definition of “scale-free” considered by
Aiello et al. is not “structural” in the sense that it depends on
a macroscopic statistic that is largely uninformative as far as
topological properties of the graph are concerned.
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2.3.3 Network Motifs

Another recent attempt at relating the notions of “scale-free”
and “self-similar” for arbitrary graphs through the more struc-
turally driven concept of “coarse-graining” is due to Itzkovitz
et al. [52]. More specifically, the main focus in [52] is on inves-
tigating the local structure of basic network building blocks,
termedmotifs, that recur throughout a network and are claimed
to be part of many natural and man-made systems [86, 64].
The idea is that by identifying motifs that appear in a given
network at much higher frequencies than in comparable ran-
dom networks, it is possible to move beyond studying macro-
scopic statistical features of networks (e.g. power law degree
sequences) and try to understand some of the networks’ more
microscopic and structural features. The proposed approach
is based on simplifying complex network structures by creat-
ing appropriately coarse-grained networks in which each node
represents an entire pattern (i.e., network motif) in the original
network. Recursing on the coarse-graining procedure yields
networks at different levels of resolution, and a network is
called “scale-free” if the coarse-grained counterparts are “self-
similar” in the sense that the same coarse-graining procedure
with the same set of network motifs applies at each level of
resolution. When applying their approach to an engineered
network (electric circuit) and a biological network (protein-
signaling network), Itzkovitz et al. found that while each of
these networks exhibits well-defined (but different) motifs,
their coarse-grained counterparts systematically display very
different motifs at each level.

A lesson learned from the work in [52] is that networks that
have scaling degree sequences need not have coarse-grained
counterparts that are self-similar. This further motivates ap-
propriately narrowing the definition of “scale-free” so that it
does imply some kind of self-similarity. In fact, the exam-
ples considered in [52] indicate that engineered or biologi-
cal networks may be the opposite of “scale-free” or “self-
similar”—their structure at each level of resolution is differ-
ent, and the networks are “scale-rich” or “self-dissimilar.” As
pointed out in [52], this observation contrasts with prevail-
ing views based on statistical mechanics near phase-transition
points which emphasize how self-similarity, scale invariance,
and power laws coincide in complex systems. It also suggests
that network models that emphasize the latter views may be
missing important structural features [52, 53]. A more formal
definition of self-dissimilaritywas recently given by Wolpert
and Macready [103, 104] who proposed it as a characteristic
measure of complex systems. Motivated by a data-driven ap-
proach, Wolpert and Macready observed that many complex
systems tend to exhibit different structural patterns over dif-
ferent space and time scales. Using examples from biological
and economic/social systems, their approach is to consider and
quantify how such complex systems process information at
different scales. Measuring a system’s self-dissimilarity across
different scales yields a complexity “signature” of the system
at hand. Wolpert and Macready suggest that by clustering such
signatures, one obtains a purely data-driven, yet natural, tax-
onomy for broad classes of complex systems.

2.3.4 Graph Similarity and Data Mining

Finally, the notion of graph similarity is fundamental to the
study of attributed graphs (i.e., objects that have an internal
structure that is typically modeled with the help of a graph or
tree and that is augmented with attribute information). Such
graphs arise as natural models for structured data observed in

different database applications (e.g., molecular biology, image
or document retrieval). The task of extracting relevant or new
knowledge from such databases (“data mining”) typically re-
quires some notion ofgraph similarityand there exists a vast
literature dealing with different graph similarity measures or
metrics and their properties [85, 30]. However, these measures
tend to exploit graph features (e.g., a given one-to-one map-
ping between the vertices of different graphs, or a requirement
that all graphs have to be of the same order) that are specific
to the application domain. For example, a common similarity
measure for graphs used in the context of pattern recognition
is the edit distance [84]. In the field of image retrieval, the
similarity of attributed graphs is often measured via the vertex
matching distance [77]. The fact that the computation of many
of these similarity measures is known to be NP-complete has
motivated the development of new and more practical mea-
sures that can be used for more efficient similarity searches in
large-scale databases (e.g., see [57]).

3 The Existing SF Story

In this section, we first review the existing SF literature de-
scribing some of the most popular models and their most ap-
pealing features. This is then followed by a brief a critique of
the existing theory of SF networks in general and in the context
of Internet topology in particular.

3.1 Basic Properties and Claims

The main properties of SF graphs that appear in the existing
literature can be summarized as

1. SF networks have scaling (power law) degree distribu-
tion.

2. SF networks can be generated by certain random pro-
cesses, the foremost among which is preferential attach-
ment.

3. SF networks have highly connected “hubs” which “hold
the network together” and give the “robust yet fragile”
feature of error tolerance but attack vulnerability.

4. SF networks are generic in the sense of being preserved
under random degree preserving rewiring.

5. SF networks are self-similar.

6. SF networks are universal in the sense of not depending
on domain-specific details.

This variety of features suggest the potential for a rich and ex-
tensive theory. Unfortunately, it is unclear from the literature
which properties are necessary and/or sufficient to imply the
others, and if any implications are strict, or simply “likely”
for an ensemble. Many authors apparently define scale-free
in terms of just one property, typically scaling degree distri-
bution or random generation, and appear to claim that some
or all of the other properties are then consequences. A cen-
tral aim of this paper is to clarify exactly what options there
are in defining SF graphs and deriving their additional prop-
erties. Ultimately, we propose below in Section 6.2 a set of
minimal axioms that allow for the preservation of the most
common claims. However, first we briefly review the existing
treatment of the above properties, related historical results, and
shortcomings of the current theory, particularly as it has been
frequently applied to the Internet.
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The ambiguity regarding the definition of “scale-free”
originates with the original papers [14, 6], but have contin-
ued since. Here SF graphs appear to be defined both as graphs
with scaling or power law degree distributions and as being
generated by a stochastic construction mechanism based on
incremental growth(i.e. nodes are added one at a time) and
preferential attachment(i.e. nodes are more likely to attach
to nodes that already have many connections). Indeed, the
apparent equivalence of scaling degree distribution and pref-
erential attachment, and the ability of thus-defined (if ambigu-
ously so) SF network models to generate node degree statistics
that are consistent with the ubiquity of empirically observed
power laws is the most commonly cited evidence that SF net-
work mechanisms and structures are in some sense universal
[5, 6, 13, 14, 17].

Models of preferential attachment giving rise to power law
statistics actually have a long history and are at least 80 years
old. As presented by Mandelbrot [61], one early example of
research in this area was the work of Yule [107], who in 1925
developed power law models to explain the observed distri-
bution of species within plant genera. Mandelbrot [61] also
documents the work of Luria and Delbrück, who in 1943 de-
veloped a model and supporting mathematics for the explicit
generation of scaling relationships in the number of mutants
in old bacterial populations [60]. A more general and popular
model of preferential attachment was developed by Simon [88]
in 1955 to explain the observed presence of power laws within
a variety of fields, including economics (income distributions,
city populations), linguistics (word frequencies), and biology
(distribution of mutants in bacterial cultures). Substantial con-
troversy and attention surrounded these models in the 1950s
and 1960s [61]. A recent review of this history can also be
found in [65]. By the 1990s though these models had been
largely displaced in the popular science literature by models
based on critical phenomena from statistical physics [10], only
to resurface recently in the scientific literature in this context
of “scale-free networks” [14]. Since then, numerous refine-
ments and modifications to the original Barabási-Albert con-
struction have been proposed and have resulted in SF network
models that can reproduce power law degree distributions with
any α ∈ [1, 2], a feature that agrees empirically with many
observed networks [4]. Moreover, the largely empirical and
heuristic studies of these types of “scale-free” networks have
recently been enhanced by a rigorous mathematical treatment
that can be found in [23] and involves a precise version of the
Barab́asi-Albert construction.

The introduction of SF network models, combined with
the equally popular (though less ambiguous) “small world”
network models [100], reinvigorated the use of abstract ran-
dom graph models and their properties (particularly node de-
gree distributions) to study a diversity of complex network sys-
tems. For example, Dorogovtsev and Mendes [37, p.76] pro-
vide a “standard programme of empirical research of a com-
plex network”, which for the case of undirected graphs consist
of finding 1) the degree distribution; 2) the clustering coeffi-
cient; 3) the average shortest-path length. The presumption is
that these features adequately characterize complex networks.
Through the collective efforts of many researchers, this ap-
proach has cataloged an impressive list of real application net-
works, including communication networks (the WWW and
the Internet), social networks (author collaborations, movie
actors), biological networks (neural networks, metabolic net-
works, protein networks, ecological and food webs), telephone
call graphs, mail networks, power grids and electronic circuits,

networks of software components, and energy landscape net-
works (again, comprehensive reviews of these many results are
widely available [4, 13, 68, 37, 73]). While very different in
detail, these systems share a common feature in that their de-
gree distributions are all claimed to follow a power law, possi-
bly with different tail indices.

Regardless of the definitional ambiguities, the use of sim-
ple stochastic constructions that yield scaling degree distribu-
tions and other appealing graph properties represent for many
researchers what is arguably an ideal application of statistical
physics to explaining and understanding complexity. Since SF
models have their roots in statistical physics, a key assumption
is always that any particular network is simply a realization
from a larger ensemble of graphs, with an explicit or implicit
underlying stochastic model. Accordingly, this approach to
understanding complex networks has focused on those net-
works that are most likely to occur under an assumed ran-
dom graph model and has aimed at identifying or discovering
macroscopic features that capture the “essence” of the struc-
ture underlying those networks. Thus preferential attachment
offers a general and hence attractive “microscopic” mechanism
by which a growth process yields an ensemble of graphs with
the “macroscopic” property of power law node degree distribu-
tions [15]. Second, the resulting SF topologies are “generic.”
Not only is any specific SF graph the generic or likely ele-
ment from such an ensemble, but also“... an important prop-
erty of scale-free networks is that [degree preserving] random
rewiring does not change the scale-free nature of the network”
(see Methods Supplement to [49]). Finally, this ensemble-
based approach has an appealing kind of “universality” in that
it involves no model-specific domain knowledge or specialized
“design” requirements and requires only minimal tuning of the
underlying model parameters.

Perhaps most importantly, SF graphs are claimed to ex-
hibit a host of startling “emergent” consequences of universal
relevance, including intriguing self-similar and fractal prop-
erties (see below for details), small-world characteristics [9],
and “hub-like” cores. Perhaps the central claim for SF graphs
is that they have hubs, what we term SF hubs, which “hold the
network together.” As noted, the structure of such networks
is highly vulnerable (i.e., can be fragmented) to attacks that
target these hubs [6]. At the same time, they are resilient to at-
tacks that knock out nodes at random, since a randomly chosen
node is unlikely to be a hub and thus its removal has minimal
effect on network connectivity. In the context of the Internet,
where SF graphs have been proposed as models of the router-
level Internet [106], this has been touted “the Achilles’ heel
of the Internet” [6], a vulnerability that has presumably been
overlooked by networking engineers. Furthermore, the hub-
like structure of SF graphs is such that the epidemic threshold
is zero for contagion phenomena [72, 12, 74, 73], thus suggest-
ing that the natural way to stop epidemics, either for computer
viruses/worms or biological epidemics such as AIDS, is to pro-
tect these hubs [34, 25]. Proponents of this modeling frame-
work have further suggested that the emergent properties of
SF graphs contributes to truly universal behavior in complex
networks [21] and that preferential attachment as well is a uni-
versal mechanism at work in the evolution of these networks
[50, 37].

3.2 A Critique of Existing Theory

The SF story has successfully captured the interest and imagi-
nation of researchers across disciplines, and with good reason,
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Figure 5: NETWORK GRAPHS HAVING EXACTLY THE SAME NUMBER OF NODES AND LINKS, AS WELL AS THE SAME (POWER LAW) DEGREE SEQUENCE.
As toy models of the router-level Internet, all graphs are subject to same router technology constraints and the same traffic demand model for
routers at the network periphery. (a) Hierarchical scale-free (HSF) network: Following roughly a recently proposed construction that combines
scale-free structure and inherent modularity in the sense of exhibiting an hierarchical architecture [78], we start with a small 3-pronged cluster
and build a 3-tier network a la Ravasz-Barabási, adding routers at the periphery roughly in a preferential manner. (b) Random network: This
network is obtained from the HSF network in (a) by performing a number of pairwise random degree-preserving rewiring steps. (c) Poor design:
In this heuristic construction, we arrange the interior routers in a line, pick a node towards the middle to be the high-degree, low bandwidth bot-
tleneck, and establish connections between high-degree and low-degree nodes. (d) HOT network: The construction mimics the build-out of a
network by a hypothetical ISP. It produces a 3-tier network hierarchy in which the high-bandwidth, low-connectivity routers live in the network core
while routers with low-bandwidth and high-connectivity reside at the periphery of the network. (e) Node degree sequence for each network.
Only di > 1 shown.

as the proposed properties are rich and varied. Yet the exist-
ing ambiguity in its mathematical formulation and many of its
most essential properties has created confusion about what it
means for a network to be “scale-free.” One possible and ap-
parently popular interpretation is that scale-free means simply
graphs with scaling degreesequences, and that this alone im-
plies all other features listed above. We will show that this is
incorrect, and in fact none of the features follows from scal-
ing alone. Even relaxing this to random graphs with scaling
degreedistributions is by itself inadequate to imply any fur-
ther properties. A central aim of this paper is to clarify the
reasons why these interpretations are incorrect, and propose
minimal changes to fix them. The opposite extreme interpre-
tation is that scale-free graphs are defined as having all of the
above-listed properties. We will show that this is possible in
the sense that the set of such graphs is not empty, but as a
definition this leads to two further problems. Mathematically,
one would prefer fewer axioms, and we will rectify this with a
minimal definition. We will introduce a structural metric that
provides a view of the extent to which a graph is scale-free and
from which all the above properties follow, often with neces-
sary and sufficient conditions. The other problem is that the
canonical examples of apparent SF networks, the Internet and
biological metabolism, are then very far from scale-free in that
they havenoneof the above properties except perhaps for scal-
ing degree distributions. This is simply an unavoidable conflict
between these properties and the specifics of the applications,
and cannot be fixed.

As a result, a rigorous theory of SF graphs must either de-

fine scale-free more narrowly than scaling degree sequences or
distributions in order to have nontrivial emergent properties,
and thus lose central claims of applicability, or instead define
scale-free as merely scaling, but lose all the universal emer-
gent features that have been claimed to hold for SF networks.
We will pursue the former approach because we believe it is
most representative of the spirit of previous studies and also
because it is most inclusive of results in the existing literature.
At the most basic level, simply to be a nontrivial and novel
concept, scale-free clearly must mean more than a graph with
scaling degree sequence or distribution. It must capture some
aspect of the graph itself, and not merely a sequence of in-
tegers, stochastic or not, in which case the SF literature and
this paper would offer nothing new. Other authors may ulti-
mate choose different definitions, but in any case, the results
in this paper clarify for the first time precisely what the graph
theoretic alternatives are regarding the implications of any of
the possible alternative definitions. Thus the definition of the
word “scale-free” is much less important than the mathemati-
cal relationship between their various claimed properties, and
the connections with real world networks.

3.3 The Internet as a Case Study

To illustrate some key points about the existing claims regard-
ing SF networks as adopted in the popular literature and their
relationship with scaling degree distributions, we consider an
application to the Internet where graphs are meant to model
Internet connectivity at the router-level. For a meaningful ex-
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planation of empirically observed network statistics, we must
account for network design issues concerned with technol-
ogy constraints, economic factors, and network performance
[59]. Additionally, we should annotate the nodes and links
in connectivity-only graphs with domain-specific information
such as router capacity and link bandwidth in such a way that
the resulting annotated graphs represent technically realizable
and functional networks.

3.3.1 The SF Internet

Consider the simple toy model of a “hierarchical” SF net-
work HSFnetshown in Figure 5(a), which has a “modular”
graph constructed according to a particular type of preferen-
tial attachment [78] and to which are then preferentially added
degree-one end systems, yielding the power law degree se-
quence shown in Figure 5(e). This type of construction has
been suggested as a SF model of both the Internet and biology,
both of which are highly hierarchical and modular [17]. The
resulting graph has all the features listed above as characteris-
tic of SF networks and is easily visualized and thus convenient
for our comparisons. Note that the highest-degree nodes in the
tail of the degree sequence in Figure 5(e) correspond to the
SF hub nodes in the SF networkHSFnet, Figure 5(a). This
confirms the intuition behind the popular SF view that power
law degree sequences imply the existence of SF hubs that are
crucial for global connectivity. If such features were true for
the real Internet, this finding would certainly be startling and
profound, as it directly contradicts the Internet’s legendary and
most clearly understood robustness property, i.e., it’s high re-
silience to router failures [32].

Figure 5 also depicts three other networks with the exact
same degree sequence asHSFnet. The variety of these graphs
suggests that the set of all connected simple graphs (i.e., no
self-loops or parallel links) having exactly the same degree se-
quence shown in Figure 5(e) is so diverse that its elements ap-
pear to have nothing in common as graphs beyond what triv-
ially follows from having a fixed (scaling) degree sequence.
They certainly do not appear to share any of the features sum-
marized above as conventionally claimed for SF graphs. Even
more striking are the differences in their structures and anno-
tated bandwidths (i.e., color-coding of links and nodes in Fig-
ure 5). For example, while the graphs in Figure 5(a) and (b)
exhibit the type of hub nodes typically associated with SF net-
works, the graph in Figure 5(d) has its highest-degree nodes lo-
cated at the networks’ peripheries. We will show this provides
concrete counterexamples to the idea that power law degree se-
quences imply the existence of SF hubs. This then creates the
obvious dilemma as to the concise meaning of a “scale-free
graph” as outlined above.

3.3.2 A Toy Model of the Real Internet

In terms of using SF networks as models for the Internet’s
router-level topology, recent Internet research has demon-
strated that the real Internet is nothing like Figure 5(a), size is-
sues notwithstanding, but is at least qualitatively more like the
network shown in Figure 5(d). We label this networkHOTnet
(for Heuristically Optimal Topology), and note that its overall
power law in degree sequence comes from high-degree routers
at the network periphery that aggregate the traffic of end users
having low bandwidth demands, while supporting aggregate
traffic flows with a mesh of low-degree core routers [59]. In
fact, as we will discuss in greater detail in Section 6, there is
little evidence that the Internet as a whole has scaling degree

or even high variability, and much evidence to the contrary, for
many of the existing claims of scaling are based on a combina-
tion of relying on highly ambiguous data and making a number
of statistical errors, some of them similar to those illustrated in
Figures 1 and 2. What is true is that a network likeHOTnet
is consistent with existing technology, and could in principle
be the router level graph for some small but plausible network.
Thus a network with a scaling degree sequence in its router
graph is plausible even if the actual Internet is not scaling. It
would however look qualitatively likeHOTnetand nothing like
HSFnet.

To see in what senseHOTnetis heuristically optimal, note
that from a network design perspective, an important question
is how well a particular topology is able to carry a given de-
mand for traffic, while fully complying with actual technology
constraints and economic factors. Here, we adopt as standard
metric for network performancethe maximum throughput of
the network under a “gravity model” of end user traffic de-
mands [108]. The latter assumes that every end nodei has a
total bandwidth demandxi, that two-way traffic is exchanged
between all pairs(i, j) of end nodesi andj, the flowXij of
traffic betweeni andj is given byXij = ρxixj , whereρ is
some global constant, and is otherwise uncorrelated from all
other flows. Our performance measure for a given networkg
is then its maximum throughput with gravity flows, computed
as

Perf(g) = max
ρ

∑

ij

Xij , s.t. RX ≤ B, (7)

whereR is the routing matrix obtained using standard shortest
path routing.R = [Rkl], with Rkl = 1 if flow l passes through
routerk, andRkl = 0 otherwise.X is the vector of all flows
Xij , indexed to match the routing matrixR, andB is a vector
consisting of all router bandwidth capacities.

An appropriate treatment of router bandwidth capacities
represented inB is important for computing network perfor-
mance and merits additional explanation. Due to fundamental
limits in technology, routers must adhere to flow conservation
constraints in the total amount of traffic that they process per
unit of time. Thus, routers can support a large number of low
bandwidth connections or a smaller number of high bandwidth
connections. In many cases, additional routing overhead actu-
ally causes the total router throughput to decrease as the num-
ber of connections gets large, and we follow the presentation in
[59] in choosing the termB to correspond with an abstracted
version of a widely deployed Cisco product (for details about
this abstracted constraint and the factors affecting real router
design, we refer the reader to [7, 59]).

The application of this network performance metric to the
four graphs in Figure 5 shows that although they have the
same degree sequence, they are very different from the per-
spective of network engineering, and that these differences are
significant and critical. For example, the SF networkHSFnet
in Figure 5(a) achieves a performance ofPerf(HSFnet) =
6.17×108 bps, while the HOT networkHOTnetin Figure 5(d)
achieves a performance ofPerf(HOTnet) = 2.93×1011 bps,
which is greater by more than two orders of magnitude. The
reason for this vast difference is that the HOT construction
explicitly incorporates the tradeoffs between realistic router
capacities and economic considerations in its design process
while the SF counterpart does not.

The actual construction ofHOTnet is fairly straightfor-
ward, and while it has high performance, it is not formally op-
timal. We imposed the constraints that it must have exactly the
same degree sequence asHSFnet, and that it must satisfy the
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router degree/bandwidth constraints. For a graph of this size
the design then easily follows by inspection, and mimics in a
highly abstracted way the design of real networks. First, the
degree one nodes are designated as end-user hosts and placed
at the periphery of the network, though geography per se is not
explicitly considered in the design. These are then maximally
aggregated by attaching them to the highest degree nodes at
the next level in from the periphery, leaving one or two links
on these “access router” nodes to attach to the core. The low-
est degree of these access routers are given two links to the
core, which reflects that low degree access routers are capable
of handling higher bandwidth hosts, and such high value cus-
tomers would likely have multiple connections to the core. At
this point there are just 4 low degree nodes left, and these be-
come the highest bandwidth core routers, and are connected in
a mesh, resulting in the graph in Figure 5(d). While some rear-
rangements are possible, all high performance networks using
a gravity model and the simple router constraints we have im-
posed would necessarily look essentially likeHOTnet. They
would all have the highest degree nodes connected to degree
one nodes at the periphery, and they would all have a low-
degree mesh-like core.

Another feature that has been highlighted in the SF litera-
ture is the attack vulnerability of high degree hubs. Here again,
the four graphs in Figure 5 are illustrative of the potential dif-
ferences between graphs having the same degree sequence.
Using the performance metric defined in (7), we compute the
performance of each graph without disruption (i.e., the com-
plete graph), after the loss of high degree nodes, and after the
loss of the most important (i.e., worst case) nodes. In each
case, when removing a node we also remove any correspond-
ing degree-one end-hosts that also become disconnected, and
we compute performance over shortest path routes between re-
maining nodes but in a manner that allows for rerouting. We
find that forHSFnet, removal of the highest degree nodes does
in fact disconnect the network as a whole, and this is equivalent
to the worst case attack for this network. In contrast, removal
of the highest degree nodes results in only minor disruption to
HOTnet, but a worst case attack (here, this is the removal of
the low-degree core routers) does disconnect the network. The
results are summarized below.

Network Complete High Degree Worst Case
Performance Graph Nodes Removed Nodes Removed

HSFnet 5.9197e + 09 Disconnected = ‘High Degree’ case

HOTnet 2.9680e + 11 2.7429e + 11 Disconnected

This example thus illustrates two important points. The
first is thatHSFnetdoes indeed have all the graph theoretic
properties listed above that are attributed to SF networks, in-
cluding attack vulnerability, whileHOTnethas none of these
features except for scaling degree. Thus the set of graphs
that have the standard scale-free attributes is neither empty
nor trivially equivalent to graphs having scaling degree. The
second point is that the standard SF models are in all impor-
tant ways exactly the opposite of the real Internet, and fail to
capture even the most basic features of the Internet’s router-
level connectivity. While the intuition behind these claims is
clear from inspection of Figure 5 and the performance com-
parisons, full clarification of these points requires the results
in the rest of this paper and additional details on the Internet
[7, 59]. These observations naturally cast doubts on the rel-
evance of conventional SF models in other application areas
where domain knowledge and specific functional requirements
play a similarly crucial role as in the Internet context. The

other most cited SF example is metabolic networks in biology,
where many recent SF studies have focused on abstract graphs
in which nodes represent metabolites, and two nodes are “con-
nected” if they are involved in the same reaction. In these
studies, observed power laws for the degree sequences associ-
ated with such graphs have been used to claim that metabolic
networks are scale-free [18]. Though the details are far more
complicated here than in the Internet story above, recent work
in [95] has shown there is a largely parallel story in that the
SF claims are completely inconsistent with the actual biology,
despite their superficial appeal and apparent popularity.

4 A Structural Approach

In this section, we show that considerable insight into the fea-
tures of SF graphs and models is available from a metric that
measures the extent to which high-degree nodes connect to
other high-degree nodes. As we will show, such a metric is
both necessary and useful for explaining the extreme differ-
ences between networks that have identical degree sequence,
especially if it is scaling. By focusing on a graph’s structural
properties and not on not how it was generated, this approach
does not depend on an underlying random graph model but is
applicable to any graph of interest.

4.1 Thes-Metric

Let g be an undirected, simple, connected graph havingn =
|V| nodes andl = |E| links, whereV andE are the sets of
nodes and links, respectively. As before, definedi to be the
degree of nodei ∈ V, D = {d1, d2, . . . , dn} to be the degree
sequence forg (again assumed to be ordered), and letG(D)
denote the set of all connected simple graphs having the same
degree sequenceD. Note that most graphs with scaling de-
gree will be neither simple nor connected, so this is an impor-
tant and nontrivial restriction. Even with these constraints, it
is clear based on the previous examples that the elements of
G(D) can be very different from one another, so that in order
to constitute a non-trivial concept, “scale-free” should mean
more than merely thatD is scaling and should depend on ad-
ditional topologicalor structuralproperties of the elements in
G(D).

Definition 1. For any graphg having fixed degree sequence
D, we define the metric

s(g) =
∑

(i,j)∈E
didj . (8)

Note thats(g) depends only on the graphg and not ex-
plicitly on the process by which it is constructed. Implicitly,
the metrics(g) measures the extent to which the graphg has a
“hub-like” core and is maximized when high-degree nodes are
connected to other high-degree nodes. This observation fol-
lows from theRearrangement Inequality[105], which states
that if a1 ≥ a2 ≥ · · · ≥ an andb1 ≥ b2 ≥ · · · ≥ bn, then for
any permutation(a′1, a

′
2, · · · , a′n) of (a1, a2, · · · , an), we have

a1b1 + a2b2 + · · ·+ anbn ≥ a′1b1 + a′2b2 + · · ·+ a′nbn

≥ anb1 + an−1b2 + · · ·+ a1bn.

Since highs(g)-values are achieved only by connecting high-
degree nodes to each other, and lows(g)-values are obtained
by connecting high-degree nodes only to low-degree nodes,
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the s-metric moves beyond simple statements concerning the
presence of “hub” nodes (as is true for any degree sequence
D that has high variability) and attempts to quantify what role
such hubs play in the overall structure of the graph. In partic-
ular, as we will show below, graphs with relatively highs(g)
values have a “hub-like core” in the sense that these hubs play
a central role in the overall connectivity of the network. We
will also demonstrate that the metrics(g) provides a view that
is not only mathematically convenient and rigorous, but also
practically useful as far as what it means for a graph to be
“scale-free”.

4.1.1 Graph Diversity and thePerf(g) vs.s(g) Plane

Although our interest in this paper will be in graphs for which
the degree sequenceD is scaling, we can computes(g) with
respect to any “background” setG of graphs, and we need
not restrict the set to scaling or even to connected or sim-
ple graphs. Moreover, for any background set, there exists a
graph whose connectivity maximizes thes-metric defined in
(8), and we refer to this as an “smax graph”. Thesmax graphs
for different background sets are of interest since they are es-
sentially unique and also have the most “hub-like” core struc-
ture. Graphs with lows-values are also highly relevant, but
unlikesmax graphs they are extremely diverse with essentially
no features in common with each other or with other graphs in
the background set except the degree sequenceD.

Graphs with high variability and/or scaling in their degree
sequence are of particular interest, however, and not simply be-
cause of their association with SF models. Intuitively, scaling
degrees appear to create great “diversity” inG(D). Certainly
the graphs in Figure 5 are extremely diverse, despite having
identical scaling degreeD, but to what extent does this depend
on D being scaling? As a partial answer, note that at the ex-
tremes of variability arem-regular graphs withCV (D) = 0,
which haveD = {m, m,m, . . . , m} for somem, and per-
fect star-like graphs withD = {n − 1, 1, 1, 1, . . . , 1}, which
have maximalCV (D) ≈ √

n/2. In both of these extremes all
graphs inG(D) are isomorphic and thus have only one value
of s(g) for all g ∈ G(D) so from this measure the spaceG(D)
of graphs lacks any diversity. In contrast, whenD is scaling
with α < 2, CV (D) → ∞ and it is easy to constructg such
that s(g)/smax → 0 asn → ∞, suggesting a possibly enor-
mous diversity inG(D).

Before proceeding with a discussion of some of the fea-
tures of thes-metric as well as for graphs having highs(g) val-
ues, we revisit the four toy networks in Figure 5 and consider
the combined implications of the performance-oriented metric
Perf(g) introduced in (7) and the connectivity-specific metric
s(g) defined above. Figure 6 is a projection ofg ∈ G(D) onto
a plane ofPerf(g) versuss(g) and will be useful throughout
in visualizing the extreme diversity in the setG(D) for D in
Figure 5. Of relevance to the Internet application is that graphs
with highs(g)-values tend to have low performance, although
a lows(g)-value is no guarantee of good performance, as seen
by the network in Figure 5(c) which has both smalls(g) and
small Perf(g). The additional points in thePerf(g) vs. s(g)
plane involve degree preserving rewiring and will be discussed
in more detail below.

These observations undermine the claims in the SF litera-
ture that are based on scaling degree alone implying any addi-
tional graph properties. On the other hand, they also suggest
that the sheer diversity ofG(D) for scalingD makes it an in-
teresting object of study. We won’t further compareG(D) for

scaling versus non-scalingD or attempt to define “diversity”
precisely here, though these are clearly interesting topics. We
will focus on exploring the nature of the diversity ofG(D) for
scalingD such as in Figure 5.

In what follows, we will provide evidence that graphs with
high s(g) enjoy certain self-similarity properties, and we also
consider the effects of random degree-preserving rewiring on
s(g). In so doing, we argue that thes-metric, as well as many
of the other definitions and properties that we will present, are
of interest for any graph or any set of graphs. However, we
will continue to focus our attention primarily on simple con-
nected graphs having scaling degree sequences. The main rea-
son is that many applications naturally have simple connected
graphs. For example, while the Internet protocols in princi-
ple allow router connectivity to be nonsimple, it is relatively
rare and has little impact on network properties. Nevertheless,
using other sets in many cases is preferable and will arise nat-
urally in the sequel. Furthermore, while our interest will be
on simple, connected graphs with scaling degree sequence, we
will often specialize our presentation to trees, in order to sim-
plify the development and maximize contact with the existing
SF literature. To this end, we will exploit the construction of
thesmax graph to sketch some of these relationships in more
detail.

4.1.2 Thesmax Graph and Preferential Attachment

Given a particular degree sequenceD, it is possible to con-
struct thesmax graph ofG(D) using a deterministic procedure,
and both the generation process and its resulting structure are
informative about thes(g) metric. Here, we describe this con-
struction at a high level of abstraction (with all details deferred
to Appendix A) in order to provide appropriate context for the
discussion of key features that is to follow.

The basic idea for constructing thesmax graph is to or-
der all potential links(i, j) for all i, j ∈ V according to their
weightdidj and then add them one at a time in a manner that
results in a simple, connected graph having degree sequence
D. While simple enough in concept, this type of “greedy”
heuristic procedure may have difficulty achieving the intended
sequenceD due to the global constraints imposed by connec-
tivity requirements. While the specific conditions under which
this procedure is guaranteed to yield thesmax graph are de-
ferred to Appendix A, we note that this type of construction
works well in practice for the networks under consideration in
this paper, particularly those in Figure 5.

In cases where the intended degree sequenceD satisfies∑
i di = 2(n−1), then all simple connected graphs having de-

gree sequenceD correspond to trees (i.e., acyclic graphs), and
this simple construction procedure is guaranteed to result in an
smax graph. Acyclicsmax graphs have several nice properties
that we will exploit throughout this presentation. It is worth
noting that since adding links to a tree is equivalent to adding
nodes one at a time, construction of acyclicsmax graphs can
be viewed essentially as a type of deterministic preferential at-
tachment. Perhaps more importantly, by its construction the
smax tree has a natural ordering within its overall structure,
which we now summarize.

Recall that a tree can be organized into hierarchies by des-
ignating a single vertex as the “root” of the tree from which all
branches emanate. This is equivalent to assigning a direction
to each arc such that all arcs flow away from the root. As a
result, each vertex of the graph becomes naturally associated
with a particular “level” of the hierarchy, adjacent vertices are
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Figure 6: EXPLORATION OF THE SPACE OF CONNECTED NETWORK GRAPHS HAVING EXACTLY THE SAME(POWER LAW) DEGREE SEQUENCE. Values
for the four networks are shown together with the values for other networks obtained by pairwise degree-preserving rewiring. Networks that are
“one-rewiring” away from their starting point are shown in a corresponding color, while other networks obtained from more than one rewiring are
shown in gray. Ultimately, only a careful design process explicitly incorporating technological constraints, traffic demands, or link costs yields
high-performance networks. In contrast, equivalent networks resulting from even carefully crafted random constructions result in poor-performing
networks.

separated by a single level, and the position of a vertex within
the hierarchy is in relation to the root. For example, assuming
the root of the tree is at level 0 (the “highest” level), then its
neighbors are at level 1 (“below” level 0), their other neighbors
in turn are at level 2 (“below” level 1), and so on.

Mathematically, the choice of the root vertex is an arbi-
trary one, however for thesmax tree, the vertex with largest
degree sits as the natural root and is the most “central” (a no-
tion we will formalize below). With this selection, two vertices
u, v ∈ V that are directly connected to each other in the acyclic
smax graph have the following relative position within the hi-
erarchy. Ifdu ≥ dv, then vertexu is one level “above” vertex
v (alternatively, we say that vertexu is “upstream” of vertexv
or that vertexv is “downstream” from vertexu). Thus, moving
up the hierarchy of the tree (i.e., upstream) means that vertex
degrees are (eventually) becoming larger, and moving down
the hierarchy (i.e., downstream) means that vertex degrees are
(eventually) becoming smaller.

In order to illustrate this natural ordering within thesmax

tree, we introduce the following notation. For any vertex
v ∈ V, let N (v) denote the set of neighboring vertices for
v, where for simple connected graphs|N (v)| = dv. For
an acyclic graphg, defineg̃(v) to be thesubgraph (subtree)
of vertexv; that is, g̃(v) is the subtree containing vertexv
along with all downstream nodes. Since the notion of up-
stream/downstream is relative to the overall root of the graph,
for convenience we will additionally use the notationg̃(v,u)

to represent thesubgraph of the vertexv that is itself con-
nected to upstream neighbor vertexu. The (ordered) degree
sequence of the subtreẽg(v) (equivalently forg̃(v,u)) is then
D(g̃(v)) = {d(v)

1 , d
(v)
2 , . . .}, whered

(v)
1 = dv and the rest of

the sequence represents the degrees of all downstream nodes.
D(g̃(v)) is clearly a subsequence ofD(g). Finally, letE(g̃(v))
denote the set of edges in the subtreeg̃(v).

For this subtree, we define itss-value as

s(g̃(v,u)) = dvdu +
∑

(j,k)∈E(g̃(v))

djdk. (9)

This definition provides a natural decomposition for thes-

metric, in that for any vertexv ∈ V, we can write

s(g) =
∑

k∈N (v)

s(g̃(k,v)).

Furthermore, thes-value for any subtree can be defined as a
recursive relationship on its downstream subtrees, specifically

s(g̃(v,u)) = dvdu +
∑

k∈N (v)\u
s(g̃(k,v)).

Proposition 1. Let g be thesmax acyclic graph correspond-
ing to degree sequenceD. Then for two verticesu, v ∈ V with
du > dv it necessarily follows that

(a) vertexv cannot be upstream from vertexu;

(b) the number of vertices iñg(v) cannot be greater than the
number of vertices iñg(u) (i.e., |D(g̃(u))| ≥ |D(g̃(v))|);

(c) the degree sequence ofg̃(u) dominates that of̃g(v) (i.e.,
d
(u)
1 ≥ d

(v)
1 , d

(u)
2 ≥ d

(v)
2 , . . .); and

(d) s(g̃(u)) > s(g̃(v)).

Although we do not prove each of these statements formally,
each of parts (a)-(d) is true by simple contradiction. Essen-
tially, if any of these statements is false, there is a rewiring
operation that can be performed on the graphg that increases
its s-value, thereby violating the assumption thatg is thesmax

graph. See Appendix A for additional information.

Proposition 2. Let g be thesmax acyclic graph correspond-
ing to degree sequenceD. Then it necessarily follows that for
eachv ∈ V and anyk 6= v ∈ V, the subgraph̃g(v) maximizes
s(g(v,k)) for the degree sequenceD(g̃(v)).

The proof of Proposition 2 follows from an inductive argu-
ment that starts with the leaves of the tree and works its way
upstream. Essentially, in order for a tree to be thesmax acyclic
graph, then each of its branches must be thesmax subtree on
the corresponding degree subsequence, and this must hold at
all levels of the hierarchy.
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Figure 7: Left: The centrality of nodes as defined by total traffic throughput. The most “central” nodes in HOTnetare the low-degree core routers
while the most “central” node in HSFnetis the highest-degree “hub”. The HOTnetthroughputs are close to the router bandwidth constraints. Right:
The betweenness centrality versus node degree for non-degree-one nodes from both the HSFnetand HOTnetgraphs in Figure 5. In HSFnet, node
centrality increases with node degree, and the highest degree nodes are the most “central”. In contrast, many of the most “central” nodes in
HOTnethave low degree, and the highest degree nodes are significantly less “central” than in HSFnet.

4.2 Thes-Metric and Node Centrality

While considerable attention has been devoted to network
node degree sequences in order to measure the structure of
complex networks, it is clear that such sequences alone are
insufficient to characterize the aggregate structure of a graph.
Figure 5 has shown that high degree nodes can exist at the pe-
riphery of the network or at its core, with serious consequences
for issues such as network performance and robustness in the
presence of node loss. At the same time, it is clear from the
smax construction procedure that graphs with the largests(g)
values will have their highest degree nodes located in the net-
work core. Thus, an important question relates to thecentrality
of individual high-degree nodes within the larger network and
how this relates, if at all, to thes-metric for graph structure.
Again, the answer to this question helps to quantify the role
that individual “hub” nodes play in the overall structure of a
network.

There are several possible means for measuring node cen-
trality, and in the context of the Internet, one such measure is
the total throughput (orutilization) of a node when the net-
work supports its maximum flow as defined in (7). The idea is
that under a gravity model in which traffic demand occurs be-
tween all node pairs, nodes that are highly utilized are central
to the overall ability of the network to carry traffic. Figure 7
shows the utilization of individual nodes withinHSFnetand
HOTnet, when each network supports its respective maximum
flow, along with the corresponding degree for each node. The
picture forHOTnetillustrates that the most “central” nodes are
in fact low-degree nodes, which correspond to the core routers
in Figure 5(c). In contrast, the node with highest utilization in
HSFnetis the highest degree node, corresponding to the “cen-
tral hub” in Figure 5(a).

Another, more graph theoretic, measure of node central-
ity is its so-calledbetweenness(also known asbetweenness
centrality), which is most often calculated as the fraction of
shortest paths between node pairs that pass through the node
of interest [37]. Defineσst to be the number of shortest paths
between two nodess andt. Then, the betweenness centrality
of any vertexv can be computed as

Cb(v) =
∑

s<t∈V σst(v)∑
s<t∈V σst

,

whereσst(v) is the number of paths betweens andt that pass

through nodev. In this manner, betweenness centrality pro-
vides a measure of the trafficload that a node must handle. An
alternate interpretation is that it measures the influence that
an individual node has in the spread of information within the
network.

Newman [66] introduces a more general measure of be-
tweenness centrality that includes the flow along all paths (not
just the shortest ones), and based on an approach using random
walks demonstrates how this quantity can be computed by ma-
trix methods. Applying this alternate metric from [66] to the
simple annotated graphs in Figure 5, we observe in Figure 7
that the high-degree nodes inHSFnetare the most central, and
in fact this measure of betweeness centrality increases with
node degree. In contrast, most of the nodes inHOTnetthat
are central are not high degree nodes, but the low-degree core
routers.

Understanding the betweenness centrality of individual
nodes is considerably simpler in the context of trees. Recall
that in an acyclic graph there is exactly one path between any
two vertices, making the calculation ofCb(v) rather straight-
forward. Specifically, observe that

∑
s<t∈V σst = n(n− 1)/2

and that for eachs 6= v 6= t ∈ V, σst(v) ∈ {0, 1}. This
recognition facilitates the following more general statement re-
garding the centrality of high-degree nodes in thesmax acyclic
graph.

Proposition 3. Let g be thesmax acyclic graph for degree
sequenceD, and consider two nodesu, v ∈ V satisfying
du > dv. Then, it necessarily follows thatCb(u) > Cb(v).

The proof of Proposition 3 can be found in Appendix A, along
with the proof of thesmax construction. Thus, the highest
degree nodes in thesmax acyclic graph are the most central.
More generally for graphs that are not trees, we believe that
there is a direct relationship between high-degree “hub” nodes
in large-s(g) graphs and a “central” role in overall network
connectivity, but this has not been formally proven.

4.3 Thes-Metric and Self-Similarity

When viewing graphs as multiscale objects, natural transfor-
mations that yield simplified graphs are pruning of nodes at
the graph periphery and/or collapsing of nodes, although these
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are only the simplest of many possible “coarse-graining” op-
erations that can be performed on graphs. These transforma-
tions are of particular interest because they are often inherent
in measurement processes that are aimed at detecting the con-
nectivity structure of actual networks. We will use these trans-
formations to motivate that there is a plausible relationship be-
tween high-s(g) graphs and self-similarity, as defined by these
simple operations. We then consider the transformation of ran-
dom pairwise degree-preserving (link) rewiring that suggests a
more formal definition of the notion of a self-similar graph.

4.3.1 Graph Trimming by Link Removal

Here, we consider the properties ofsmax graphs under the op-
eration of graph trimming, in which links are removed from
the graph one at a time. Recall that by construction, the links
in the smax graph are selected from a list of potential links
(denoted as(i, j) for i, j ∈ V) that are ordered according to
their weightsdidj . Denote the (ordered) list of links in the
smax graph asE = {(i1, j1), (i2, j2), . . . , (il, jl)}, and con-
sider a procedure that removes links in reverse order, start-
ing with (il, jl). Define g̃k to be the remaining graph af-
ter the removal of all but the firstk − 1 links, (i.e., after
removing(il, jl), (il−1, jl−1), . . . , (ik+1, lk+1), (ik, lk)). The
remaining graph will have a partial degree sequenceD̃k =
{d′1, d

′
2, . . . , d

′
k}, whered

′
m ≤ dm,m = 1, 2, . . . k, but the

original ordering is preserved, i.e.,d
′
1 ≥ d

′
2 ≥ . . . ≥ d

′
k.

This last statement holds because when removing links start-
ing with the smallestdidj , nodes will “lose” links in reverse
order according to their node degree.

Observe for trees that removing a link is equivalent to re-
moving a node (or subtree), so we could have equivalently de-
fined this process in terms of “node pruning”. As a result, for
acyclicsmax graphs, it is easy to see the following.

Proposition 4. Let g be an acyclicsmax graph satisfying or-
dered degree sequenceD = {d1, d2, . . . , dn}. For 1 ≤ k ≤ n,
denote bỹgk the acyclic graph obtained by removing (“trim-
ming”) in order nodesn, n− 1, . . . , k + 1 fromg. Then,̃gk is
thesmax graph for degree sequencẽDk = {d′1, d

′
2, . . . , d

′
k}.

The proof of Proposition 4 follows directly from our proof of
the construction of thesmax graph for trees (see Appendix A).
More generally, for graphs exhibiting larges(g)-values, prop-
erly defined graph operations of link-trimming appear to yield
simplified graphs with high s-values, thus suggesting a broader
notion of self-similarity or invariance under such operations.
However, additional work remains to formalize this notion.

4.3.2 Coarse Graining By Collapsing Nodes

A kind of coarse grainingof a graph can be obtained for
producing simpler graphs by collapsing existing nodes into
aggregate or super nodes and removing any duplicate links
emanating from the new nodes. Consider the case of a tree
g having degree sequenceD = {d1, d2, . . . , dn} satisfying
d1 ≥ d2 ≥ . . . ≥ dn and connected in a manner such that
s(g) = smax. Then, as long as node aggregation proceeds in
order with the degree sequence (i.e. aggregate nodes1 and2
into 1′, then aggregate nodes1′ and3 into 1′′, and so on), all
intermediate graphs̃g will also haves(g̃) = smax. To see this,
observe that for trees, when aggregating nodes1 and 2, we
have an abbreviated degree sequenceD′ = {d′1, d3, . . . , dn},
whered

′
1 = d1 + d2 − 2. Provided thatd2 ≥ 2 then we are

guaranteed to haved
′
1 ≥ d3, and the overall ordering ofD′ is

preserved. Similarly when aggregating nodes1
′
and3 we have

abbreviated degree sequenceD
′′

= {d′′1 , d4, . . . , dn}, where
d
′′
1 = d1 +d2 +d3−4. So as long asd3 ≥ 2 thend

′′
1 ≥ d4 and

ordering ofD
′′

is preserved. And in general, as long as each
new node is aggregated in order and satisfiesdi ≥ 2, then we
are guaranteed to maintain an ordered degree sequence. As a
result, we have proved the following proposition.

Proposition 5. For acyclic g ∈ G(D) with s(g) = smax,
coarse graining according to the above procedure yields
smaller graphsg′ ∈ G(D′) that are also thesmax graphs of
this truncated degree distribution.

For cyclic graphs, this type of node aggregation opera-
tion maintainssmax properties only if the resulting degree se-
quence remains ordered, i.e.d1′ ≥ d3 ≥ d4 after the first
coarse graining operation andd1′′ ≥ d4 ≥ d5 after the second
coarse graining operation, etc. It is relatively easy to gener-
ate cases where arbitrary node aggregation violates this con-
dition and the resulting graph is no longer self-similar in the
sense of having a larges(g)-value. However, when this con-
dition is satisfied, the resulting simpler graphs seem to sat-
isfy a broader self-similar property. Specifically, for high-
s(g) graphsg ∈ G(D), properly defined graph operations
of coarse-graining appear to yield simplified graphs inG(D)
with high s-values (i.e., such graphs are self-similar or in-
variant under proper coarse-graining), but this has not been
proved.

These are of course not the only coarse graining, pruning,
or merging processes that might be of interest, and for which
smax graphs are preserved, but they are perhaps the simplest to
state and prove.

4.4 Self-Similar and Self-Dissimilar

While graph transformations such as link trimming or node
collapse reflect some aspects of what it means for a graph to
be self-similar, the graph transformation of random pairwise
degree-preserving link rewiring offers additional notions of
self-similarity which potentially are even richer and also con-
nected with the claim in the SF literature that SF graphs are
preserved under such rewirings.

4.4.1 Subgraph-Based Motifs

For any graphg ∈ G(D), consider the set of local degree-
preserving rewirings of distinct pairs of links. There are(

l
2

)
= l(l − 1)/2 pairs of different links on which degree

preserving rewiring can occur. Each pair of links defines its
own network subgraph, and in the case whereg is an acyclic
graph (i.e. a tree), these form three distinct types of subgraphs,
as shown in Figure 8(a). Using the notationd2 =

∑
dk

2,
s = s(g) we can enumerate the number of these subgraphs as
follows:

1. The two links share a common node. There are∑n
i=1

(
di

2

)
= 1

2d2 − l possible ways that this can oc-
cur.

2. The links have two nodes that are connected by a third
link. There are

∑
(i,j)∈E(di − 1)(dj − 1) = s− d2 + l

possible ways that this can occur.
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Figure 8: (a) Three possible subgraph-based motifs in degree-preserving rewiring in acyclic graphs.Blue links represents links to be rewired. Rewiring
operations that result in non-simple graphs (shaded) are assumed to revert to the original configuration. Thus defined, rewiring of motif (i) does
not result in any new graphs, rewiring of motif (ii) results in one possible new graph, and rewiring of motif (iii) results in two possible new graphs.
(b) The numbers of the three motifs and successively the number for each possible rewiring outcome.We distinguish between equal, not equal but con-
nected and simple, not connected but simple, and not simple graphs that are similar to each graph with the given motif selected for rewiring.
The total number of cases (column sum) is (l2 − l)/2, while the total number (row sum) of outcomes is twice that at l2 − l. Here, we use the
abbreviated notation d2 =

P
k dk

2 and s = s(g), with l equal to the number of links in the graph.

3. The links have end points that do not share any direct
connections. There are

(
l
2

)−∑n
i=1

(
di

2

)−∑
(i,j)∈E(di−

1)(dj − 1) = 1
2d2 − s + 1

2 (l2 − 2) possible ways that
this can occur.

Collectively, these three basic subgraphs account for all possi-
ble

(
l
2

)
= l(l − 1)/2 pairs of different links. The subgraphs

in cases (i) and (ii) are themselves trees, while the subgraph
in case (iii) is not. We will refer to these three cases for sub-
graphs as “motifs”, in the spirit of [64], noting that our notion
of subgraph-based motifs is motivated by the operation of ran-
dom rewiring to be discussed below.

The simplest and most striking feature of the relationship
between motifs ands(g) for acyclic graphs is that we can de-
rive formulas for the number of subgraph-based (local) mo-
tifs (and the outcomes of rewiring) entirely in terms ofd2,
s = s(g), andl. Thus, for example, we can see that graphs
having higherd2 (equivalently higherCV ) values have fewer
of the second motif. If we fixD, and thusl andd2, for all
graphs of interest, then the only remaining dependence is ons,
and graphs with highers(g)-values contain fewer disconnected
(case iii) motifs. This can be interpreted as a motif-level con-
nection betweens(g) and self-similarity, in that graphs with
highers(g) contain more motifs that are themselves trees, and
thus more similar to the graph as a whole. Graphs having lower
s(g) have more motifs of type (iii) that are disconnected and
thus dissimilar to the graph as a whole. Thus high-s(g) graphs
have this “motif self-similarity,” low-s(g) graphs have “motif
self-dissimilarity” and we can precisely define a measure of
this kind of self-similarity and self-dissimilarity as follows.

Definition 2. For a graphg ∈ G(D), another measure of the
extent to whichg is self-similar is the metricss(g) defined as
the number of motifs (cases i-ii) that are themselves connected
graphs. Accordingly, the measure of self-dissimilaritysd(g) is
then the number of motifs (case iii) that are disconnected.

For trees,ss(g) = s − d2/2 andsd(g) = −s + (l2 − l +
d2)/2, so this local motif self-similarity (self-dissimilarity) is
essentially equivalent to high-s(g) (resp. low-s(g)). As noted

previously, network motifs have already been used as a way
to study self-similarity and coarse graining [52, 53]. There,
one defines a recursive procedure by which node connectivity
patterns become represented as a single node (i.e. a different
kind of motif), and it was shown that many important tech-
nological and biological networks were self-dissimilar, in the
sense coarse-grained counterparts display very different motifs
at each level of abstraction. Our notion of motif self-similarity
is much simpler, but consistent, in that the Internet has ex-
tremely lows(g) and thus minimally self-similar at the motif
level. The next question is whether highs(g) is connected with
“self-similar” in the sense of being preserved under rewiring.

4.4.2 Degree-preserving Rewiring

We can also connects(g) in several ways with the effect that
local rewiring has on the global structure of graphs in the set
G(D). Recall the above process by which two network links
are selected at random for degree-preserving rewiring, and
note that when applied to a graphg ∈ G(D), there are four
possible distinguishable outcomes:

1. g′ = g with g′ ∈ G(D): the new graphg′ is equalto the
original graphg (and therefore also a simple, connected
graph inG(D));

2. g′ 6= g with g′ ∈ G(D): the new graphg′ is not equal to
g, but is still a simple, connected graph in the setG(D)
(note that this can includeg′ which are isomorphic tog);

3. g′ = g with g′ 6∈ G(D): the new graphg′ is still simple,
but is not connected;

4. g′ = g with g′ 6∈ G(D): the new graphg′ is no longer
simple (i.e. it either contains self-loops or parallel links).

There are two possible outcomes from the rewiring of any par-
ticular pair of links, as shown in Figure 8(a) and this yields
a total of2

(
l
2

)
= l(l − 1) possible outcomes of the rewiring

process. In our discussion here, we ignore isomorphisms and
assume that all non-equal graphs are different.
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We are ultimately interested in retaining within our new
definitions the notion that highs(g) graphs are somehow pre-
served under rewiring provided this is sufficiently random and
degrees are preserved. Scaling is of course trivially preserved
by any degree-preserving rewiring, but highs(g) value is not.
Again, Figure 5 provides a clear example, since successive
rewirings can take any of these graphs to any other. More in-
teresting for highs(g) graphs is the effect ofrandomrewiring.
Consider again thePerf(g) vs.s(g) plane from Figure 6. In ad-
dition to the four networks from Figure 5, we show thePerf(g)
ands(g) values for other graphs inG(D) obtained by degree-
preserving rewiring from the initial four networks. This is
done by selecting uniformly and randomly from thel(l − 1)
different rewirings of thel(l−1)/2 different pairs of links, and
restricting rewiring outcomes to elements ofG(D) by reset-
ting all disconnected or nonsimple neighbors to equal. Points
that match the color of one of the four networks are only one
rewiring operation away, while points represented in gray are
more than one rewiring operation away.

The connections of the results in Figure 8(b) to motif
counts is more transparent however than to the consequences
of successive rewiring. Nevertheless, we can use the results in
Figure 8(b) to describe related ways in which lows(g) graphs
are “destroyed” by random rewiring. For any graphg, we can
enumerate among all possible pairs of links on which degree
preserving rewiring can take place and count all those that re-
sult in equal or non-equal graphs. In Figure 8, we consider the
four cases for degree-preserving rewiring of acyclic graphs,
and we count the number of ways each can occur. For mo-
tifs (i) and (ii), it is possible to check locally for outcomes
that produce non-simple graphs and these cases correspond
to the shaded outcomes in Figure 8(a). If we a priori ex-
clude all such nonsimple rewirings, then there remain a total of
l(l− 1)− s + d2/2 simple similar neighbors of a tree. We can
define a measure of local rewiring self-dissimilarity for trees
as follows.

Definition 3. For a treeg ∈ G(D), we measure the extent to
which g is self-dissimilar under local rewiring by the metric
rsd(g) defined as the number of simple similar neighbors that
are disconnected graphs.

For trees,rsd(g) = sd(g) = −s + (l2 − l + d2)/2, so
this local rewiring self-dissimilarity is identical to motif self-
dissimilarity and directly related to lows(g) values. This is
because only motif (iii) results in simple but not connected
similar neighbors.

4.5 A Coherent Non-Stochastic Picture

Here, we pause to reconsider the features/claims for SF graphs
in the existing literature (Section 3.1) in light of our structural
approach to graphs with scaling degree sequenceD. In doing
so, we make a simple observation: high-s(g) graphs exhibit
most of the features highlighted in the SF literature, but low-
s(g) graphs do not, and this provides insight into the diversity
of graphs in the spaceG(D). Perhaps more importantly, given
a graph with scaling degreeD thes(g) metric provides a “lit-
mus test” as to whether or not the existing SF literature might
be relevant to the network under study.

By definition, all graphs inG(D) exhibit power laws in
their node degrees provided thatD is scaling. However, pref-
erential attachment mechanisms typically yield only high-s(g)
graphs—indeed thesmax construction uses what is essentially
the “most preferential” type of attachment mechanism. Fur-
thermore, while all graphs having scaling degree sequenceD

have high-degree nodes or “hubs”, only for high-s(g) graphs
do such hubs tend to be critical for overall connectivity. While
it is certainly possible to construct a graph with lows(g) and
having a central hub, this need not be the case, and our work
to date suggests that most low-s(g) graphs do not have the
type of central hubs that create an “Achilles’ heel”. Addition-
ally, we have illustrated that high-s(g) graphs exhibit strik-
ing self-similarity properties, including that they are largely
preserved under appropriately defined graph transformations
of trimming, coarse graining and random pairwise degree-
preserving rewiring. In the case of random rewiring, we of-
fered numerical evidence and heuristic arguments in support
of the conjecture that in general high-s(g) graphs are the likely
outcome of performing such rewiring operations, whereas low-
s(g) graphs are unlikely to occur as a result of this process.

Collectively, these results suggest that a definition of
“scale-free graphs” that restricts graphs to havingbothscaling
degreeD andhigh-s(g) results in a coherent story. It recovers
all of the structural results in the SF literature and provides a
possible explanation why some graphs that exhibit power laws
in their node degrees do not seem to satisfy other properties
highlighted in the SF literature. This non-stochastic picture
represents what is arguably a reasonable place to stop with a
theory for “scale-free” graphs. However, from a graph theo-
retic perspective, there is considerable more work that could
be done. For example, it may also be possible to expand the
discussion of Section 4.4 to account more comprehensively for
the way in which local motifs are transformed into one an-
other and to relate our attempts more directly to the approach
considered in [64]. Elaborating on the precise relationships
and providing a possible interpretation of motifs as captur-
ing a kind of local as well as global self-similarity property
of an underlying graph remain open interesting problems. Ad-
ditionally, we have also seen that the use of degree-preserving
rewiring among connected graphs provides one view into the
spaceG(D). However, the geometry of this space is still com-
plicated, and additional work is required to understand its re-
maining features. For example, our work to date suggests that
for scalingD it is impossible to construct a graph that has both
high Perf(g) and highs(g), but this has not been proven. In
addition, it will be useful to understand the way that degree-
preserving rewiring causes one to “move” within the space
G(D) (see for example, [44, 42]).

It is important to emphasize that the purpose of thes(g)
metric is to provide insight into the structure of “scale free”
graphs andnot as a general metric for distinguishing among
all possible graphs. Indeed, since the metric fails to distin-
guish among graphs having lows(g), it provides little insight
other than to say that there is tremendous diversity among such
graphs. However, if a graph has highs(g), then we believe that
there exist strong properties that can be used to understand the
structure (and possibly, the behavior) of such systems. In sum-
mary, if one wants to understand “scale-free graphs”, then we
argue thats(g) is an important metric and highly informative.
However, for graphs with lows(g) then this metric conveys
limited information.

Despite the many appealing features of a theory that con-
siders only non-stochastic properties, most of the SF literature
has considered a framework that is inherently stochastic. Thus,
we proceed next with a stochastic version of the story, one that
connects more directly with the existing literature and com-
mon perspective on SF graphs.
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5 A Probabilistic Approach

While the introduction and exploration of thes-metric fits nat-
urally within standard studies of graph theoretic properties, it
differs from the SF literature in that our structural approach
does not depend on a probability model underlying the set
of graphs of interest. The purpose of this section is to com-
pare our approach with the more conventional probabilistic
and ensemble-based views. For many application domains,
including the Internet, there seems to be little motivation to
assume networks are samples from an ensemble, and our treat-
ment here will be brief while trying to cover this broad subject.
Here again, we show that thes(g) metric is potentially inter-
esting and useful, as it has a direct relationship to notions of
graph likelihood, graph degree correlation, and graph assor-
tativity. This section also highlights the striking differences
in the way that randomness is treated in physics-inspired ap-
proaches versus those shaped by mathematics and engineering.

The starting point for most probabilistic approaches to the
study of graphs is through the definition of an appropriatesta-
tistical ensemble(see for example [37, Section 4.1]).

Definition 4. A statistical ensemble of graphs is defined by

(i) a setG of graphsg, and

(ii) a rule that associates a real number (“probability”)
0 ≤ P (g) ≤ 1 with each graphg ∈ G such that∑

g∈G P (g) = 1.

To describe an ensemble of graphs, one can either assign a
specific weight to each graph or define some process (i.e., a
stochastic generator) which results in a weight. For example,
in one basic model of random graphs, the setG consists of all
graphs with vertex setV = {1, 2, . . . , n} havingl edges, and
each element inG is assigned the same probability1/

(
n
l

)
. In

an alternative random graph model, the setG consists of all
graphs with vertex setV = {1, 2, . . . , n} in which the edges
are chosen independently and with probability0 < p < 1. In
this case, the probabilityP (g) depends on the number of edges
in g and is given byP (g) = pl(1− p)n−l, wherel denotes the
number of edges ing ∈ G.

The use of stochastic construction procedures to assign sta-
tistical weights has so dominated the study of graphs that the
assumption of an underlying probability model often becomes
implicit. For example, consider the four graph construction
procedures listed in [37, p.22] that are claimed to form“the
basis of network science,”and include (1) classical random
graphs due to Erd̈os and Renýı [39]; (2) equilibrium random
graphs with a given degree distribution such as theGener-
alized Random Graph (GRG)method [31]; (3) “small-world
networks” due to Watts and Strogatz [100]; and (4) networks
growing under the mechanism of preferential linking due to
Barab́asi and Albert [14] and made precise in [23]. All of
these construction mechanisms are inherentlystochasticand
provide a natural means for assigning, at least in principle,
probabilities to each element in the corresponding space of
realizable graphs. While deterministic (i.e., non-stochastic)
construction procedures have been considered [19], their study
has been restricted to the treatment of deterministic preferen-
tial attachment mechanisms that result in pseudofractal graph
structures. Graphs resulting from other types of deterministic
constructions are generally ignored in the context of statistical
physics-inspired approaches since within the space of all fea-
sible graphs, their likelihood of occurring is typically viewed
as vanishingly small.

5.1 A Likelihood Interpretation of s(g)

Using the construction procedure associated with thegeneral
model of random graphs with a given expected degree se-
quenceconsidered in [31] (also called theGeneralized Ran-
dom Graph (GRG) modelfor short) we show that thes(g) met-
ric allows for a more familiar ensemble-related interpretation
as(relative) likelihoodwith which the graphg is constructed
according to the GRG method. To this end, the GRG model is
concerned with generating graphs with givenexpecteddegree
sequenceD = {d1, . . . dn} for vertices1, . . . , n. The link be-
tween verticesi andj is chosen independently with probability
pij , with pij proportional to the productdidj (i.e. pij = ρdidj ,
whereρ is a sufficiently small constant), and this defines a
probability measureP on the space of all simple graphs and
thus induces a probability measure onG(D) by conditioning
on having degreeD. The construction is fairly general and can
recover the classic Erdös-Ŕenyi random graphs [39] by tak-
ing the expected degree sequence to be{pn, pn, . . . , pn} for
constantp. As a result of choosing each link(i, j) ∈ E with
a probability that is proportional todidj in the GRG model,
different graphs are typically assigned different probabilities
underP . This generation method is closely related to the
Power Law Random Graph (PLRG)method [2], which also at-
tempts to replicate a given (power law) degree sequence. The
PLRG method involves forming a setL of nodes containing
as many distinct copies of a given vertex as the degree of that
vertex, choosing a random matching of the elements ofL, and
applying a mapping of a given matching into an appropriate
(multi)graph. It is believed that the PLRG and GRG mod-
els are“basically asymptotically equivalent, subject to bound-
ing error estimates”[2]. Defining thelikelihood of a graph
g ∈ G(D) as the logarithm of its probability under the mea-
sureP , we can show that the log likelihood (LLH) of a graph
g ∈ G(D), can be computed as

LLH(g) ≈ κ + ρ s(g), (10)

whereκ is a constant.
Note that the probability of any graphg underP is given

by [71]

P (g) =
∏

(i,j)∈E
pij

∏

(i,j)/∈E
(1− pij),

and using the fact that under the GRG model, we havepij =
ρdidj , whereD = (d1, . . . dn) is the given degree sequence,
we get

P (g) = ρl
∏

i∈V
ddi

i

∏

(i,j)/∈E
(1− ρdidj)

= ρl
∏

i∈V
ddi

i

∏
i,j∈V(1− ρdidj)∏

(i,j)∈E(1− ρdidj)
.

Taking the log, we obtain

log P (g) = l log ρ +
∑

i∈V
di log di +

∑

i,j∈V
log(1− ρdidj)

−
∑

(i,j)∈E
log(1− ρdidj).
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Defining

κ = l log ρ +
∑

i∈V
di log di +

∑

i,j∈V
log(1− ρdidj),

we observe thatκ is constant for fixed degree sequenceD.
Also recall thatlog(1 + a) ≈ a for |a| << 1. Thus, if ρ is
sufficiently small so thatpij = ρdidj << 1, we get

LLH(g) = log P (g) ≈ κ +
∑

(i,j)∈E
ρdidj .

This shows that the graph likelihoodLLH(g) can be made
proportional tos(g) and thus we can interprets(g)/smax as
relative likelihoodof g ∈ G(D), for thesmax-graph has the
highest likelihood of all graphs inG(D). Choosingρ =
1/

∑
i∈V di = 1/2l in the GRG formulation results in the ex-

pectation

E(di) =
n∑

j=1

pij =
n∑

j=1

ρdidj = ρdi

n∑

j=1

dj = di.

However, thisρ may not havepij = ρdidj << 1 and can
even makepij > 1, particularly in cases when the degree se-
quence is scaling. Thusρ must often be chosen much smaller
thanρ = 1/

∑
i∈V di = 1/2l to ensure thatpij << 1 for

all nodesi, j. In this case, the “typical” graph resulting from
this construction with have degree sequence much less than
D, however this sequence will be proportional to the desired
degree sequence,E(di) ∝ di.

While this GRG construction yields a probability distribu-
tion onG(D) by conditioning on having degree sequenceD,
this is not an efficient, practical method to generate members
of G(D), particularly whenD is scaling and it is necessary to
chooseρ << 1/2l. The appeal of the GRG method is that it
is easy to analyze and yields probabilities onG(D) with clear
interpretations. All elements ofG(D) will have nonzero prob-
ability with log likelihood proportional tos(g). But even the
smax graph may be extremely unlikely, and thus a naive Monte
Carlo scheme using this construction would rarely yield any
elements inG(D). There are many conjectures in the SF lit-
erature that suggest that a wide variety of methods, including
random degree-preserving rewiring, produce “essentially the
same” ensembles. Thus it may be possible to generate prob-
abilities onG(D) that can both be analyzed theoretically and
also provide a practical scheme to generate samples from the
resulting ensemble. While we believe this is plausible, it’s rig-
orous resolution is well beyond the scope of this paper.

5.2 Highly Likely Constructions

The interpretation ofs(g) as (relative) graph likelihood pro-
vides an explicit connection between this structural metric and
the extensive literature on random graph models. Since the
GRG method is a general means of generating random graphs,
we can in principle generate random instances of “scale-free”
graphs with a prescribed power law degree sequence, by using
GRG as described above and then conditioning on that degree
sequence. (And more efficient, practical schemes may also be
possible.) In the resulting probability distribution on the space
of graphsG(D), high-s(g) graphs with hub-like core structure
are literally “highly likely” to arise at random, while low-s(g)
graphs with their high-degree nodes residing at the graphs’ pe-
ripheries are “highly unlikely” to result from such stochastic
construction procedures.

While graphs resulting from stochastic preferential attach-
ment construction may have a different underlying probabil-
ity model than GRG-generated graphs, both result in simple
graphs having approximate scaling relationships in their de-
gree distributions. One can understand the manner in which
high-s(g) graphs are “highly likely” through the use of a sim-
ple Monte Carlo simulation experiment. Recall that the toy
graphs in Figure 5 each contained 1000 nodes and that the
graph in Figure 5(b) was “random” in the sense that it was
obtained by successive arbitrary rewirings ofHSFnetin Fig-
ure 5(a). An alternate approach to generating random graphs
having a power law in their distribution of node degree is to
use the type of preferential attachment mechanism first out-
lined in [14] and consider the structural features that are most
“likely” among a large number of trials. Here, we generate
100,000 graphs each having 1000 nodes and measure thes-
value of each. It is important to note that successive graphs
resulting from preferential attachment will have different node
degree sequences (one that is undoubtedly different from the
degree sequence in Figure 5(e)), so a raw comparison ofs(g)
is not appropriate. Instead, we introduce the normalized value
S(g) = s(g)/smax and use it to compare the structure of these
graphs. Note that this means also generating thesmax graph
associated with the particular degree sequence for the graph re-
sulting from each trial. Fortunately, the construction procedure
in Appendix A makes this straightforward, and so in this man-
ner we obtain the normalizedS-values for 100,000 graphs re-
sulting from the same preferential attachment procedure. Plot-
ting the CDF and CCDF of theS-values for these graphs in
Figure 9, we observe a striking picture: all of the graphs re-
sulting from preferential attachment had values ofS greater
than 0.5, most of the graphs had values0.6 < S(g) < 0.9,
and a significant number had valuesS(g) > 0.9. In con-
trast, the graphs in Figure 5 had values:S(HSFnet) =
0.9791, S(Random) = 0.8098, S(HOTnet) = 0.3952,
and S(PoorDesign) = 0.4536. Again, from the perspec-
tive of stochastic construction processes, low-S values typical
of HOT constructions are “very unlikely” while high-S values
are much more “likely” to occur at random.

With this additional insight into thes-values associated
with different graphs, the relationship in thePerf(g) vs. s(g)
plot of Figure 6 is clearer. Specifically, high-performance net-
works resulting from a careful design processare vanishingly
rare from a conventional probabilistic graph point of view. In
contrast, the likely outcome of random graph constructions
(even carefully handcrafted ones) are networks that have ex-
tremely poor performance or lack the desired functionality
(e.g., providing connectivity) altogether.

5.3 Degree Correlations

Given an appropriate statistical ensemble of graphs, the expec-
tation of a random variable or random vectorX is defined as

〈X〉 =
∑

g∈G

X(g)P (g). (11)

For example, for1 ≤ i ≤ n, let Di be the random vari-
able denoting the degree of nodei for a graphg ∈ G and
let D = {D1, D2, . . . , Dn} be the random vector representing
the node degrees ofg. Then thedegree distributionis given by

P (k) ≡ P ({g ∈ G : Di(g) = k; i = 1, 2, . . . , n})
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Figure 9: RESULTS FROMMONTE CARLO GENERATION OF PREFERENTIAL ATTACHMENT GRAPHS HAVING1000NODES. For each trial, we compute
the value s(g) and then renormalize to S(g) against the smax graph having the same degree sequence. Both the CDF and CCDF are shown. In
comparison, the HOTnetgraph has S(HOTnet) = 0.3952 and S(HSFnet) = 0.9791.

and can be written in terms of an expectation of a random vari-
able, namely

P (k) =
1
n

〈
n∑

i=1

δ[Di − k]

〉

where

δ[Di(g)− k] =
{

1 if nodei of graphg has degreek
0 otherwise.

One previously studied topic has been the correlations be-
tween the degrees of connected nodes. To show that this no-
tion has a direct relationship to thes(g) metric, we follow [37,
Section 4.6] and define the degree correlation between two ad-
jacent vertices having respective degreek andk′ as follows.

Definition 5. The degree correlation between two neighbors
having degreesk andk′ is defined by

P (k, k′) =
1
n2

〈
n∑

i,j=1

δ[di − k]aijδ[dj − k′]

〉
(12)

where theaij are elements of the network node adjacency ma-
trix such that

aij =
{

1 if nodesi, j are connected
0 otherwise

and where the random variablesδ[Di − k] are as above.

As an expectation of indicator-type random variables,P (k, k′)
can be interpreted as the probability that a randomly chosen
link connects nodes of degreesk andk′, thereforeP (k, k′) is
also called the “degree-degree distribution” for links. Observe
that for a given graphg having degree sequenceD,

s(g) =
∑

(i,j)∈E
didj

=
∑

(i,j)∈E

∑

k∈D

kδ[di − k]
∑

k′∈D

δ[dj − k′]k′

=
∑

(i,j)∈E

∑

k∈D

∑

k′∈D

kδ[di − k]δ[dj − k′]k′

=
1
2

∑

k,k′∈D

kk′
n∑

i,j=1

δ[di − k]aijδ[dj − k′]

Thus, there is an inherent relationship between the structural
metrics(g) and the degree-degree distribution, which we for-
malize as follows.

Proposition 6.

〈s〉 =
n2

2

∑

k,k′
kk′P (k, k′). (13)

Proof of Proposition 6: For fixed degree sequenceD,

〈s〉 =

〈
1
2

∑

k,k′∈D

kk′
n∑

i,j=1

δ[di − k]aijδ[dj − k′]

〉

=
1
2

∑

k,k′∈D

kk′
〈

n∑

i,j=1

δ[di − k]aijδ[dj − k′]

〉

=
n2

2

∑

k,k′∈D

kk′P (k, k′).

This result shows that for an ensemble of graphs having
degree sequenceD, the expectation ofs can be written purely
in terms of the degree correlation. While other types of corre-
lations have been considered (e.g., the correlations associated
with clustering or loops in connectivity), degree correlations
of the above type are the most obviously connected with the
s-metric.

5.4 Assortativity/Disassortativity of Networks

Another ensemble-based notion of graph degree correlation
that has been studied is the measurer(g) of assortativityin
networks as introduced by Newman [67], who describesas-
sortative mixing(r > 0) as“a preference for high-degree ver-
tices to attach to other high-degree vertices”anddisassorta-
tive mixing(r < 0) as the converse, where“high-degree ver-
tices attach to low-degree ones.”Since this is essentially what
we have showns(g) measures, the connection betweens(g)
and assortativityr(g) should be and ultimately is very direct.
As with all concepts in the SF literature, assortativity is de-
veloped in the context of an ensemble of graphs, but Newman
provides a sample estimate of assortativity of any given graph
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g. Using our notation, Newman’s formula [67, Eq. 4] can be
written as

r(g) =

[∑
(i,j)∈E didj

]
− [∑

i∈V
1
2d2

i

]2
/l

[∑
i∈V

1
2d3

i

]− [∑
i∈V

1
2d2

i

]2
/l

, (14)

where l is the number of links in the graph. Note that the
first term of the numerator ofr(g) is preciselys(g), and the
other terms depend only onD and not on the specific graph
g ∈ G(D). Thus r(g) is linearly related tos(g). How-
ever, when we computer(g) for the graphs in Figure 5 the
values all are in the interval[−0.4815,−0.4283]. Thus all
are roughly equally disassortative andr(g) seems not to dis-
tinguish between what we have viewed as extremely differ-
ent graphs. The assortativity interpretation appears to directly
contradict both what appears obvious from inspection of the
graphs, and the analysis based ons(g). Recall that forS(g) =
s(g)/smax the graphs in Figure 5 hadS(HSFnet) = 0.979
andS(HOTnet) = 0.395, with high-degree nodes inHSFnet
attached to other high-degree nodes and inHOTnetattached to
low-degree nodes.

The essential reason for this apparent conflict is that−1 ≤
r(g) ≤ 1 and0 < S(g) ≤ 1 are normalized against a dif-
ferent “background set” of graphs. ForS(g) = s(g)/smax

here, we have computedsmax constrained to simple, con-
nected graphs, whereasr(g) involves no such constraints. The
r = 0 graph with the same degree sequence asHSFnetand
HOTnetwould be non-simple—having, for example, the high-
est degree (d1) node highly connected to itself (with multiple
self-loops) and with multiple parallel connections to the other
high-degree nodes (e.g. multiple links to thed2 node). The
correspondingr = 1 graph would be both non-simple and
disconnected—having the highest degree (d1) node essentially
connectedonly to itself. SoHSFnetcould be thought of as
assortative when compared with graphs inG(D), but dissas-
sortative when compared with all graphs. To emphasize this
distinction, the description ofassortative mixing(r > 0) could
be augmented to “high-degree vertices attach to other high-
degree vertices, including self-loops.” Since high variability,
simple, connected graphs will all typically haver(g) < 0, this
measure is less useful than simply comparing raws(g) for this
class of graphs. Thus conceptually,r(g) and s(g) have the
same aim, but with different and largely incomparable normal-
izations, both of which are interesting.

We will now briefly sketch the technical details behind
the normalization ofr(g). The first term of the denomina-
tor

∑
i∈V d3

i /2l is equal tosmax for “unconstrained” graphs
(i.e., those not restricted to be simple or even connected; see
Appendix A for details), and the normalization term in the de-
nominator can be understood accordingly as thissmax. The
term

(∑
i∈V d2

i /2
)2

/l can be interpreted as the “center” or
zero assortativity case, again for unconstrained graphs. Thus,
the perfectly assortative graph can be viewed as thesmax graph
(within a particular background setG), and the assortativity of
graphs is measured relative to thesmax graph, with appropriate
centering.

Newman’s development of assortativity [67] is motivated
by a definition that works both for an ensemble of graphs and
as a sample-based metric for individual graphs. Accordingly,
his definition depends onQ(k, k′), the joint distribution of the
remaining degreesof the two vertices at either end of a ran-
domly selected link belonging to a graph in an ensemble. That
is, consider a physical process by which a graph is selected
from a statistical ensemble and then a link is arbitrarily cho-

sen from that graph. The question of assortativity can then be
understood in terms of some (properly normalized) statistical
average between the degrees of the nodes at either end of the
link. We defer the explicit connection between the ensemble-
based and sample-based notions of assortativity and our struc-
tural metrics(g) to Appendix B.

6 SF Graphs and the Internet Revisited

Given the definitions ofs(g), the various self-similarity and
high likelihood features of high-s(g) graphs, as well as the
extreme diversity of the set of graphsG(D) with scaling de-
greeD, we look to incorporate this understanding into a theory
of SF graphs that recovers both the spirit and existing results,
while making rigorous the notion of what it means for a graph
to be “scale-free”. To do so, we first trace the exact nature of
previous misconceptions concerning the SF Internet, introduce
an updated definition of a scale-free graph, clarify what state-
ments in the SF literature can be recovered, and briefly outline
the prospects for applying properly defined SF models in view
of alternative theoretical frameworks such as HOT (Highly
Optimized/Organized Tolerance/Tradeoffs). In this context, it
is also important to understand the popular appeal that the SF
approach has had. One reason is certainly its simplicity, and
we will aim to preserve that as much as possible as we aim
to replace largely heuristic and experimental results with ones
more mathematical in nature. The other is that it relies heavily
on methods from statistical physics, so much so that replacing
them with techniques that are shaped by mathematics and engi-
neering will require a fundamental change in the way complex
systems such as the Internet are viewed and studied.

The logic of the existing SF theory and its central claims
regarding the Internet consists of the following steps:

1. The claim that measurements of the Internet’s router-
level topology can be reasonably modeled with a graph
g that has scaling degree sequenceD.

2. The assertion, or definition, that a graphg with scaling
degree sequenceD is a scale-free graph.

3. The claim that scale-free graphs have a host of “emer-
gent” features, most notably the presence of several
highly connected nodes (i.e. “hubs”) that are critical to
overall network connectivity and performance.

4. The conclusion that the Internet is therefore scale-free,
and its “hubs,” through which most traffic must pass, are
responsible for the “robust yet fragile” feature of failure
tolerance and attack vulnerability.

In the following, we revisit the steps of this logic and illus-
trate that the conclusion in Step 4 is based on a series of mis-
conceptions and errors, ranging in scope from taking highly
ambiguous Internet measurements at face value to applying an
inherently inconsistent SF theory to an engineered system like
the Internet.

6.1 Scaling Degree Sequences and the Internet

The Internet remains one of the most popular and highly cited
application areas where power laws in network connectivity
have “emerged spontaneously”, and the notion that this in-
creasingly important information infrastructure exhibits a sig-
nature of self-organizing complex systems has generated con-
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siderable motivation and enthusiasm for SF networks. How-
ever, as we will show here, this basic observation is highly
questionable, and at worst is the simple result of errors em-
anating from the misinterpretation of available measurements
and/or their naive and inappropriate statistical analysis of the
type critiqued in Section 2.1.2

To appreciate the problems inherent in the available data, it
is important to realize that Internet-related connectivity mea-
surements are notorious for their ambiguities, inaccuracies,
and incompleteness. This is due in part to the multi-layered
nature of the Internet protocol stack (where each level defines
its own connectivity), and it also results from the efforts of In-
ternet Service Providers (ISPs) who intentionally obscure their
network structure in order to preserve what they believe is a
source of competitive advantage. Consider as an example the
router-level connectivity of the Internet, which is intended to
reflect (physical) one-hop distances between routers/switches.
Although information about this type of connectivity is typi-
cally inferred fromtracerouteexperiments which record suc-
cessive IP-hops along paths between selected network host
computers (see for example the Mercator [45], Skitter [33],
and Rocketfuel [90] projects), there remain a number of chal-
lenges when trying to reverse-engineer a network’s physical
infrastructure from traceroute-based measurements. The first
challenge is that IP connectivity is an abstraction (at “Layer
3”) that sits on top of physical connectivity (at “Layer 2”), so
traceroute is unable to record directly the network’s physical
structure, and its measurements are highly ambiguous about
the dependence between these two layers. Such ambiguity in
Internet connectivity persists even at higher layers of the pro-
tocol stack, where connectivity becomes increasingly virtual,
but for different reasons (see for example Section 6.4 below
for a discussion of the Internet’s AS and Web graphs).

To illustrate how the somewhat subtle interactions among
the different layers of the Internet protocol stack can give the
(false) appearance of high connectivity at the IP-level, recall
how at the physical layer the use of Ethernet technology near
the network periphery or Asynchronous Transfer Mode (ATM)
technology in the network core can give the appearance of high
IP-connectivity since the physical topologies associated with
these technologies may not be seen by IP-based traceroute. In
such cases, machines that are connected to the same Ethernet
or ATM network may have the illusion of direct connectivity
from the perspective of IP, even though they are separated by
an entire network (potentially spanning dozens of machines or
hundreds of miles) at the physical level. In an entirely dif-
ferent fashion, the use of “Layer 2.5 technologies” such as
Multiprotocol Label Switching (MPLS) tend to mask a net-
work’s physical infrastructure and can give the illusion of one-
hop connectivity at Layer 3. Note that in both cases, it is the
explicit and intended design of these technologies to hide the
physical network connectivity from IP. Another practical prob-
lem when interpreting traceroute data is to decide which IP ad-
dresses/interface cards (and corresponding DNS names) refer
to the same router, a process known asalias resolution[89].
While one of the contributing factors to the high fidelity of the
current state-of-the-art Rocketfuel maps is the use of an im-
proved heuristic for performing alias resolution [90], further
ambiguities remain, as pointed out for example in [98]. Yet an-
other difficulty when dealing with traceroute-derived measure-
ments has been considered in [58, 1] and concerns a potential
bias whereby IP-level connectivity is inferred more easily and
accurately the closer the routers are to the traceroute source(s).
Such bias possibly results in incorrectly interpreting power

law-type degree distributions when the true underlying con-
nectivity structure is a regular graph (e.g., Erdös-Renýı [39]).

Ongoing research continues to reveal new idiosyncrasies
of traceroute-derived measurements and shows that their in-
terpretation or analysis requires great care and diligent mining
of other available data sources. Although the challenges as-
sociated with disambiguating the available measurements and
identifying those contributions that are relevant for the Inter-
net’s router-level topology can be daunting, using these mea-
surements at face value and submitting them to commonly-
used, black box-type statistical analyses—as is common in the
complex systems literature—is ill-advised and bound to result
in erroneous conclusions. To illustrate, Figure 10(a) shows the
size-frequency plot for the raw traceroute-derived router-level
connectivity data obtained by the Mercator project [45], with
Figure 10(b) depicting a smoothed version of the plot in (a),
obtained by applying a straightforward binning operation to
the raw measurements, as is common practice in the physics
literature. In fact, Figures 10(a)–(b) are commonly used in
the SF literature (e.g., see [4]) as empirical evidence that the
router-level topology of the Internet exhibits power-law de-
gree distributions. However, in view of the above-mentioned
ambiguities of traceroute-derived measurements, it is highly
likely that the two extreme points with node degrees above
1,000 are really instances where the high IP-level connectiv-
ity is an illusion created by an underlying Layer 2 technology
and says nothing about the actual connectivity at the physical
level. When removing the two nodes in question and relying
on the statistically more robust size-rank plots in Figures 10
(c) and (d), we notice that neither the doubly-logarithmic nor
semi-logarithmic plots support the claim of a power law-type
node degree distribution for the Internet’s router-level topol-
ogy. In fact, Figures 10(c) and (d) strongly suggest that
the actual router-level connectivity is more consistent with an
exponentially-fast decaying node degree distribution, in stark
contrast to what is typically claimed in the existing SF litera-
ture.

6.2 (Re)Defining “Scale-Free” Graphs

While it is unlikely that the Internet as a whole has scaling
degree sequences, it would not be in principle technologically
or economically infeasible to build a network which did. It
would, however, be utterly infeasible to build a large network
with high-degree SF hubs, or more generally one that had both
high variability in node degree and larges(g). Thus in making
precise the definition of scale-free, there are essentially two
possibilities. One is to define scale-free as simply having a
scaling degree sequence, from which no other properties fol-
low. The other is to define scale-free more narrowly in such a
way that a rich set of properties are implied. Given the strong
set of self-similarity properties of graphsg having highs(g),
we propose the following alternate definition of what it means
for a graph to be “scale-free”.

Definition 6. For graphsg ∈ G(D) whereD is scaling, we
measure the extent to which the graphg is scale-free by the
metrics(g).
This definition for “scale-free graphs” is restricted here to sim-
ple, connected graphs having scalingD, but s(g) can obvi-
ously be computed for any graphs having any degree sequence,
and thus definings(g) as a measure of “scale-free” might po-
tentially be overly narrow. Nonetheless, in what follows, for
degree sequencesD that are scaling, we will informally call
graphsg ∈ G(D) with low s(g)-values“scale-rich” , and
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Figure 10: TRACEROUTE-DERIVED ROUTER-LEVEL CONNECTIVITY DATA FROM THE MERCATOR PROJECT[45]. (a) Doubly logarithmic size-
frequency plot: Raw data. (b) Doubly logarithmic size-frequency plot: Binned data. (c) Doubly-logarithmic size-rank plot: Raw data
with the 2 extreme nodes (with connectivity > 1,000) removed. (d) Semi-logarithmic size-rank plot: Raw data with the 2 extreme nodes (with
connectivity > 1,000) removed.

those with highs(g)-values“scale-free.” Being structural in
nature, this alternate definition has the additional benefit of not
depending on a stochastic model underlying the set of graphs
of interest. It does not rely on the statistical physics-inspired
approach that focuses on random ensembles and their most
likely elements and is inherent, for example, in the original
Barab́asi-Albert construction procedure.

Our proposed definition for scale-free graphs requires that
for a graphg to be called scale-free, the degree sequenceD
of g must be scaling (or, more generally, highly variable)and
self-similar in the sense thats(g) must be large. Furthermore,
s(g) gives a quantitative measure of the extent to which a scal-
ing degree graph is scale-free. In addition, this definition cap-
tures an explicit and obvious relationship between graphs that
are “scale-free” and have a “hub-like core” of highly connected
centrally-located nodes. More importantly, in view of Step 2 of
the above-mentioned logic, the claim that scale-free networks
have “SF hubs” is true with scale-free defined as scaling degree
sequenceandhigh s(g), but false if scale-free were simply to
mean scaling degree sequence, as is commonly assumed in the
existing SF literature.

With a concise measures(g) and its connections with
rich self-similarity/self-dissimilar properties and likelihood,
we can look back and understand how both the appeal and fail-
ure of the SF literature is merely a symptom of much broader
and deeper disconnects within complex networks research.
First, while there are many possible equivalent definitions of
scale-free, all nontrivial ones would seem to involve combin-
ing scaling degree with self-similarity or high likelihood and
appear to be equivalent. Thus defined, models that generate
scale-free graphs are easily constructed and are therefore not
our main focus here. Indeed, because of the strong invariance
properties of scaling distributions alone, it is easy to create
limitless varieties of randomizing generative models that can
“grow” graphs with scaling degreeD. Preferential growth is
perhaps the oldest of such models [107, 60, 88], so it is no
surprise that it resurfaces prominently in the recent SF liter-
ature. No matter how scaling is generated however, the high
likelihood and rewiring invariance of high-s(g) graphs make it
further easy—literally highly likely–to insure that these scal-
ing graphs are also scale-free.

Thus secondly, the equivalence between “highs” and
“highly likely” makes it possible to define scale-free as the
likely or generic outcome of a great variety of random growth
models. In fact, that “lows” or “scale-rich” graphs are van-
ishingly unlikely to occur at random explains why the SF lit-
erature has not only ignored their existence and missed their
relevance but also conflated scale-free with scaling. Finally,
since scaling and highs are both so easily and robustly gener-
ated, requiring only few simple statistical properties, countless

variations and embellishments of scale-free models have been
proposed, with appealing but ultimately irrelevant details and
discussions of emergence, self-organization, hierarchy, modu-
larity, etc. However, their additional self-similarity properties,
though still largely unexplored, have made the resulting scale-
free networks intuitively appealing, particularly to those who
continue to associate complexity with self-similarity.

The practical implication is that while our proposed defi-
nition of what it means for a graph to be “scale-free” recovers
many claims in the existing SF literature, some aspects can-
not be salvaged. As an alternate approach, we could accept a
definition of scale-free that is equivalent to scaling, as is im-
plicit in most of the SF literature. However, then the notion of
“scale-free” is essentially trivial, and almost all claims in the
existing literature about SF graphs are false, not just the ones
specific to the Internet. We argue that a much better alterna-
tive is a definition of scale-free, as we propose, that implies
the existence of “hubs” and other emergent properties, but is
more restrictive than scaling. Our proposed alternative, that
scale-free is a special case of scaling that further requires high
s(g), not only provides a quantitative measure about the extent
to which a graph is scale-free, but also already offers abundant
emergent properties, with the potential for a rigorous and rich
theory.

In summary, notwithstanding the errors in the interpreta-
tion and analysis of available network measurement data, even
if the Internet’s router-level graph were to exhibit a power law-
type node degree distribution, we have shown here and in other
papers (e.g., see [59, 101]) that the final conclusion in Step
4 is necessarily wrong for today’s Internet. No matter how
scale-free is defined, the existing SF claims about the Inter-
net’s router-level topology cannot be salvaged. Adopting our
definitions, the router topology at least for some parts of the
Internet could in principle have high variability and may even
be roughly scaling , but it is certainly nowhere scale-free. It
is in fact necessarily extremely “scale-rich” in a sense we have
made rigorous and quantifiable, although the diversity of scale-
rich graphs means that much more must be said to describe
which scale-rich graphs are relevant to the Internet. A main
lesson learned from this exercise has been that in the context
of such complex and highly engineered systems as the Inter-
net, it is largely impossible to understand any nontrivial net-
work properties while ignoring all domain-specific details such
as protocol stacks, technological or economic constraints, and
user demand and heterogeneity, as is typical in SF treatments
of complex networks.
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6.3 Towards a Rigorous Theory of SF Graphs

Having proposed the quantitys(g) as a structural measures of
the extent to which a given graph is “scale-free”, we can now
review the characteristics of scale-free graphs listed in Section
3 and use our results to clarify what is true if scale-free is taken
to mean scaling degree sequence and larges(g):

1. SF networks have scaling (power law) degree sequence
(follows by definition).

2. SF networks are the likely outcome of various random
growth processes (follows from the equivalence ofs(g)
with a natural measure of graph likelihood).

3. SF networks have a hub-like core structure (follows di-
rectly from the definition ofs(g) and the betweeness
properties of high-degree hubs).

4. SF networks are generic in the sense of being pre-
served by random degree-preserving rewiring (follows
from the characterization of rewiring invariance of self-
similarity).

5. SF networks are universal in the sense of not depending
on domain-specific details (follows from the structural
nature ofs(g)).

6. SF networks are self-similar (is now partially clarified in
that highs(g) trees are preserved under both appropri-
ately defined link trimming and coarse graining, as well
as restriction to small motifs).

Many of these results are proven only for special cases and
have only numerical evidence for general graphs, and thus
can undoubtedly be improved upon by proving them in greater
generality. However in most important ways the proposed def-
inition is entirely consistent with the spirit of “scale-free” as
it appears in the literature, as noted by its close relationship to
previously defined notions of betweeness, assortativity, degree
correlation, and so on. Since a highs(g)-value requires high-
degree nodes to connect to other high-degree nodes, there is
an explicit and obvious equivalence between graphs that are
scale-free (i.e., have highs(g)-value) and have a “hub-like
core” of highly connected nodes. Thus the statement “scale-
free networks have hub-like cores”—while incorrect under the
commonly-used original and vague definition (i.e., meaning
scaling degree sequence)—is now true almost by definition
and captures succinctly the confusion caused by some of the
sensational claims that appeared in the scale-free literature. In
particular, the consequences for network vulnerability in terms
of the “Achilles’ heel” and a zero epidemic threshold follow
immediately.

When normalized against a proper background set, our
proposeds(g)-metric provides insight into the diversity of net-
works having the same degree sequence. On the one hand,
graphs havings(g) ≈ smax are scale-free and self-similar
in the sense that they appear to exhibit strong invariance
properties across different scales, where appropriately defined
coarse-graining operations (including link trimming) give rise
to the different scales or levels of resolution. On the other
hand, graphs havings(g) << smax are scale-rich and self-
dissimilar; that is, they display different structure at differ-
ent levels of resolution. While for scale-free graphs, degree-
preserving random rewiring does not significantly alter their
structural properties, even a modest amount of rewiring de-
stroys the structure of scale-rich graphs. Thus, we suggest that

a heuristic test as to whether or not a given graph is scale-free
is to explore the impact of degree-preserving random rewiring.
Recent work on the Internet [59] and metabolic networks [95]
as well as on more more general complex networks [103]
demonstrates that many important large-scale complex sys-
tems are scale-rich and display significant self-dissimilarity,
suggesting that their structure is far from scale-free and the
opposite of self-similar.

6.4 SF Models and the Internet?

For the Internet, we have shown that no matter how scale-
free is defined, the existing SF claims about the “robust, yet
fragile” nature of these systems (particularly any claims of
an “Achilles’ heel” type of vulnerability) are wrong no matter
how scale-free is defined. By tracing through the reasoning be-
hind these SF claims, we have identified the source of this error
in the application of SF models to domains like engineering
(or biology) where design, evolution, functionality, and con-
straints are all key ingredients that simply cannot be ignored.
In particular, by assuming that scale-free is defined as scaling
(or, more generally, highly variable) plus highs(g), and fur-
ther usings(g) as a quantitative measure of how scale-free a
graph is, the failure of SF models to correctly and usefully ap-
ply in an Internet-related context has been limited to errors due
to ignoring domain-specific details, rather than to far more se-
rious and general mathematical errors about the properties of
SF graphs themselves. In fact, with our definition, there is the
potential for a rich and interesting theory of SF graphs, looking
for relevant and useful application domains.

One place where SF graphs may be appropriate and prac-
tically useful in the study of the Internet is at the higher levels
of network abstraction, where interconnectivity is increasingly
unconstrained by physical limitations. That is, while the low-
est layers of the Internet protocol stack involving the physical
infrastructure such as routers and fiber-optic cables have hard
technological and economic constraints, each higher layer de-
fines its own unique connectivity, and the corresponding net-
work topologies become by design increasingly more virtual
and unconstrained. For example, in contrast to routers and
physical links, the connectivity structure defined by the docu-
ments (nodes) and hyperlinks (connections) in the World Wide
Web (WWW) is designed to be essentially completely uncon-
strained. While we have seen that it is utterly implausible that
SF models can capture the essential features of the router-level
connectivity in today’s Internet, it seems conceivable that they
could representvirtual graphs associated with the Internet such
as, hypothetically, the WWW or other types of overlay net-
works.

However, even in the case of more virtual-type graphs as-
sociated with the Internet, a cautionary note about the applica-
bility of SF models is needed. For example, consider the Inter-
net at the level of autonomous systems, where anautonomous
system (AS)is a subnetwork or domain that is under its own
administrative control. In an AS graph representation of the
Internet, each node corresponds to an AS and a link between
two nodes indicates the presence of a “peering relationship”
between the two ASes—a mutual willingness to carry or ex-
change traffic. Thus, a single “node” in an AS graph (e.g.,
AS 1239 is the Sprintlink network) represents potentially hun-
dreds or thousands of routers as well as their interconnections.
Although most large ASes have several connections (peering
points) to other ASes, the use of this representation means that
one is collapsing possibly hundreds of different physical (i.e.,
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router-level) connections into a single logical link between two
ASes. In this sense, the AS graph is expressively not a repre-
sentation of any physical aspect of the Internet, but defines
a virtual graph representing business (i.e., peering) relation-
ships among network providers (i.e., ASes). Significant atten-
tion has been directed toward discovering the structural aspects
of AS connectivity as represented by AS graphs and inferred
from BGP-based measurements (where theBorder Gateway
Protocolor BGP is the de facto standard inter-AS routing pro-
tocol deployed in today’s Internet [93, 82]) and speculating on
what these features imply about the large-scale properties of
the Internet. However, the networking significance of these AS
graphs is very limited since AS connectivity alone says little
about how the actual traffic traverses the different ASes. For
this purpose, the relevant information is encoded in the link
type (i.e., peering agreement such as peer-to-peer or provider-
customer relationship) and in the types of routing policies used
by the individual ASes to enforce agreed-upon business ar-
rangements between two or more parties.

In addition, due to the infeasibility of measuring AS con-
nectivity directly, the measurements that form the basis for in-
ferring AS-level maps consist of BGP routing table snapshots
collected, for example, by the University of Oregon Route
Views Project [82]. To illustrate the degree of ambiguity in
the inferred AS connectivity data, note for example that due to
the way BGP routing works, snapshots of BGP routing tables
taken at a few vantage points on the Internet over time are un-
likely to uncover and capture all existing connections between
ASs. Indeed, [29] suggests that AS graphs inferred from the
Route Views data typically miss between 20-50% or even more
of the existing AS connections. This is an example of the gen-
eral problem ofvantage pointmentioned in [75], whereby the
location(s) of exactly where the measurements are performed
can significantly skew the interpretation of the measurements,
often in quite non-intuitive ways. Other problems that are of
concern in this context have to do with ambiguities that can
arise when inferring the type of peering relationships between
two ASes or, more importantly, with the dynamic nature of
AS-level connectivity, whereby new ASes can join and exist-
ing ASes can leave, merge, or split at any time.

This dynamic aspect is even more relevant in the context of
the Web graph, another virtual graph associated with the Inter-
net that is expressively not a representation of any physical as-
pect of the Internet structure but where nodes and links repre-
sent pages and hyperlinks of the WWW, respectively. Thus in
addition to the deficiencies mentioned in the context of router-
level Internet measurements, the topologies that are more vir-
tual and “overlay” the Internet’s physical topology exhibit an
aspect of dynamic changes that is largely absent on the physi-
cal level. This questions the appropriateness and relevance of
a careful analysis or modeling of commonly considered static
counterparts of these virtual topologies that are typically ob-
tained by accumulating the connectivity information contained
in a number of different snapshots taken over some time period
into a single graph.

When combined, the virtual nature of AS or Web graphs
and their lack of critical networking-specific information make
them awkward objects for studying the “robust yet fragile” na-
ture of the Internet in the spirit of the “Achilles’ heel” argu-
ment [6] or largely inappropriate structures for investigating
the spread of viruses on the Internet as in [20]. For exam-
ple, what does it mean to “attack and disable” a node such as
Sprintlink (AS 1239) in a representation of business relation-
ships between network providers? Physical attacks at this level

are largely meaningless. On the other hand, the economic and
regulatory environment for ISPs remains treacherous, so ques-
tions about the robustness (or lack thereof) of the Internet at
the AS-level to this type of disruption seem appropriate. And
even if one could make sense of physically “attacking and dis-
abling” nodes or links in the AS graph, any rigorous investiga-
tion of its “robust yet fragile” nature would have to at least ac-
count for the key mechanisms by which BGP detects and reacts
to connectivity disruptions at the AS level. In fact, as in the
case of the Internet’s router-level connectivity, claims of scale-
free structure exhibited by inferred AS graphs fail to capture
the most essential “robust yet fragile” features of the Internet
because they ignore any significant networking-specific infor-
mation encoded in these graphs beyond connectivity. Again,
the actual fragilities are not to physical attacks on AS nodes but
to AS-related components “failing on,” particularly via BGP-
related software or hardware components working improperly
or being misconfigured, or via malicious exploitation or hi-
jacking of BGP itself.

6.5 The Contrasting Role of Randomness

To put our SF findings in a broader context, we briefly review
an alternate approach to the use of randomness for understand-
ing system complexity that implicitly underpins our approach
in a way similar to how statistical physics underpins the SF
literature. Specifically, the notions ofHighly Optimized Toler-
ance (HOT)[27] or Heuristically Organized Tradeoffs[40] has
been recently introduced as a conceptual framework for cap-
turing the highly organized, optimized, and “robust yet fragile”
structure of complex highly evolved systems [28]. Introduced
in the spirit of canonical models from statistical physics—such
as percolation lattices, cellular automata, and spin glasses—
HOT is an attempt to use simple models that capture some
essence of the role of design or evolution in creating highly
structured configurations, power laws, self-dissimilarity, scale-
richness, etc. The emphasis in the HOT view is on “organized
complexity”, which contrasts sharply with the view of “emer-
gent complexity” that is preferred within physics and the SF
community. The HOT perspective is motivated by biology
and technology, and HOT models typically involve optimiz-
ing functional objectives of the system as a whole, subject
to constraints on their components, usually with an explicit
source of uncertainty against which solutions must be tolerant,
or robust. The explicit focus on function, constraints, opti-
mization, and organization sharply distinguish HOT from SF
approaches. Both consider robustness and fragility but reach
opposite and incompatible conclusions.

A toy model of the HOT approach to modeling the router-
level Internet was already discussed earlier. The underlying
idea is that consideration of the economic and technologi-
cal factors constraining design by Internet Service Providers
(ISPs) gives strong incentives to minimize the number and
length of deployed links by aggregating and multiplexing traf-
fic at all levels of the network hierarchy, from the periphery
to the core. In order to efficiently provide high throughput to
users, router technology and link costs thusnecessitatethat
by and large link capacities increase and router degrees de-
crease from the network’s periphery to its more aggregated
core. Thus, the toy modelHOTnet in Figure 5(d), like the
real router-level Internet, has a mesh of uniformly high-speed
low connectivity routers in its core, with greater variability in
connectivity at its periphery. While a more detailed discussion
of these factors and additional examples is available from [59],
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the result is that this work has explained where within the In-
ternet’s router-level topology the high degree nodes might be
and why they might be there, as well as where they can’t pos-
sibly be.

The HOT network that results is not just different than the
SF network but completely opposite, and this can be seen not
only in terms relevant to the Internet application domain, such
as the performance measure (7), robustness to router and link
losses, and the link costs, but in the criteria considered within
the SF literature itself. Specifically, SF models are gener-
ated directly from ensembles and random processes, and have
generic microscopic features that are preserved under random
rewiring. HOT models have highly structured, rare configu-
rations which are destroyed by random rewiring, unless that
is made a specific design objective. SF models are universal
in ignoring domain details, whereas HOT is only universal in
the sense that it formulates everything in terms of robust, con-
strained optimization, but with highly domain-specific perfor-
mance objectives and constraints.

One theme of the HOT framework has been that engineer-
ing design or biological evolution easily generates scaling in
a variety of toy models once functional performance, compo-
nent constraints, and robustness tradeoffs are considered. Both
SF and HOT models of the Internet yield power laws, but once
again in opposite ways and with opposite consequences. HOT
emphasizes the importance of high variability over power laws
per se, and provides a much deeper connection between vari-
ability or scaling exponents and domain-specific constraints
and features. For example, the HOT Internet model considered
here shows that if high variability occurs in router degree it can
be explained by high variability in end user bandwidth together
with constraints on router technology and link costs. Thus
HOT provides a predictive model regarding how different ex-
ternal demands or future evolution of technology could change
network statistics. The SF models are intrinsically incapable
of providing such predictive capability in any application do-
main. The resulting striking differences between these two
modeling approaches and their predictions are merely symp-
tomatic of a much broader gap between the popular physics
perspective on complex networks versus that of mathematics
and engineering, created by a profoundly different perspective
on the nature and causes of high variability in real world data.
For example, essentially the same kind of contrast holds for
HOT and SOC models [28], where SOC is yet another theoreti-
cal framework with specious claims about the Internet [91, 10].

In contrast to the SF approach, the HOT models described
above as well as their constraints and performance measures
do not require any assumptions, implicit or explicit, that they
were drawn directly from some random ensemble. Tradeoffs
in the real Internet and biology can be explained without in-
sisting on any underlying random models. Sources of random-
ness are incorporated naturally where uncertainty needs to be
managed or accounted for, say for the case of the router-level
Internet, in a stochastic model of user bandwidth demands and
geographic locations of users, routers, and links, followed by
a heuristic or optimal design. This can produce either an en-
semble of network designs, or a single robust design, depend-
ing on the design objective, but all results remain highly con-
strained and are characterized by lows(g) and highPerf(g).
This is typical in engineering theories, where random models
are common but not required, and where uncertainty can be
modeled with random ensembles or worst-case over sets. In
all cases, uncertainty models are mixed with additional hard
constraints, say on component technology.

In the SF literature, on the other hand, random graph
models and statistical physics-inspired approaches to networks
are so deep-rooted that an underlying ensemble is taken for
granted. Indeed, in the SF literature the phrase “not random”
typically does not refer to a deterministic process but means
random processes having some non-uniform or high variability
distribution, such as scaling. Furthermore, random processes
are used to directly generate SF network graphs rather than
model uncertainty in the environment, leading in this case to
highs(g) and lowPerf(g) graphs. This particular view of ran-
domness also blurs the important distinction between what is
unlikely and what is impossible. That is, what is unlikely to
occur in a random ensemble (e.g. a lows(g) graph) is treated
as impossible, while what is truly impossible (e.g. an Internet
with SF hubs) from an engineering perspective is viewed as
likely from an ensemble point of view. Similarly, the relation
between high variability, scaling, and scale-free is murky in
the SF literature. These distinctions may all be irrelevant for
some scientific questions, but they are crucial in the study of
engineering and biology and also essential for mathematical
rigor.

7 Conclusions

The setG(D) of graphsg with fixed scaling degreeD is ex-
tremely diverse. However, most graphs inG(D) are, using
our definition, scale-free and have highs-values. This implies
that these scale-free graphs are not diverse and actually share
a wide range of “emergent” features, many of which are of-
ten viewed as both intriguing and surprising, such as hub-like
cores, high likelihood under a variety of random generation
mechanisms, preservation under random rewiring, robustness
to random failure but fragility to attack, and various kinds
of self-similarity. These features have made scale-free net-
works overwhelmingly compelling to many complex systems
researchers and have understandably given scale-free findings
tremendous popular appeal [14, 106, 6, 70, 13, 11]. This paper
has confirmed that these emergent features are plausibly con-
sistent with our definition, and we have proven several con-
nections, but much remains heuristic and experimental. Hope-
fully, more research will complete what is potentially a rich
graph-theoretic treatment of scale-free networks.

Essentially all of the extreme diversity inG(D) is in
its fringes that are occupied by the rare scale-rich smalls
graphs. These graphs have little or nothing in common with
each other or with scale-free graphs beyond their degree se-
quence so, unfortunately,s is a nearly meaningless measure
for scale-rich graphs. We have shown that those technolog-
ical networks which have functional requirements and com-
ponent constraints tend to be scale-rich, and HOT is a theo-
retical framework aimed at explaining in simplified terms the
features of these networks. In this context, scale-free networks
serve at best as plausible null hypotheses that typically col-
lapse quickly under scrutiny with real data and are easily re-
futed by applying varying amounts of domain knowledge. A
roughly parallel SF vs HOT story exists in metabolic networks
(see for example [95]), which is another application area that
has been very popular in the SF and broader “complex net-
works” literature [18].

At the same time, scale-free networks may still be relevant
when applied to social or virtual networks where technolog-
ical, economic, or other constraints play perhaps a lesser or
no role whatsoever. Indeed, a richer and more complete and
rigorous theory could potentially help researchers working in
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such areas. For example, as discussed in Section 4.4.1, ex-
ploring the impact of degree-preserving random rewiring of
components can be used as a simple preliminary litmus test
for whether or not a SF model might be appropriate. It takes
little domain expertise to see that randomly rewiring the in-
ternal connections of, say, the microchips or transistors in a
laptop computer or the organs in a human body will utterly
destroy their function, and thus that SF models are unlikely
to be informative. On the other hand, one can think of some
technological (e.g. wireless ad-hoc networks) and many social
networks where robustness to some kinds of random rewiring
is an explicitly desirable objective, and thus SF graphs are not
so obviously inapplicable. For example, it might be instruc-
tive to apply this litmus test to an AS graph that reflects AS
connectivity only as compared to the same graph that also pro-
vides information about the type of peering relationships and
the nature of routing policies in place.

This paper shows that scale-free networks have the poten-
tial for an interesting and rich theory, with most questions, par-
ticularly regarding graphs that are not trees, still largely open.
Perhaps a final message of this paper is that to develop a co-
herent theory for scale-free networks will require adhering to
more rigorous mathematical and statistical standards than has
been typical to date.

Acknowledgments

The authors are indebted to several colleagues for ongoing
conversations and valuable feedback, particularly David Al-
dous, Jean Carlson, Steven Low, Chris Magee, Matt Roughan,
Stanislav Shalunov, and Reiko Tanaka. Also, the authors
would like to thank the reviewers for their helpful comments
and suggestions. This work was supported by Boeing, AFOSR
URI 49620-01-1-0365 “Architectures for Secure and Robust
Distributed Infrastructures”, the Army Institute for Collabora-
tive Biotechnologies, NSF Award: CCF-0326635 “ITR COL-
LAB: Theory and Software Infrastructure for a Scalable Sys-
tems Biology,” AFOSR Award: FA9550-05-1-0032 “Bio In-
spired Networks,” and Caltech’s Lee Center for Advanced Net-
working.

A Constructing an smax-graph

As defined previously, thesmax graph is the elementg in some
background setG whose connectivity maximizes the quantity
s(g) =

∑
(i,j)∈E didj , wheredi is the degree of vertexi ∈ V,

E is the set of links that defineg, andD = {d1, d2, . . . dn}
is the corresponding degree sequence. Recall that sinceD is
ordered according tod1 ≥ d2 ≥ . . . ≥ dn, there will usually
be many different graphs with vertices satisfyingD. The pur-
pose of this Appendix is to describe how to construct such an
element for different background sets, as well as to discuss the
importance of choosing the “right” background set.

A.1 Among “Unconstrained” Graphs

As a first case, consider the set of graphs having degree se-
quenceD, with only the requirement that

∑n
i=1 di be even.

That is, we do not require that these graphs be simple (i.e.,
they can have self-loops or multiple links between vertices)
or that they even be connected, and we accordingly call this
set of graphs “unconstrained”. Constructing thesmax element

among these graphs can be achieved trivially, by applying the
following two-phase process. First, for each vertexi: if di

is even, then attachdi/2 self-loops; ifdi is odd, then attach
(di − 1)/2 self-loops, leaving one available “stub”. Second,
for all remaining vertices with “stubs”, connect them in pairs
according to decreasing values ofdi. Obviously, the resulting
graph is not unique as thesmax element (indeed, two vertices
with the same degree could replace their self-loops with con-
nections among one another). Nonetheless, this construction
does maximizes(g), and in the case whendi is even for alli ∈
V, one achieves ansmax graph withs(g) =

∑n
i=1(di/2) · d2

i .
As discussed in Section 5.4, against this background of un-
constrained graphs, thesmax graph is the perfectly assortative
(e.g.,r(g) = 1) graph. In the case when somedi are odd, then
thesmax graph will have a value ofs(g) that is somewhat less
and will depend on the specific degree sequence. Thus, the
value

∑n
i=1(di/2) ·d2

i represents an idealized upper bound for
the value ofsmax among unconstrained graphs, but it can only
be realized in the case when all vertex degrees are even.

A.2 Among Graphs in G(D)

A significantly more complicated situation arises when con-
structing elements of the spaceG(D), that is, simple con-
nected graphs havingn vertices and a particular degree se-
quenceD. Even so, not all sequencesD will allow for the con-
nection ofn vertices, i.e. the setG(D) may be empty. In the
language of discrete mathematics, one says that a sequence of
integers{d1, d2, . . . , dn} is graphical if it satisfies the degree
sequence of some simple, connected graph, that is ifG(D) is
nonempty. One characterization of whether or not a sequence
D corresponds to a simple, connected graph is due to Erdös
and Gallai [38].

Theorem 1 (Erdös and Gallai [38]). A sequence of positive
integersd1, d2, . . . , dn with d1 ≥ d2 ≥ . . . ≥ dn is graph-
ical if and only if

∑n
i=1 di is even and for each integerk,

1 ≤ k ≤ n− 1,

k∑

j=1

dj ≤ k(k − 1) +
n∑

j=k+1

min(k, dj).

As already noted, one possible problem is that the se-
quence may have “too many” or “too few” degree-one vertices.
For example, since the total number of linksl in any graph will
be equal tol =

∑n
i=1 di/2, a connected graph cannot have an

odd
∑n

i=1 di, but if this happens then adding or subtracting a
degree-one vertex toD would “fix” this problem. Theorem
1 further states that additional conditions are required to en-
sure a simple connected graph, specifically that the degree of
any vertex cannot be “too large”. For example, the sequence
{10, 1, 1, 1} cannot correspond to a simple graph. We will
not attempt to explain all such conditions, except to note that
improvements have been made to Theorem 1 that reduce the
number of sufficient conditions to be checked [99] and also
that several algorithms have been developed to test for the ex-
istence of a graph satisfying a particular degree sequenceD
(e.g., see the section on “Generating Graphs” in [87]).

Our approach to constructing thesmax element ofG(D) is
via a heuristic procedure that incrementally builds the network
in a greedy fashion, by iterating through the set of all poten-
tial links O = {(i, j) : i < j; i, j = 1, 2, . . . , n}, which we
order according to decreasing values ofdidj . In what follows
we refer to the valuedidj as theweightof link (i, j). We add
links from the ordered list of elements inO until all vertices
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have been added and the corresponding links satisfy the degree
sequenceD. To facilitate the exposition of this construction,
we introduce the following notation. LetA be the set of ver-
tices that have been added to the partial graphg̃A, such that
B = V\A is the set of remaining vertices to be added. At each
stage of the construction, we keep track of thecurrent degree
for vertex i, denotedd̃i, so that it may be compared with its
intended degreedi (note thatd̃i = 0 for all i ∈ B). Define
w̃i = di − d̃i as the number of remainingstubs, that is, the
number of connections still to be made to vertexi. Note that
values ofd̃i andw̃i will change during the construction pro-
cess, while the intended degreedi remains fixed. For any point
during the construction, definẽwA =

∑
i∈A w̃i to be the total

number of remaining stubs inA anddB =
∑

i∈B di to be the
total degree of the unattached vertices inB. The values̃wA and
dB are critical to ensuring that the final graph is connected and
has the intended degree sequence. In particular, our algorithm
will make use of several conditions.

Condition A-1: (Disconnected Cluster). If at any point
during the incremental construction the partial graphg̃A has
w̃A = 0 while |B| > 0, then the final graph will be discon-
nected.

Proof: By definition w̃A is the number of stubs available in
the partial graph̃gA. If there are additional nodes to be added
to the graph but no more stubs in the partial graph, then any
incremental growth can occur only by forming an additional,
separate cluster.

Condition A-1a: (Disconnected Cluster). If at any point
during the construction algorithm the partial graphg̃A has
w̃A = 2 with |B| > 0, then adding a link between the two
stubs ing̃A will result in a disconnected graph.

Proof: Adding a link between the two stubs will yield̃wA = 0
with |B| > 0, thus resulting in Condition A-1.

Condition A-2: (Tree Condition). If at any point during the
construction

dB = 2|B| − w̃A, (15)

then the addition of all remaining vertices and links to the
graph must beacyclic (i.e., tree-like, without loops) in order
to achieve a single connected graph while satisfying the de-
gree sequence.

Proof: To see this more clearly, suppose that for some inter-
mediate point in the construction process thatw̃A = m. That
is, there are exactlym remaining stubs in the connected com-
ponent to which the remaining vertices inB must attach. We
can prove that, in order to satisfy the degree sequence while
maintaining a single connected graph, each of thesem stubs
must become the root of a tree. First, recall from basic graph
theory that an acyclic graph connectingn vertices will have
exactly l = n − 1 links. DefineBj ⊂ B for j = 1, . . . , m
to be the subset of remaining vertices to be added to stubj,
where

⋃m
j=1 Bj = B. Further assume for the moment that⋂m

j=1 Bj = ∅, that is, each vertex inB connects to a subgraph
rooted at one and only one stub. Connecting the vertices inBj

to a subgraph rooted at stubj will require a minimum of|Bj |
links (i.e.|Bj | − 1 links to form a tree among the|Bj | vertices
plus one additional link to connect the tree to the stub). Thus,
in order to connect the vertices in the setBj as a tree rooted
at stubj, we require

∑
k∈Bj

dk = 2|Bj | − 1, and to attach all

vertices inB to them stubs we have

dB =
∑

i∈B
di =

m∑

j=1

∑

k∈Bj

dk

=
m∑

j=1

(2|Bj | − 1)

= 2|B| −m

= 2|B| − w̃A.

Thus, at the point when (15) occurs, only trees can be con-
structed from the remaining vertices inB.

The Algorithm

Here, we introduce the algorithm for our heuristic construc-
tion and then discuss the conditions when this construction is
guaranteed to result in thesmax graph.

• STEP 0 (INITIALIZATION ):
Initialize the construction by adding vertex 1 to the
partial graph; that is, begin withA = {1}, B =
{2, 3, . . . , n}, andO = {(1, 2), . . .}. Thus,w̃A = d1

anddB =
∑n

i=2 di.

• STEP 1 (L INK SELECTION): Check to see if there are
anyadmissibleelements in the ordered listO.

(a) If |O| = 0, thenTERMINATE. Return the graph
g̃A.

(b) If |O| > 0, select the element(s), denoted here as
(i, j), having the largest weightdidj , noting that
there may be more than one of them. For each
such link(i, j), checkw̃i andw̃j : If either w̃i = 0
or w̃j = 0 then remove(i, j) fromO.

(c) If no admissible links remain, return toSTEP 1(a).

(d) Among all remaining links havingboth w̃i > 0
and w̃j > 0, select the element(i, j) with the
largest valuew̃i (where for each(i, j) w̃i is the
smallerof w̃i andw̃j), and proceed toSTEP 2.

• STEP 2 (L INK ADDITION): For the link (i, j) to be
added, consider two types of connections.

– Type I: i ∈ A, j ∈ B. Here, vertexi is the
highest-degree vertex inA with non-zero hubs
(i.e., di = maxk∈A dk and w̃i > 0) andj is the
highest-degree vertex inB. Add link (i, j) to the
partial graph̃gA: remove vertexj from B and add
it to A, decrement̃wi andw̃j , and update both̃wA
and dB accordingly. Remove(i, j) from the or-
dered listO.

– Type II: i ∈ A, j ∈ A, i 6= j. Here,i andj are the
largest vertices inA for whichw̃i > 0 andw̃j > 0.

∗ Check theTree Condition:
If dB = 2|B| − w̃A, then Type II links are
not permitted. Remove the link(i, j) fromO
without adding it to the partial graph.

∗ Check theDisconnected Cluster Condition:
If w̃A = 2, then adding this link would re-
sult in a disconnected graph. Remove the link
(i, j) from O without adding it to the partial
graph.
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∗ Else, add the link(i, j) to the partial graph:
decrement̃wi andw̃j , and updatẽwA accord-
ingly. Remove(i, j) from the ordered listO.

Note: There is potentially a third case in whichi ∈
B, j ∈ B, i 6= j; however this can only occur if there
are no remaining stubs in the partial graphg̃A. This is
precluded by the test for the Disconnection Condition
among Type II link additions; however if the algorithm
were modified to allow this, then this third case would
represent the situation where graph construction contin-
ues with a new (disconnected) cluster. Adding link(i, j)
to the graph would require moving both verticesi andj
from B to A, decrementingw̃i and w̃j , updating both
w̃A anddB accordingly, and removing(i, j) from the
ordered listO.

• STEP 3 (REPEAT): Return toSTEP 1.

Each iteration of the algorithm either adds a link from the list
in O or removes it from consideration. Since there are a finite
number of elements inO, the algorithm is guaranteed to ter-
minate in a finite number of steps. Furthermore, the ordered
nature ofO ensures the following property.

Proposition A-3: At each point during the above construction,
for any verticesi ∈ A andj ∈ B, di ≥ dj .

Proof: By construction, ifi ∈ A andj ∈ B, then for some
previously added vertexk ∈ A, it must have been the case that
dkdi ≥ dkdj . Sincedk > 0, it follows thatdi ≥ dj .

A less obvious feature of this construction is whether or
not the algorithm returns a simple connected graph satisfying
degree sequenceD (if one exists). While this remains an open
question, we show that if the Tree Condition is ever reached,
then the algorithm is guaranteed to return a graph satisfying
the intended degree sequence.

Proposition A-4: (Tree Construction). Given a graphic se-
quenceD, if at anypoint during the above algorithm the Tree
Condition is satisfied, then

(a) the Tree Condition will remain satisfied through all in-
termediate construction, and

(b) the final graph will exactly satisfy the intended degree
sequence.

Proof: To show part (a), assume thatdB = 2|B|− w̃A and ob-
serve that as a result only a link satisfying Type I can be added
next by our algorithm. Thus, the next link(i, j) to be added
will have i ∈ A andj ∈ B, and in doing so we will move ver-
tex j from the working setB toA. As a result of this update,
we will have∆dB = −dj , ∆|B| = −1, and∆w̃A = dj − 2.
Thus, we have updated the following values.

d′B ≡ dB + ∆dB
= dB − dj

2|B′| − w̃′A ≡ 2(|B|+ ∆|B|)− (w̃A + ∆w̃A)
= 2(|B| − 1)− (w̃A + dj − 2)
= 2|B| − w̃A − dj

= dB − dj

Thus,d′B = 2|B′| − w̃′A, and the Tree Condition will continue
to hold after the addition of each subsequent Type I link(i, j).

To show part (b), observe that after|B| Type I link addi-
tions (each of which results in∆|B| = −1) the setB will be
empty, thereby implying also thatdB = 0. Since the relation-
shipdB = 2|B| − w̃A continues to hold after each Type I link
addition, then it must be that|B| = 0 and dB = 0 collec-
tively imply w̃A = 0. Furthermore, sincẽwA =

∑
i∈A w̃i and

w̃i = di− d̃i ≥ 0 for all i, thenw̃i = 0 for all i, and the degree
sequence is satisfied.

An important question is under what conditions the Tree
Condition is met during the construction process. Rewriting
this condition asdB − [2|B| − w̃A] = 0, observe that when
the algorithm is initialized inSTEP 0, we havedB =

∑n
i=2 di,

w̃A = d1 and that|B| = n− 1. This implies that after initial-
ization, we have

dB − [2|B| − w̃A] =
n∑

i=2

di − 2|B|+ d1 =
n∑

i=1

di − 2(n− 1)

Note that minimal connectivity amongn nodes is achieved by
a tree having total degree

∑n
i=1 di = 2(n − 1), and this cor-

responds to the case when the Tree Condition is met at initial-
ization. However, if the sequenceD is graphical and the Tree
Condition is not met at initialization, thendB− [2|B| − w̃A] =
2z > 0, wherez = (

∑n
i=1 di/2) − (n − 1) is the number

of “extra” links above what a tree would require. Assuming
z > 0, consider the outcome of subsequentL INK ADDITION
operations, as defined inSTEP 2:

• As already noted, when a Type I connection is made
(thus adding a new vertexj to the graph), we have
∆dB = −dj , ∆w̃A = dj − 2, and ∆|B| = −1,
which in turn means that Type I connections result in
∆(dB − [2|B| − w̃A]) = 0.

• Accordingly, when a Type II connection is made
between two stubs inA, we have ∆w̃A = −2,
and both |B| and dB remain unchanged. Thus,
∆(dB − [2|B| − w̃A]) = −2.

So if dB − [2|B| − w̃A] = 2z > 0, then subsequent link ad-
ditions will cause this value to either decrease by 2 or remain
unchanged, or in other words, adding additional links can only
bring the algorithm closer to the Tree Condition. Nonetheless,
our algorithm isnot guaranteed to reach the Tree Condition
for all graphic sequencesD (i.e., we have not proved this),
although we have not found any counter-examples in which
the algorithm fails to achieve the desired degree sequence. If
that were to happen, however, the algorithm would terminate
with w̃i > 0 for some vertexi ∈ A, even though|B| = 0.
Nonetheless, in the case where the graph resulting from our
construction does satisfy the intended degree sequenceD, we
can prove that it is indeed thesmax graph.

Proposition A-5: (General Construction). If the graphg
resulting from our algorithm is a connected, simple graph sat-
isfying the intended degree sequenceD, then this graph is the
smax graph ofG(D).

Proof: Observe that, in order to satisfy the degree sequenceD,
the graphg contains a total ofl =

∑n
i=1 di/2 links from the

ordered listO. Since elements ofO are ordered by decreasing
weight didj , it is obvious that, in the absence of constraints
that require the final graph to be connected or satisfy the se-
quenceD, a graph containing the firstl elements ofO will
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maximize
∑

(i,j)∈E didj . However, in order to ensure thatg is
an element of the spaceG(D), when selecting thel links it is
usually necessary to “skip” some elements ofO, and Condi-
tions A-1 and A-2 identify two simple situations where skip-
ping a potential link is required. While skipping links under
other conditions may be necessary to guarantee that the re-
sulting graph satisfiesD (indeed, the current algorithm is not
guaranteed to do this), our argument is thatif these are the only
conditionsunder which elements ofO have been skipped dur-
ing constructionand the resulting graph does satisfyD, then
the resulting graph maximizess(g).

To see this more clearly, consider a second graphg̃ 6= g
also constructed from the ordered listO. Let E ⊂ O be the
(ordered) list of links in the graphg, and letẼ ⊂ O be the
(ordered) list of links in the graph̃g. Assume that these two
lists differ by only a single element, namelye ∈ E , e 6∈ Ẽ
and ẽ 6∈ E , ẽ ∈ Ẽ , whereE\e = Ẽ\ẽ. By definition, bothe
andẽ are elements ofO, and there are two possible cases for
their relative position within this ordered list (here, we use the
notation “≺” to mean “proceeds in order”).

• If e ≺ ẽ, then g̃ uses in place ofe a link that occurs
“later” in the sequenceO. However, sinceO is ordered
by weight, usingẽ cannot result in a higher value for
s(g̃).

• If ẽ ≺ e, theng̃ uses in place ofe a link that occurs “ear-
lier” in the sequenceO—one that had been “skipped” in
the construction ofg. However, the “skipped” elements
ofO will correspond to instances of Conditions A-1 and
A-2, and using them must necessarily result in a graph
g̃ 6∈ G(D) because it is either disconnected or because
its degree sequence does not satisfyD.

Thus, for any other graph̃g, it must be the case that either
s(g̃) ≤ s(g) or g̃ 6∈ G(D), and therefore we have shown that
g is thesmax graph.

A.3 Among Connected, Acyclic Graphs

In the special case when
∑n

i=1 di = 2(n − 1), there exists
only one type of graph structure that will connect alln nodes,
namely an acyclic graph (i.e., a tree). All connected acyclic
graphs are necessarily simple. Because acyclic graphs are a
special case of elements inG(D), generatingsmax trees is
achieved by making the appropriate Type I connections in the
aforementioned algorithm. In effect, this construction is es-
sentially a type of deterministic preferential attachment, one
in which we iterate through all vertices in the ordered listD
and attach each to the highest-degree vertex with a remaining
stub.

In the case of trees, the arguments underlying thesmax

proof can be made more precise. Observe that the incremen-
tal construction of a tree is equivalent to choosing for each
vertex inB the single vertex inA to which it becomes at-
tached. Consider the choices available for connecting two
verticesk, m ∈ B to verticesi, j ∈ A where di ≥ dj ,
dk ≥ dm, and observe thatdidk + didm ≥ didk + djdm ≥
djdk +didm ≥ djdk +djdm, where second inequality follows
from Proposition 3 while the first and last inequalities are by
assumption. There are two cases of interest. First, ifw̃i > 1
andw̃j ≥ 1, then it is clear that it is optimal to connectboth
verticesk, m ∈ B to vertexi ∈ A. Second, ifw̃i = 1 and
w̃j ≥ 1, then it is clear that it is optimal to connectk ∈ B to

i ∈ A andm ∈ B to j ∈ A. All other scenarios can be decom-
posed into these two cases, thus proving that the algorithm’s
incremental construction for a tree is guaranteed to result in
thesmax graph.

There are many important properties ofsmax trees that are
discussed in Section 4, which we now prove.

A.3.1 Properties ofsmax Acyclic Graphs

Recall that our working definition of so-calledbetweenness
(also known asbetweenness centrality) for a vertexv ∈ V
in an acyclic graph is given by

Cb(v) =
∑

s<t∈V σst(v)∑
s<t∈V σst

=
σ̄(v)

n(n− 1)/2
,

where we use the notation̄σ(v) to denote the number of unique
paths in the graph passing through nodev, and where the to-
tal number of unique paths between vertex pairss and t is
n(n− 1)/2.

For a given nodev ∈ V, letN (v) denote the set of neigh-
boring nodes, where by definition|N (v)| = dv. For all nodes
that are not the root of the tree, exactly one of these neighbors
will be “upstream” while the rest will be “downstream” (in
contrast, the root node has only downstream neighbors). De-
finebj to be the total number of nodes “connected” through the
jth neighbor. Our convention will be to denote the “upstream”
neighbor with index 0 (if it exists); thus for all nodesv other
than the root, one has

∑dv−1
j=0 bj = n− 1 (for the root noder,

the appropriate summation is
∑dr

j=1 bj = n − 1). Using this
notation, it becomes clear that, for each nodev other than the
root of the tree, we can express

σ̄(v) =
dv−1∑
j,k=0
j<k

bjbk = b0

dv−1∑

k=1

bk +
dv−1∑
j,k=1
j<k

bjbk.

Thus, σ̄(v) decomposes into two components: the first mea-
sures the number of paths between upstream and downstream
nodes that pass through nodev, and the second measures the
number of paths passing through nodev that are between
downstream nodes only. Since

∑
s<t∈V σst is a constant for

trees containingn nodes, when comparing the centrality for
two nodesu andv, we work directly withσ̄(u) andσ̄(v). In
so doing, for nodesu andv we will denotebu

j , bv
j as the number

of nodes connected to each via their respectivejth neighbor.
One property of thesmax graph that will be useful for

showing that there exists monotonicity between node central-
ity and node degree is given by the following Lemma.

Lemma 1. Let g be thesmax acyclic graph for degree se-
quenceD, and consider two nodesu, v ∈ V satisfyingdu >
dv. Then, it necessarily follows that

du−1∑
j,k=1
j<k

bu
j bu

k >

dv−1∑
j,k=1
j<k

bv
j bv

k. (16)

Note that the summation is overdownstreamnodes only, thus
Lemma 1 states that, forsmax trees, the contribution to central-
ity from paths between downstream nodes is greater for nodes
with higher degree.
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Proof of Lemma 1: Recalling from Proposition 1 thatbu
j ≥ bv

j

for all j = 1, 2, . . . , dv − 1, and noting thatdu > dv,

du−1∑
j,k=1
j<k

bu
j bu

k =
dv−1∑
j,k=1
j<k

bu
j bu

k +
dv−1∑

j=1

du−1∑

k=dv

bu
j bu

k +
du−1∑
j,k=dv

j<k

bu
j bu

k

>

dv−1∑
j,k=1
j<k

bv
j bv

k +
dv−1∑

j=1

du−1∑

k=dv

bu
j bu

k +
du−1∑
j,k=dv

j<k

bu
j bu

k

>

dv−1∑
j,k=1
j<k

bv
j bv

k.

Thus, the proof is complete.

Lemma 1 in turn facilitates a proof of the more general
statement regarding the centrality of nodes in thesmax acyclic
graph, as stated in Proposition 3.

Proof of Proposition 3: We proceed in two parts. First,
we show that if nodev is downstream from nodeu, then
σ̄(u) > σ̄(v). Second, we show that ifv is in a different branch
of the tree fromu (i.e., neither upstream nor downstream from
u) butdu > dv, thenσ̄(u) > σ̄(v).

Starting first with the scenario wherev is downstream from
u, there are two cases that need to be addressed.

Case 1:nodev is directly downstream from nodeu, and node
u is the root of the tree. Observe that we can representσ̄(v) as

σ̄(v) = bv
0

dv−1∑

k=1

bv
k +

dv−1∑
j,k=1
j<k

bv
j bv

k

=
( du∑

j=1
j 6=v

bu
j

)(
bu
v − 1

)
+

dv−1∑
j,k=1
j<k

bv
j bv

k, (17)

sincebv
0 =

∑du

j=1;j 6=v bu
j and also thatbu

v = 1 +
∑dv−1

k=1 bv
k.

For nodeu, we have

σ̄(u) =
du∑

j,k=1
j<k

bu
j bu

k

= bu
v

du∑
k=1
k 6=v

bu
k +

du∑
j,k=1

j<k;j,k 6=v

bu
j bu

k . (18)

Comparingσ̄(u) and σ̄(v), we observe that the first term of
(18) is clearly greater than the first term of (17). Furthermore,
by Lemma 1, we also observe that the second term of (18) is
also greater than the second term of (17). Thus, we conclude
for this case that̄σ(u) > σ̄(v).

Case 2:nodev is directly downstream from nodeu, but node
u is not the root of the tree. Recognizing for any nodei that∑di−1

j=1 bj = (n− 1)− b0, we write

σ̄(u) = bu
0

(
n− 1− bu

0

)
+

du−1∑
j,k=1
j<k

bu
j bu

k

σ̄(v) = bv
0

(
n− 1− bv

0

)
+

dv−1∑
j,k=1
j<k

bv
j bv

k

As before, we observe from Lemma 1 that
∑du−1

j,k=1;j<k bu
j bu

k >∑dv−1
j,k=1;j<k bv

j bv
k, so proving that̄σ(u) > σ̄(v) in this case re-

quires simply that we show

bu
0

(
(n− 1)− bu

0

)
> bv

0

(
(n− 1)− bv

0

)
. (19)

Observe thatbv
0 = bu

0 +1+
∑du−1

j=1;j 6=v bu
j . As a result, we have

bv
0

(
(n− 1)− bv

0

)

=
(
bu
0 + 1 +

du−1∑
j=1
j 6=v

bu
j

)

(
(n− 1)− bu

0 − 1−
du−1∑

j=1
j 6=v

bu
j

)

= bu
0

(
(n− 1)− bu

0

)
+

(
1 +

du−1∑
j=1
j 6=v

bu
j

)

(
(n− 1)− 2bu

0 −
(
1 +

du−1∑
j=1
j 6=v

bu
j

))

Since1 +
∑du−1

j=1;j 6=v bu
j > 0, (19) is true if and only if

(n− 1)− 2bu
0 −

(
1 +

du−1∑
j=1
j 6=v

bu
j

)
< 0

which is equivalent to

(n− 1)− bu
0 < bu

0 + 1 +
du−1∑

j=1
j 6=v

bu
j

du−1∑

k=1

bu
k < bu

0 + 1 +
du−1∑

j=1;j 6=v

bu
j

bu
v < bu

0 + 1.

This final statement will always be true for thesmax tree, since
the “upstream” branch from nodeu will always contain at least
as many nodes as the downstream branch corresponding to
nodev.

These two cases prove that any “upstream” node in the
smax tree is always more central than any “downstream” node,
since by extension ifu is directly upstream fromv thenσ̄(u) >
σ̄(v), and ifv is directly upstream fromw thenσ̄(v) > σ̄(w).
It therefore follows that̄σ(u) > σ̄(w), and, by induction, that
the “root” node of thesmax tree (having highest degree) is the
most central within the entire tree.

Case 3:Now we turn to the case where nodev is not directly
downstream (or upstream) from nodeu. As before, we write

σ̄(u) = bu
0

du−1∑

k=1

bu
k +

du−1∑

j,k=1;j<k

bu
j bu

k ,

σ̄(v) = bv
0

dv−1∑

k=1

bv
k +

dv−1∑

j,k=1;j<k

bv
j bv

k.
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Figure 11: Centrality of high-degree nodes in the smax tree.

As with the previous cases, by Lemma 1 we know that∑du−1
j,k=1;j<k bu

j bu
k >

∑dv−1
j,k=1;j<k bv

j bv
k, so proving that̄σ(u) >

σ̄(v) in this case requires simply that we show that

bu
0

du−1∑

k=1

bu
k > bv

0

dv−1∑

k=1

bv
k. (20)

We rewrite each of these as

bu
0 =

dv−1∑

j=1

bv
j +

(
bu
0 −

dv−1∑

j=1

bv
j

)

bv
0 =

du−1∑

j=1

bu
j +

(
bv
0 −

du−1∑

j=1

bu
j

)

so that we have

bu
0

du−1∑

k=1

bu
k =

( dv−1∑

j=1

bv
j +

(
bu
0 −

dv−1∑

j=1

bv
j

)) du−1∑

k=1

bu
k

bv
0

dv−1∑

k=1

bv
k =

( du−1∑

j=1

bu
j +

(
bv
0 −

du−1∑

j=1

bu
j

)) dv−1∑

k=1

bv
k

and observe that

bu
0 −

dv−1∑

j=1

bv
j = bv

0 −
du−1∑

j=1

bu
j ,

which is a non-negative constant, that we denoteκ. Thus,

bu
0

du−1∑

j=1

bu
j − bv

0

dv−1∑

j=1

bv
j = κ

( du−1∑

j=1

bu
j −

dv−1∑

j=1

bv
j

)
,

which is also non-negative since
∑du−1

j=1 bu
j >

∑dv−1
j=1 bv

j , and
so (20) also holds. Thus, we have shown thatσ̄(u) > σ̄(v)
in the smax tree wheneverdu > dv, thus completing the
proof.

B The s(g)-Metric and Assortativity

Following the development of Newman [67], letP ({Di =
k}) = P (k) be the node degree distribution over the ensemble
of graphs and defineQ(k) = (k + 1)P (k + 1)/

∑
j∈D jP (j)

to be the normalized distribution ofremaining degree(i.e., the

number of “additional” connections for each node at either end
of the chosen link). Let̄D = {d1− 1, d2− 2, · · · , dn− 1} de-
note the remaining degree sequence forg. This remaining de-
gree distribution isQ(k) =

∑
k′∈D̄ Q(k, k′), whereQ(k, k′)

is the joint probability distributionamong remaining nodes,
i.e., Q(k, k′) = P ({Di = k + 1, Dj = k′ + 1|(i, j) ∈ E}).
In a network where the remaining degree of any two ver-
tices is independent, i.e.Q(k, k′) = Q(k)Q(k′), there is
no degree-degree correlation, and this defines a network that
is neither assortative nor disassortative (i.e., the “center” of
this view into the ensemble). In contrast, a network with
Q(k, k′) = Q(k)δ[k − k′] defines a perfectly assortative net-
work. Thus, graph assortivityr is quantified by theaverageof
Q(k, k′) over all the links

r =

∑
k,k′∈D̄ kk′(Q(k, k′)−Q(k)Q(k′))∑

k,k′∈D̄ kk′(Q(k)δ[k − k′]−Q(k)Q(k′))
, (21)

with proper centering and normalization according to the value
of perfectly assortative network, which ensures that−1 ≤ r ≤
1. Many stochastic graph generation processes can be under-
stood directly in terms of the correlation distributions among
these so-called remaining nodes, and this functional form fa-
cilitates the direct calculation of their assortativity. In particu-
lar, Newman [67] shows that both Erdös-Renýı random graphs
and Barab́asi-Albert preferential attachment growth processes
yield ensembles with zero assortativity.

Newman [69] also develops the following sample-based
definition of assortativity

r(g) =

[∑
(i,j)∈E didj/l

]
−

[∑
(i,j)∈E

1
2 (di + dj)/l

]2

[∑
(i,j)∈E

1
2 (d2

i + d2
j )/l

]
−

[∑
(i,j)∈E

1
2 (di + dj)/l

]2 ,

which is equivalent to (14).
While the ensemble-based notion of assortativity in (21)

has important differences from the sample-based notion of
assortativity in (14), their relationship can be understood by
viewing a given graph as a singleton on an ensemble of graphs
(i.e., where the graph of interest is chosen with probability 1
from the ensemble). For this graph, if we define the number
of nodes with degreek asN(k), we can derive the degree dis-
tribution P (k) and the remaining degree distributionQ(k) on
the ensemble as

P (k) =
N(k)

n

and

Q(k) =
(k + 1)P (k + 1)∑

j∈D jP (j)
=

(k + 1)N(k + 1)∑
j∈D jN(j)

.
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Also it is easy to see that

∑

i∈V
di =

∑

k∈D

kN(k) = 2l,

∑

i∈V
d2

i =
∑

k∈D

k2N(k),

...∑

i∈V
dm

i =
∑

k∈D

kmN(k),

wherem is a positive integer.
Equations (21) and (14) can be related term-by-term in the

following manner. The first term of the numerator,Q(k, k′),
represents the joint probability distribution of the (remaining)
degrees of the two nodes at either end of a randomly chosen
link. For a given graph, letl(k, k′) represent the number of
links connecting nodes with degreek to nodes with degreek′.
Then, we can writeQ(k, k′) = l(k, k′)/l, and hence

∑

k,k′∈D̄

kk′Q(k, k′) =
1
l

∑

(i,j)∈E
didj .

The first term of the denominator ofr in equation (21) can be
written as

∑

k,k′∈D̄

kk′Q(k)δ[k − k′] =
∑

k∈D̄

k2Q(k) (22)

=
∑

k∈D(k + 1)3N(k + 1)∑
i∈D jN(j)

=
∑

i∈V d3
i

2l
, (23)

and the “centering” term (in both the numerator and the de-
nominator) is

∑

k,k′∈D̄

kk′Q(k)Q(k′) =


∑

k∈D̄

kQ(k)




2

(24)

=
(∑

k∈D(k + 1)2N(k + 1)∑
i∈D jN(j)

)2

=
(∑

i∈V d2
i

2l

)2

. (25)

In both of these cases, the offset of a constant in representing
the degree sequence asD versusD̄ does not effect the over-
all calculation. The relationships between the ensemble-based
quantities (LHS of 22) and (LHS of 24) and their sample-
based (i.e., structural) counterparts (23) and (25) holds (ap-
proximately) when the expected degree equals the actual de-
gree.

To see why (25) can be viewed as the “center”, we con-
sider the following thought experiment:what is the structure
of a deterministic graph with degree sequenceD and having
zero assortativity?In principle, a node in such a graph will
connect to any other node in proportion to each node’s degree.
While such a graph may not exist for generalD, one can con-
struct a deterministicpseudograph̃g having zero assortativity
in the following manner. LetA = [aij ] represent a (directed)

node adjacency matrix of non-negative real values, represent-
ing the “link weights” in the pseudograph. That is, links are not
constrained to integer values but can exist in fractional form.
The zero assortative pseudograph will have symmetric weights
given by

aij =
(

dj∑
k∈V dk

)(
di

2

)
=

(
di∑

k∈V dk

)(
dj

2

)
= aji.

Thus, the weightaij for each link emanating out of nodei is in
proportion to the degree of nodej, in a manner that is relative
to the sum of all node degrees. In general, the graphs of interest
to us are undirected, however here it is notationally convenient
to consider the construction of directed graphs. Using these
weights, the total weight among all links entering and exiting
a particular nodei equals

∑

j∈V
aij +

∑

k∈V
aki = di/2 + di/2 = di.

Accordingly, the total “link weights” in the pseudograph are
equal to ∑

i,j∈V
aij =

∑

j∈V
dj/2 = l,

where l corresponds to the total number of links in a tradi-
tional graph. Thes-metric for the pseudograph̃gA represented
by matrixA can be calculated as

s(g̃A) =
∑

j∈V

∑

i∈V
diaijdj

=
∑

j∈V

[∑

i∈V
di

(
dj∑

k∈V dk

)(
di

2

)]
dj

=

(∑
j∈V d2

j

)(∑
i∈V d2

i

)

2
( ∑

k∈V dk

)

=

(∑
j∈V d2

j

)2

4l
,

and we have

s(g̃A)
l

=
(∑

i∈V d2
i

2l

)2

,

which is equal to (25).
In principle, one could imagine a deterministic procedure

that uses the structural pseudographg̃A to generate the zero
assortativity graph among an “unconstrained” background set
G. That is, graphs resulting from this procedure could have
multiple links between any pair of nodes as well as multiple
self-loops and would not necessarily be connected. The chal-
lenge in developing such a procedure is to ensure that the re-
sulting graph has degree sequence equal toD, although one
can imagine that in the limit of large graphs this becomes less
of an issue. By extension, it is not hard to conceive a stochas-
tic process that uses the structural pseudographg̃A to generate
a statistical ensemble of graphs having expected assortativity
equal to zero. In fact, it is not hard to see why the GRG method
is very close to such a procedure.

Note that the total weight in the pseudograph between
nodesi andj equalsaij + aji = didj/2l. Recall from Sec-
tion 5.1 that the GRG method described is based on the choice
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of a probabilitypij = ρdidj of connecting two nodesi and
j, and also that in order to ensure thatE(di) = di one needs
ρ = 1/2l, provided thatmaxi 6=j∈V didj ≤ 2l. Thus, the GRG
method can be viewed as a stochastic procedure that generates
real graphs from the pseudographg̃A, with the one important
difference that the GRG method always results in simple (but
not necessarily connected) graphs. Thus, the zero assortativity
pseudograph̃gA can be interpreted as the “deterministic out-
come” of a GRG-like construction method. Accordingly, one
expects that the statistical ensemble of graphs resulting from
the stochastic GRG method could have zero assortativity, but
this has not been proven.

In summary, graph assortativity captures a fundamental
feature of graph structure, one that is closely related to our
s-metric. However, the existing notion of assortativity for an
individual graphg is implicitly measured against a background
set of graphsG that is not constrained to be either simple
or connected. The connection between the sample-based and
ensemble-based definitions makes it possible to calculate the
assortativity among graphs of different sizes and having differ-
ent degree sequences, as well as for different graph evolution
procedures. Unfortunately, because this metric is computed
relative to an unconstrained background set, in some cases this
normalization (against thesmax graph) and centering (against
the g̃A pseudograph) does a relatively poor job of distinguish-
ing among graphs having thesamedegree sequence, such as
those in Figure 5.
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