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Abstract

There is a large, popular, and growing literature on “scale-free networks” with the Internet along with metabolic networks
representing perhaps the canonical examples. While this has in many ways reinvigorated graph theory, there is unfortunately
no consistent, precise definition of scale-free graphs and few rigorous proofs of many of their claimed properties. In fact, it is
easily shown that the existing theory has many inherent contradictions and that the most celebrated claims regarding the Internet
and biology are verifiably false. In this paper, we introduce a structural metric that allows us to differentiate between all simple,
connected graphs having an identical degree sequence, which is of particular interest when that sequence satisfies a power law
relationship. We demonstrate that the proposed structural metric yields considerable insight into the claimed properties of SF
graphs and provides one possible measuri@fextent to which a graph is scale-fre€his structural view can be related to
previously studied graph properties such as the various notions of self-similarity, likelihood, betweeness and assortativity. Our
approach clarifies much of the confusion surrounding the sensational qualitative claims in the current literature, and offers a
rigorous and quantitative alternative, while suggesting the potential for a rich and interesting theory. This paper is aimed at
readers familiar with the basics of Internet technology and comfortable with a theorem-proof style of exposition, but who may
be unfamiliar with the existing literature on scale-free networks.

1 Introduction rich variety of additional (e.g. topological) signatures beyond
mere power law degree distributions in corresponding models
of large networks. One such feature has been the role of evo-

One of the most popular topics recently within the interdifistionary growth or rewiring processes in the construction of

ciplinary study of complex networks has been the investiggraphs. Preferential attachment is the mechanism most often

tion of so-called “scale-free” graphs. Originally introducedssociated with these models, although it is only one of several
by Barat@si and Albert [14], scale-free (SF) graphs have begfechanisms that can produce graphs with power law degree
proposed as generic, yet universal models of network topaliistributions.

gies that exhibit power law distributions in the connectivity of Another prominent feature of SF graphs in this literature is

network nodes. As aresult of the apparent ubiquity of such dise role of highly connected “hubs.” Power law degree distri-

tributions across many naturally occurring and man-made slygtions alone imply that some nodes in the tail of the power
tems, SF graphs have been suggested as representative fagdnust have high degree, but “hubs” imply something more
els of complex systems ranging from the social sciences (cahd are often said to “hold the network together.” The presence
laboration graphs of movie actors or scientific co-authors)dda hub-like network core yields a “robust yet fragile” con-
molecular biology (cellular metabolism and genetic regulaectivity structure that has become a hallmark of SF network
tory networks) to the Internet (Web graphs, router-level graphsodels. Of particular interest here is that a study of SF models
and AS-level graphs). Because these models exhibit featusethe Internet’s router topology is reported to show ttiae

not easily captured by traditional Es-Reny random graphs removal of just a few key hubs from the Internet splintered the

[39], it has been suggested that the discovery, analysis, andsggtem into tiny groups of hopelessly isolated routésg)].

plication of SF graphs may even represent a “new scienceT@s, apparently due to their hub-like core structure, SF net-

networks” [13, 37]. works are said to be simultaneously robust to the random loss
As pointed out in [23, 24], despite the popularity of the S§f nodes (i.e. “error tolerance”) since these tend to miss hubs,
network paradigm in the complex systems literature, the deist fragile to targeted worst-case attacks (i.e. “attack vulnera-
nition of “scale-free” in the context of network graph modelsility”) [6] on hubs. This latter property has been termed the
has never been made precise, and the results on SF graph9\afgllles’ heel” of SF networks, and it has featured promi-
largely heuristic and experimental studies withther little nently in discussions about the robustness of many complex
rigorous mathematical work; what there is sometimes confirmetworks. Albert et al. [6] even claim twemonstrate that
and sometimes contradicts the heuristic resuf@3]. Spe- error tolerance... is displayednly by a class of inhomoge-
cific usage of “scale-free” to describe graphs can be tracechtusly wired networks, called scale-free networfeshpha-

the observation in Bardsi and Albert [14] thata common sis added). We will use the qualifier “SF hubs” to describe high

property of many large networks is that the vertex connectifegree nodes which are so located as to provide these “robust

ities follow a scale-free power-law distribution."However, yet fragile” features described in the SF literature, and a goal

most of the SF literature [4, 5, 6, 14, 15, 16, 17] identifies a
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of this paper is to clarify more precisely what topological feather disciplines, where available, and utilize existing methods
tures of graphs are involved. and approaches from graph theory and statistics. While the
There are a number of properties in addition to power lgwoposed structural metric is not intended as a general mea-
degree distributions, random generation, and SF hubs thatsane of all graphs, we demonstrate that it yields considerable
associated with SF graphs, but unfortunately, it is rarely maidsight into the claimed properties of SF graphs and may even
clear in the SF literature which of these features define Bfovide a view intathe extent to which a graph is scale-free
graphs and which features are then consequences of this @feh a view has the benefit of beingnimal, in the sense that
nition. This has led to significant confusion about the definitiyelies on few starting assumptions, yet yields a rich and gen-
features or characteristics of SF graphs and the applicabilityeodl description of the features of SF networks. While far from
these models to real systems. While the usage of “scale-freetnplete, our results are consistent with the main thrust of the
in the context of graphs has been imprecise, there is nevertBEe-literature and demonstrate that a rigorous and interesting
less a large literature on SF graphs, particularly in the highestale-free theory” can be developed, with very general and
impact general science journals. For purposes of clarity in thidoust features resulting from relatively weak assumptions. In
paper, we will use the ter®F graphgor equivalentlySF net- the process, we resolve some of the misconceptions that exist
workg to mean those objects as studied and discussed in thishe general SF literature and point out some of the defi-
“SF literature,” and accept that this inherits from that literatuodencies associated with previous applications of SF models,
an imprecision as to what exactly SF means. One aim of tharticularly to technological and biological systems.
paper is to capture as much as possible of the “spirit” of SF The remainder of this article is organized as follows. Sec-
graphs by proving their most widely claimed properties usitign 2 provides the basic background material, including math-
a minimal set of axioms. Another is to reconcile these theematical definitions for scaling and power law degree se-
retical properties with the properties of real networks, andguences, a discussion of related work on scaling that dates
particular the router-level graphs of the Internet. back as far as 1925, and various additional work on self-
Recent research into the structure of several importairhilarity in graphs. We also emphasize here why high vari-
complex networks previously claimed to be “scale-free” hadility is a much more important concept than scaling or
revealed that, even if their graphs could have approximatelywer laws per se. Section 3 briefly reviews the recent lit-
power law degree distributions, the networks in question dmature on SF networks, including the failure of SF meth-
not have SF hubs, that the most highly connected nodes doous in Internet applications. In Section 4, we introduce a
necessarily represent an “Achilles’ heel”, and that their mosetric for graphs having a power-law in their degree se-
essential “robust, yet fragile” features actually come from agdence, one that highlights the diversity of such graphs and
pects that are only indirectly related to graph connectivity. &tso provides insight into existing notions of graph structure
particular, recent work in the development of a first-principlessich as self-similarity/self-dissimilarity, motifs, and degree-
approach to modeling the router-level Internet has shown thatserving rewiring. Our metric is “structural”—in the sense
the core of that network is constructed from a mesh of higtirat it depends only on the connectivity of a given graph
bandwidth, low-connectivity routers and that this design rand not the process by which the graph is constructed—and
sults from tradeoffs in technological, economic, and perfaran be applied to any graph of interest. Then, Section 5
mance constraints on the part of Internet Service Providemnects these structural features with the probabilistic per-
(ISPs) [59]. A related line of research into the structure spective common in statistical physics and traditional random
biological metabolic networks has shown that claims of S$ffaph theory, with particular connections to graph likelihood,
structure fail to capture the most essential biochemical as wighree correlation, and assortative/disassortative mixing. Sec-
as “robust yet fragile” features of cellular metabolism arttbn 6 then traces the shortcomings of the existing SF theory
in many cases completely misinterpret the relevant biologgd uses our alternate approach to outline what sort of po-
[95, 96]. This mounting evidence against the heart of the &ntial foundation for a broader and more rigorous SF theory
story creates a dilemma in how to reconcile the claims of thigy be built from mathematically solid definitions. We also
broad and popular framework with the details of specific aput the ensuing SF theory in a broader perspective by com-
plication domains. In particular, it is now clear that either thgaring it with recently developed alternative models for the
Internet and biology networks are very far from “scale freelhternet based on the notion éfighly Optimized Tolerance
or worse, the claimed properties of SF networks are simghtOT) [28]. We conclude in Section 7 that many open prob-
false at a more basic mathematical level, independent of d&ys remain, including theoretical conjectures and the poten-
purported applications. tial relevance of rigorous SF models to applications other than
The main purpose of this paper is to demonstrate that wheohnology.
properly defined, “scale-free networks” have the potential for
arigorous, interesting, and rich mathematical theory. Our pre-
sentation assumes an understanding of fundamental Inteiet Background
technology as well as comfort with a theorem-proof style of
exposition, but not necessarily any familiarity with existinghis section provides the necessary background for our inves-
SF literature. While we leave many open questions and cdigation of what it means for a graph to be “scale-free”. In
jectures supported only by numerical experiments, exampleatticular, we present some basic definitions and results in ran-
and heuristics, our approach reconciles the existing contragiem variables, comment on approaches to the statistical anal-
tions and recovers many claims regarding the graph theorggts of high variability data, and review notions of scale-free
properties of SF networks. A main contribution of this paperad self-similarity as they have appeared in related domains.
the introduction of a structural metric that allows us to differ- While the advanced reader will find much of this section
entiate between all simple, connected graphs having an ide@igmentary in nature, our experience is that much of the con-
cal degree sequence, particularly when that sequence follovigséon on the topic of SF graphs stems from fundamental dif-
power law. Our approach is to leverage related definitions fré&fences in the methodological perspectives between statisti-
cal physics and that of mathematics or engineering. The intent



here is to provide material that helps to bridge this potentlaen a source of many common mistakes in the analysis and
gap in addition to setting the stage from which our results wiititerpretation of actual data and should generally be avoided.
follow. Power-law distributions are called scaling distributions be-
cause the sole response to conditioning is a change in scale;
that is, if the random variabl& satisfies relationship (2) and

2.1 Power Law and Scaling Behavior x > w, then the conditional distribution oX given that

2.1.1 Non-stochastic vs. Stochastic Definitions X > wis given by

A finite sequence; = (y1,y2,-..,yn) Of real numbers, as- P[X > z] W

sumed without loss of generality always to be ordered such PIX > z|X >w]| = m ~cr Y,

thaty, > yo > ... > y,, IS said to follow apower lawor

scaling relationshipf where the constany is independent of and is given by:; =

1/w~®. Thus, at least for large valuesof P[X > z|X > w)]

is identical to the (unconditional) distributiaR[X > x], ex-

cept for a change in scale. In contrast, the exponential distri-
" bution gives

k= cy 7, 1)

wherek is (by definition) therank of y, ¢ is a fixed constant
and « is called thescaling index Sincelogk = log(c) —
alog(yr), the relationship for the rank versusy appears as
a line of slope—«a when plotted on a log-log scale. In this

manuscript, we refer to the relationship (1) asstxe-rankor that is, the conditional distribution is also identical to the (un-

cumulativg form of scaling. While the definition of scaling o g .
: ; o ; nditional) distribution, except for a change of location rather
in (1) is fundamental to the exposition of this paper, a moégan scale. Thus we prefer the tesalingto power law but

P(X > z|X > w) = e Mo7w),

common usage of power laws and scaling occurs in the ¢ il use them interchangeably, as is common

text of random variables and their distributions. That is, as- It is important to emphasize again the differences between
suming an underlying probability modé&! for a non-negative th It tive definiti fscaling. Relationshin (fibi
random variableX, let F(z) — P[X < ] for @ > 0 de- ese alternative definitions of scaling. Relationship (ipis-

’ — — stochasticin the sense that there is no assumption of an under-

note thg(cumulative) distribution function (CDF) of, and let Vi o i
BN ying probability space or distribution for the sequencand
F(z) =1 F(x) denote theomplementary CDF (CCDEA in what follows we will always use the tersequencéo re-

typical feature of commonly-used distribution functions is th i . h ) .
the (right) tails of their CCDFs decrease exponentially fa: r to such a hon stochastic _obje;ptand accordingly we will
enon-stochastico mean simply the absence of an under-

implying that all moments exist and are finite. In practice, thl ing probability model. In contrast, the definitions in (2) and

ir:]rg g eétr)l/deeﬁusréelrsntrlgﬁ(an}/(real|za}t(|©t)1 )o?s’i.z. e‘ ’Tfﬁzi\trlﬂm 312 (3) arestochastiand require an underlying probability model.
compmon distributi?)n flljhct?éﬁ;ﬁ' ’cor?centrates tightl groundAccordingly, when referring to a random variabie we will

: - tes ughtly explicitly mean an ensemble of values or realizations sampled
its (sample) mean, thus exhibiting low variability as .mgasurgﬁém a common distribution functioft, as is common usage.
for example, in terms of the (sample) standard deviation. We will often use the standard and trivial method of viewing a

In this stochastic context, a random varialdler its corre- X h ; : J 2
sponding distribution functiof is said to follow apower law nonstochastic model as a stochastic one with a singular distri-

; ) e . bution.
or is scalingwith indexa: > 0if, asz — oo, These distinctions between stochastic and nonstochastic
PIX >a]=1- F(z) ~ ez, @) models will be important in this paper. Our approach allows

for but does not require stochastics. In contrast, the SF liter-
for some constand < ¢ < oo and atail index o« > 0. ature almost exclusively assumes some underlying stochastic
Here, we writef (z) ~ g(z) asz — oo if f(z)/g(x) — 1 models, sowe will focus some attention on stochastic assump-
asr — oo. Forl < a < 2, F has infinite variance buttions. Exclusive focus on stochastic models is standard in sta-
finite mean, and fo0 < a < 1, F has not only infinite tistical physics, even to the extent that the possibility of non-
variance but also infinite mean. In general, all moments $pchastic constructions and explanations is largely ignored.
F of order3 > « are infinite. Since relationship (2) im-This seems to be the main motivation for viewing the Internet's
plieslog(P[X > z]) ~ log(c) — alog(x), doubly logarith- router topology as a member of an ensemble of random net-
mic plots of x versusl — F(z) yield straight lines of slope Works, rather than an engineering system driven by economic
—a, at least for large:. Well-known examples of power lawand technological constraints plus some randomness, which
distributions include the Pareto distributions of the first aaight otherwise seem more natural. Indeed, in the SF litera-
second kind [51]. In contrasexponential distributiongi.e., ture “random” is typically used more narrowly than stochas-
P[X > x| = e~ ) result in approximately straight lines orfic to mean, depending on the context, exponentially, Poisson,
semi-logarithmic plots. or uniformly distributed. Thus phrases like “scale-free versus

If the derivative of the cumulative distribution functiorfandom” (the ambiguity in “scale-free” notwithstanding) are

F(z) exists, thenf(z) = d%F(‘T) is called the(probability) closer in meaning to “scaling versus exponential,” rather than
density functiorof X and implies that the stochastic cumulanon-stochastic versus stochastic.”
tive form of scaling or size-rank relationship (2) has an equiv-
alentnoncumulativeor size-frequencgounterpart given by  2.1.2  Scaling and High Variability

flz) ~ cqp—(1+@) 3) An important feature of sequences that follow the scaling re-
lationship (1) is that they exhibitigh variability, in the sense
which appears similarly as a line of slop€1 + «) on a log- that deviations from the average value or (sample) mean can
log scale. However, as discussed in more detail in Sectiary by orders of magnitude, making the average largely unin-
2.1.3 below, the use of this noncumulative form of scaling heemative and not representative of the bulk of the values. To



quantify the notion ofrariability, we use the standard measuref occurrence given in parenthesis:
of (sample) coefficient of variatiomhich for a given sequence
y = (y1,Y2,-..,yn) is defined as y° {10000(1),6299(1), 4807(1),3968(1),3419(1), ...

) .. 130(77), 121(77), 113(81), 106(84), 100(34)},
CV(y) = STD(y)/y, ) ye — {1000(1),903(1),847(1),806(1), 775(1),. ..

wherey = n~' >, yy is the average size or (sample) mean --+,96(39),87(43), 76(56), 61(83), 33(180) },
of yandSTD(y) = (> r_,(yx—7)?/(n—1))/?is the (sam-

lo) standard deviation mmonl d metric for m and the full sequences are plotted in Figure 1. In particular,
ple) standard deviation, a commonly-used metric fo castle doubly logarithmic plot in Figure 1(a) shows the cumula-

ing the deviations of from its averagey. The presence of o o gjze_rank relationships associated with the sequeyices
high variability in a sequence of values often contrasts gre dye: the largest value of* (i.e., 10,000) is plotted on the

with the typical experience of many scientists who Work With i 1 has rank 1 (y-axis), the second largest valyé isf
empirical data exh|b|t|n¢p\{v variability—that is, observatlons6 299 and has rank 2. all the Way to the end. where the small-
that tend to concentrate tightly around the (sample) mean %Ig value ofy* (i.e., 10’0) is plotted on the x—a>’<is and has rank

allow for only small to moderate deviations from this meafj) (y-axis). Similarly fory. In full agreement with the
value. nderlying generation mechanisms, plotting on doubly loga-

A standard ensemble-based measure for quantifying Hlﬁmic scale the rank-ordered sequencejbiversus ranke
variability inherent in a random variabl¥ is the (ensemble) | it in a straight line; i.ey® is scaling (to within integer

coefficient of variation C\X) defined as tolerances). The same plot for the rank-ordered sequence of

y© has a pronounced concave shape and decreases rapidly for
CV(X) =/ Var(X)/E(X), (5) large ranks—strong evidence for an exponential size-rank re-

lationship. Indeed, as shown in Figure 1(b), plotting on semi-

where E(X) andVar(X) are the (ensemble) mean and (efogarithmic scale the rank-ordered sequencgofersus rank

semble) variance o, respectively. Ifr = (z1,z2,...,2,)iS £ yields a straight line; i.e* is exponential (to within integer

a realization of an independent and identically distributed (iiﬂﬂerances)_ The same plot fgt shows a pronounced convex

sample of size: taken from the common distributiohl of X, shape and decreases very slowly for large rank values—fully

it is easy to see that the quantityy/’ () defined in (4) is sim- consistent with a scaling size-rank relationship. Various met-
ply an estimate o€V (X). In particular, if X is scaling with rics for these two sequences are
a < 2,thenCV(X) = oo, and estimate€'V (x) of CV (X)

diverge for large sample sizes. Thus, random variables having y° y°

a scaling distribution are extreme in exhibiting high variabil- (sample) mean| 167 | 267
ity. However, scaling distributions are only a subset of a larger (sample) mediarf 127 | 153
family of heavy-tailed distributiong¢see [102] and references (sample) STD | 140 | 504
therein) that exhibit high variability. As we will show, it turns (sample)CV | .84 | 1.89

out that some of the most celebrated claims in the SF literature

(e.g. the presence of highly connected central hubs) have g8 & || are consistent with exponential and scaling sequences
necessary condition only the presence of high variability agghnis size.
not necessanly strict scallng per se. _The consequences of thisrg highlight the basic problem caused by the use of noncu-
observation are far-reaching, especially because it shifts fh@iative or size-frequency relationships, consider Figure 1(c)
focus from scaling relationships, their tail indices, and thejpq (d) that show on doubly logarithmic scale and semi-
generating mechanisms to an emphasis on heavy-tailed digiigarithmic scale, respectively, the non-cumulative or size-
butions and identifying the main sources of “high Va”ab'“ty-frequency plots associated with the sequenceandy®: the

largest value of)® is plotted on the x-axis and has frequency
2.1.3 Cumulative vs. Noncumulative log-log Plots 1 (y-axis), the second largest value f has also frequency

1, etc., until the end where the smallest valug;bthappens
While in principle there exists an unambiguous mathemaitd- occur 84 times (to within integer tolerances). Similarly for
cal equivalence between distribution functions and their dengi; where the smallest value happens to occur 180 times. Itis
ties, as in (2) and (3), no such relationship can be assungechmon to conclude incorrectly from plots such as these, for
to hold in general when plotting sequences of real or intexample, that the sequengeis scaling (i.e., plotting on dou-
ger numbers or measured data cumulatively and noncumtily-logarithmic scale size vs. frequency results in an approx-
tively. Furthermore, there are good practical reasons to avimithte straight line) and the sequengeis exponential (i.e.,
noncumulative or size-frequency plots altogether (a sentimetdtting on semi-logarithmic scale size vs. frequency results in
echoed in [69]), even though they are often used exclusivaly approximate straight line)—exactly the opposite of what is
in some communities. To illustrate the basic problem, weerrectly inferred about the sequences using the cumulative or
first consider two sequenceg;, andy®, each of length 1000, size-rank plots in Figure 1(a) and (b).
wherey® = (v3,...,¥5000) IS CONstructed so that its values In contrast to the size-rank plots of the style in Figure 1(a)-
all fall on a straight line when plotted on doubly logarith(b) that depict the raw data itself and are unambiguous, the use
mic (i.e., log-log) scale. Similarly, the values of the sequenoésize-frequency plots as in Figure 1(c)-(d), while straight-
y® = (v§,-..,y5000) are generated to fall on a straight linéorward to describe low variable data, creates ambiguities and
when plotted on semi-logarithmic (i.e., log-linear) scale. Than easily lead to mistakes when applied to high variability
MATLAB code for generating these two sequences is availatéa. First, for high precision measurements it is possible that
for electronic download [63]. When ranking the values in eaelach data value appears only once in a sample set, making raw
sequence in decreasing order, we obtain the following uniduequency-based data rather uninformative. To overcome this
largest (smallest) values, with their corresponding frequengmeblem, a typical approach is to group individual observations
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Figure 1: PLOTS OF EXPONENTIALY® (BLACK CIRCLES) AND SCALING y*® (BLUE SQUARES SEQUENCES (a) Doubly logarithmic size-rank plot:
y® is scaling (to within integer tolerances) and thus y7 versus k is approximately a straight line. (b) Semi-logarithmic size-rank plot: ¢ is
exponential (to within integer tolerances) and thus y;, versus k is approximately a straight line on semi-logarithmic plots (c) Doubly logarithmic

size-frequency plot:  y€ is exponential but appears incorrectly to be scaling (d) Semi-logarithmic size-frequency plot:  y* is scaling but appears
incorrectly to be exponential.

into one of a small number @finsand then plot for each bin (x- f (z) = P[X = z] is given by

axis) the relative number of observations in that bin (y-axis).

The problem is that choosing the size and boundary values for ~ P[X =z] = P[X >2] - P[X >z +]1]
each bin is a process generally left up to the experimentalist, = 7' —(z+ 1)*1

and thisbinning procesgsan dramatically change the nature of

the resulting size-frequency plots as well as their interpretation

(for a concrete example, see Figure 10 in Section 6.1). Thus it might appear that the true tail index (i®.= 1) could

These exar_nples have been art|f|C|aIIy ponstructed SPEHL inferred from examining either the size-frequency or size-
cally to dramatize the effects associated with the use of curpi, plots, but as illustrated in Figure 2 and described in the
lative or size-rank vs. noncumulative or size-frequency pl 3 '

: S gtion, this is not the case.
for assessing the presence or absence of scaling in given Seyy . 1 there are more rigorous and reliable methods for
quence of observed values. Whl!e th_ey may appear contrivg imatinga (see for example [79]), the (cumulative) size-
errors such as those illustrated in Figure 1 are easy to m plots have significant advantages in that they show the
and are wldespread in the .Co”.‘P'eX systems Iltera'ture. In f?ﬁ data directly, and possible ambiguities in the raw data
determining whether a realization of a sample of sizgener- '

ted f dth K derlving distrib t.notwithstanding, they are also highly robust to a range of
ated from one and the same (unknown) underlying distributign, .\ \rement errors and noise. Moreover, experienced read-
is consistent with a scaling distribution and then estimati

the corresponding tail index from the corresp.onding size—Iégs can judge at a glance whether a scaling model is plau-

x 2.

P(X > z) = x~! can be roughly determined by

iments. Suppose that 1000 (or more) integer values are ?/'lrés,]ual inspection, although additional statistical tests could

erated by pseudo-random independent samples from the _used 1o estaplish this more rigorously._ Al the same
tribution F(z) = 1 — 21 (P(X > z) = 1) for & > 1. e, even when the underlying random variableis scal-

For example, this can be done with thaTLAB fragment ing, size-frequency plots systematically underestinagtand

x=floor(1./rand(L,1000)) where rand(1,1000) worse, have a tendency to suggest that scaling exists where it

. = / does not. This is illustrated dramatically in Figure 2(b)-(c),
generates a vector of 1000 uniformly distributed floating po\?v%ere exponentially distributed samplesyare ggeneratfad) L(Js)ing
numbers between 0 and 1, afidor rounds down to the floor(10%(1-log(rand(L,n))))

next lowest integer. In this case, discrete equivalents to eqia
tions (2) and (3) exist, and far >> 1, the density function

. The size-rank plot

Figure 2(b) is approximately a straight line on a semilog
plot, consistent with an exponential distribution. The loglog
size-frequency plot Figure 2(c) however could be used incor-
rectly to claim that the data is consistent with a scaling dis-
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Figure 2: A COMMON ERROR WHEN INFERRINGESTIMATING SCALING BEHAVIOR. (&) 1000 integer data points sampled from the scaling dis-
tribution P(X > z) =z~ 1, for = > 1. The lower size-frequency plot (blue circles) tends to underestimate the scaling index «; it supports a
slope estimate of about -1.67 (red dashed line), implying an a-estimate of about =0.67 that is obviously inconsistent with the true value of o = 1
(green line). The size-rank plot of the exact same data (upper, black dots) clearly supports a scaling behavior and yields an a-estimate that is
fully consistent with the true scaling index o« = 1 (green line). (b) 1000 data points sampled from an exponential distribution plotted on
log-linear scale. The size-rank plot clearly shows that the data are exponential and that scaling is implausible. (c) The same data as in (b)
plotted on log-log scale. Based on the size-frequency plot, it is plausible to infer incorrectly that the data are consistent with scaling behavior,
with a slope estimate of about -2.5, implying an a-estimate of about 1.5.

tribution, a surprisingly common error in the SF and broadeiten misapplied to the explanation of data that are approxi-
complex systems literature. Thus even if one a priori assumeately scaling, for reasons that we will discuss below.

a probabilistic framework, (cumulative) size-rank plots are es- Much of science has focused so exclusively on low vari-
sential for reliably inferring and subsequently studying higbility data and Gaussian or exponential models that low vari-
variability, and they therefore are used exclusively in this pability is not even seen as an assumption. Yet much real world
per. data has extremely high variability as quantified, for example,
via the coefficient of variation defined in (5). When exploring
stochastic models of high variability data, the most relevant
mathematical result is that the CLT has a generalization that
) ) ) L relaxes the finite variance (e.g. finit&/) assumption, allows
While power laws in event size statistics in many complex ifgr high variability data arising from underlying infinite vari-
terconnected systems have recently attracted a great dealree distributions, and yieldgable lawsin the limit. There
popular attention, some of the aspects of scaling distributiq§s rich and extensive theory on stable laws (see for example
that are crucial and important for mathematicians and engg3]), which we will not attempt to review, but mention only
neers have been largely ignored in the larger complex syst@fmost important features. Recall that a random variéble
literature. This subsection will briefly review one aspect ¢f said to have atable law (with indeX < o < 2) if for any

scaling that is particularly revealing in this regard and is a sug<> 2, there is a real numbek, such that
mary of results described in more detail in [61, 102].
Gaussian distributions are universally viewed as “normal”,
mainly due to the well-known Central Limit Theorem (CLT).
In particular, the ubiquity of Gaussians is largely attributed to . .
thepfact that they areqinvgriant and attractors 8ngeraggregam?re[]lv U, ..., U, are independent copies 6f, and
of summands, required only to be independent and identicalljere = denotes equality in distribution. Following [83],
distributed (iid) and have finite variance [43]. Another convéhe stable laws on the real line can be represented as a four-
nient aspect of Gaussians is that they are completely specifiadameter familyS,, (o, 8, 1), with theindexa, 0 < o < 2;
by mean and variance, and the CLT justifies using these stdti®scale parametes > 0; the skewness parametgl, —1 <
tics whenever their estimates robustly converge, even whenghg 1; and thelocation (shift) parameter, —oco < u < oo.
data could not possibly be Gaussian. For example, much dataen1 < o < 2, the shift parameter is the mean, but for
can only take positive values (e.g. connectivity) or have haxd< 1, the mean is infinite. There is an abrupt change in
upper bounds but can still be treated as Gaussian. It is tail behavior of stable laws at the boundary= 2. While
derstood that this approximation would need refinement if dd¥r @ < 2, all stable laws are scaling in the sense that they
ditional statistics or tail behaviors are of interest. Exponesatisfy condition (2) and thus exhibit infinite variance or high
tial distributions have their own set of invariance propertiariability; the casex = 2 is special and represents a famil-
(e.g. conditional expectation) that make them attractive madr, not scaling distribution—the Gaussian (normal) distribu-
els in some cases. The ease by which Gaussian data is geiter-i.e., Ss (0,0, 1) = N(u,202), corresponding to the finite
ated by a variety of mechanisms means that the ability of arariance or low variability case. While with the exception of
particular model to reproduce Gaussian data is not countedasissian, Cauchy, and Levy distributions, the distributions of
evidence that the model represents or explains other procestasie random variables are not known in closed form, they are
that yield empirically observed Gaussian phenomena. Hdmown to be the only fixed points of the renormalization group
ever, a disconnect often occurs when data have high variabinsformation and thus arise naturally in the limit of properly
ity, that is, when variance or coefficient of variation estimatesrmalized sums of iid scaling random variables. From an un-
don’t converge. In particular, the above type of reasoninghmsed mathematical view, the most salient features of scaling

2.1.4 Scaling: More “normal” than Normal
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distributions are this and additional strong invariance proper- Perhaps the most influential and revealing notion of “scale-
ties (e.g. to marginalization, mixtures, maximization), and tfiree” comes from the study ddritical phase transitionsn
ease with which scaling is generated by a variety of mecluysics, where the ubiquity of power laws is often interpreted
nisms [61, 102]. Combined with the abundant high variabilis a “signature” of a universality in behavior as well in as un-
in real world data, these features suggest that scaling digdeflying generating mechanisms. An accessible history of the
butions are in a sense more “normal” than Gaussians and thitilence of criticality in the SF literature can found in [13,
they are convenient and parsimonious models for high vasp. 73-78]. Here, we will briefly review criticality in the con-
ability data in as strong a sense as Gaussians or exponentidsof percolation as it illustrates the key issues in a simple
are for low variability data. and easily visualized way. Percolation problems are a canon-
While the ubiquity of scaling is increasingly recognizeital framework in the study of statistical mechanics (see [92]
and even highlighted in the physics and the popular compléar a comprehensive introduction). A typical problem consists
ity literature [10, 26, 13, 11], the deeper mathematical coofa square: x n lattice of “sites”, each of which is either “oc-
nections and their rich history in other disciplines have beeuapied” or “unoccupied”. This initial configuration is obtained
largely ignored, with serious consequences. Models of coat-random, typically according to some uniform probability,
plexity using graphs, lattices, cellular automata, and sandpiiesned thedensity and changes to the lattice are similarly de-
preferred in physics and the standard laboratory-scale exfieed in terms of some stochastic process. The objective is
iments that inspired these models exhibit scaling only whemunderstand the relationship among groups of contiguously
finely tuned in some way. So even when accepted as uliignnected sites, calledusters One celebrated result in the
uitous, scaling is still treated as arcane and exotic, and “engudy of such systems is the existence phase transitiorat a
gence” and “self-organization” are invoked to explain how theitical density of occupied sites, above which there exists with
tuning might happen [8]. For example, that SF network moldigh probability a cluster that spans the entire lattice (termed
els supposedly replicate empirically observed scaling node dgercolating clusterand below which no percolating cluster
gree relationships that are not easily captured by traditioealsts. The existence of a critical density where a percolating
Erdos-Reny random graphs [14] is presented as evidence fduster “emerges” is qualitatively similar to the appearance of
model validity. But given the strong invariance properties afgiant connected component in random graph theory [22].
scaling distributions, as well as the multitude of diverse mech- Figure 3(a) shows an example of a random square lattice
anisms by which scaling can arise in the first place [69],(it = 32) of unoccupied white sites and a critical density
becomes clear that an ability to generate scaling distributiqrs.59) of occupied dark sites, shaded to show their connected
“explains” little, if anything. Once high variability appears irclusters. As is consistent with percolation problems at criti-
real data then scaling relationships become a natural outcaralty, the sequence of cluster sizes is approximately scaling,
of the processes that measure them. as seen in Figure 3(d), and thus there is wide variability in
cluster sizes. The cluster boundaries are fractal, and in the
: )  Qiilar limit of large n, the same fractal geometry occurs throughout
2.2 Scaling, Scale-free and Self-Similarity the lattice and on all scales, one sense in which the lattice is
Within the physics community it is common to refer to funcsaid to be self-similar and “scale-free”. These scaling, scale-
tions of the form (3) ascale-freebecause they satisfy the folfree, and self-similar features occur in random lattices if and
lowing property only if (with unit probability in the limit of largen) the den-
sity is at the critical value. Furthermore, at the critical point,
flaz) = g(a) f(x). (6) cluster sizes and many other quantities of interest have power
law distributions, and these are all independent of the details
As reviewed by Newman [69], the idea is that an increase bjhawo important ways. The first and most celebrated is that
factora in the scale or units by which one measure®sults they areuniversal in the sense that they hold identically in
in no change to the overall densify(x) except for a multi- a wide variety of otherwise quite different physical phenom-
plicative scaling factor. Furthermore, functions consistent wigha. The other, which is even more important here, is that all
(3) are theonly functions that are scale-free in the sense tifese power laws, including the scale-free fractal appearance
(6)—free of a characteristic scale. This notion of “scale-freef the lattice, is unaffected if the sites are randomly rearranged.
is clear, and could be taken as simply another synonym Ruichrandom rewiringpreserves the critical density of occu-
scaling and power law, but most actual usages of “scale-frggéd sites, which is all that matters in purely random lattices.
appear to have a richer notion in mind, and they attribute addi- For many researchers, particularly those unfamiliar with
tional features, such as some underlying self-similar or fractiaé strong statistical properties of scaling distributions, these
geometry or topology, beyond just properties of certain scatgmarkable properties of critical phase transitions have be-
random variables. come associated with more than just a mechanism giving
One of the most widespread and longstanding uses of fagver laws. Rather, power laws themselves are often viewed
term “scale-free” has been in astrophysics to describe the frag-“suggestive” or even “patent signatures” of criticality and
tal nature of galaxies. Using a probabilistic framework, origelf-organization” in complex systems generally [13]. Fur-
approach is to model the distribution of galaxies as a statieghermore, the concept &elf-Organized Criticality (SOQ)as
ary random process and express clustering in terms of corrgléen suggested as a mechanism that automatically tunes the
tions in the distributions of galaxies (see the review [41] for @fensity to the critical point [10]. This has, in turn, given rise to
introduction). In 1977, Groth and Peebles [46] proposed thiag idea that power laws alone could be “signatures” of specific
this distribution of galaxies is well described by a power-lamechanisms, largely independent of any domain details, and
correlation function, and this has since been called scale-ftiee notion that such phenomena are robust to random rewiring
in the astrophysics literature. Scale-free here means thatdheomponents or elements has become a compelling force in
fluctuation in the galaxy density have “non-trivial, scale-fre@uch of complex systems research.
fractal dimension” and thus scale-free is associated with frac- Our point with these examples is that typical usage of
tals in the spatial layout of the universe.
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Figure 3: PERCOLATION LATTICES WITH SCALING CLUSTER SIZES Lattices (a)-(c) have the exact same scaling sequence of cluster sizes (d) and
the same (critical) density ~ .59). While random lattice such as in (a) have been be called “scale-free”, the highly structured lattices in (b) or (c)
typically would not. This suggests that, even within the framework of percolation, scale-free usually means something beyond simple scaling of
some statistics and refers to geometric or topological properties.

“scale-free” is often associated with some fractal-like georohild links have ordew, assign to the parent link order+ 1;
etry, not just macroscopic statistics that are scaling. This digherwise, assign orderto the parent link. Ordek streams or
tinction can be highlighted through the use of the percolatiohannels are then defined as contiguous chains of éditeds.
lattice example, but contrived explicitly to emphasize this dié-tree whose highest order stream has ofdés called a tree
tinction. Consider three percolation lattices at the critical deoi order(2. Using this Horton-Strahler stream ordering con-
sity (where the distribution of cluster sizes is known to be scakpt, any rooted tree naturally decomposes into a discrete set
ing) depicted in Figure 3(a)-(c). Even though these latticeE“scales”, with the exterior links labeled as order 1 streams
have identical cluster size sequences (shown in Figure 3(d))d representing the smallest scale or the finest level of detail,
only the random and fractal, self-similar geometry of the leand the ordef? stream(s) within the interior representing the
tice in Figure 3(a) would typically be called “scale-free,” whiléargest scale or the structurally coarsest level of detail. For ex-
the other lattices typically would not and do not share any afple, consider the order 4 streams and their different “scales”
the other “universal” properties of critical lattices [28]. Againdepicted in Figure 4.
the usual use of “scale-free” seems to imply certain self-similar To define topologically self-similar trees, consider the
or fractal-type features beyond simply following scaling statislass of deterministic trees where every stream of axdeas
tics, and this holds in the existing literature on graphs as well> 2 upstream tributaries of order — 1, and7,, ; side trib-
utaries of ordek, with2 < w < Qandl < k <w-—-1. A

. T tree is called (topologically3elf-similarif the corresponding
2.3 Scaling and Self-Similarity in Graphs matrix (1, ;) is a Toeplitz matrix; i.e., constant along diago-

While it is possible to use “scale-free” as synonymous wiftdlS: Tw.w—« = Tk, whereT} is a number that depends én
simple scaling relationships as expressed in (6), the popularQi.not onw and gives the number of side tributaries of order
age of this term has generally ascribed something additiona¥'to #- This definition (with the further constraint thig ., /7).

its meaning, and the terms “scaling” and “scale-free” have rigtconstant for alkk) was originally considered in works by
been used interchangeably, except when explicitly used to $Q}funaga (see [76] for references). Examples of self-similar
that “scaling” is “free of scale.” When used to describe mafges of order 4 are presented in Figure 4(b-c).

naturally occurring and man-made networks, “scale free” often An important concept underlying this ordering scheme can
implies something about the spatial, geometric, or topologi®@ described in terms of a recursive “pruning” operation that
features of the system of interest (for a recent example of tAg&rts with the removal of the order 1 exterior links. Such re-
illustrates this perspective in the context of the World WidB0val results in a tree that is more coarse and has its own set
Web, see [35]). While there exists no coherent, consistent @t-exterior links, now corresponding to the finest level of re-
erature on this subject, there are some consistencies thafh@ing detail. In the next iteration, these order 2 streams are
will attempt to capture at least in spirit. Here we review briefffuned, and this process continues for a finite number of iter-
some relevant treatments ranging from the study of river n@flons until only the ordef? stream remains. As illustrated in

motifs in engineering and biology. similar nature of these trees. The idea is that streams of order

k are invariant under the operation of pruning—they may be
o ) relabeled or removed entirely, but are never severed—and they
2.3.1 Self-similarity of River Channel Networks provide a natural scale or level of detail for studying the overall
One application area where self-similar, fractal-like, and scaféructure of the tree.

free properties of networks have been considered in great de-S discussed in [81], early attempts at explaining the strik-
ubiquity of Horton-Strahler stream ordering was based on

tail has been the study of geometric regularities arising in the

analysis of tree-branching structures associated with riverdoptochastic construction in which has been commonly as-

stream channels [48, 94, 47, 62, 54, 76, 97, 36]. FollowifMed Py hydrologists and geomorphologists that the topologi-
[76], consider a river network modeled as a tree graph arrangement and relative sizes of the streams of a drainage

recursively assign weights (the “Horton-Strahler stream ord¥r W?jrk are just the res#lt of a most probable configuration in
numbers”) to each link as follows. First, assign order 1 to §1|Ir§”. omhenwronrlne.nt. however, n;]ore_ regent attemptsr?tbex- q
exterior links. Then, for each interior link, determine the higf'@iNing this regularity have emphasized an approach base
est order among its child links, say, If two or more of the O" different principles of optimal energy expenditure to iden-



a b) complete Cc) complete d
() (b) comp ocers  (©) comple i @ (M0 00

graph .
ext Ilnkg ext links T Ty, O
trimme trimmed

T4,1 T4,2 T4,3

order 2 order 2
ext links ext links 100
trimmed trimmed =210
— Order 1™ Order 3 421

= Order 2™ Order 4

Figure 4: HORTON-STRAHLER STREAMS OF ORDER4. (a) Generic stream with segments coded according to their order. (b) Self-similar tree
without side tributaries: branching number b = 2 and T3 = 0 for all k. (c) Self-similar tree with side tributaries: branching number b6 = 2 but
Ty = 2F—1 for k = 1, 2, 3. (d) Toeplitz matrix of values T w—k = Ty, representing the side tributaries in (c).

tify the universal mechanisms underlying the evolution of “th@nstants, and where, determines the range of scaling [61].
scale-free spatial organization of a river network” [81, 80Fince this definition is simply a graph-specific version of (1)
The idea is that, in addition to randomness, necessity in that allows for deviations from the power law relationship for
form of different energy expenditure principles play a fundaodes with low connectivity, we again recognize that doubly
mental role in yielding the multiscaling characteristics in ndbgarithmic plots ofd, versusk yield straight lines of slope
urally occurring drainage basins. —a, at least for largel;, values.

It is also interesting to note that while considerable atten- This description of scaling degree sequence is general, in
tion in the literature on river or stream channel networks tise sense that it applies to any given graph without regard to
given to empirically observed power law relationships (corhew it is generated and without reference to any underlying
monly referred to as “Horton’s laws of drainage network corprobability distributions or ensembles. That is, a scaling de-
position”) and their physical explanations, it has been argugete sequence is simply an ordered list of integers represent-
in [54, 55, 56] that these “laws” are in fact a very weak teBtg node connectivity and satisfying the above scaling rela-
of models or theories of stream network structures. The argjonship. In contrast, the SF literature focuses largelygca-
ments are based on the observation that because most stirgrdegree distributionand thus a given degree sequence has
networks (random or non-random) appear to satisfy Hortottt'® further interpretation as representing a realization of an iid
laws automatically, the latter provide little compelling evisample of sizex generated from a common scaling distribution
dence about the forces or processes at work in generatingdahtihe type (2). This in turn is often induced by some random
remarkably regular geometric relationships observed in actaakemble of graphs. This paper will develop primarily a non-
river networks. This discussion is akin to the wide-spread tsechastic theory and thus focus on scaling degree sequences,
lief in the SF network literature that since SF graphs exhilttit will clarify the role of stochastic models and distributions
power law degree distributions, they are capable of capturagwell. In all cases, we will aim to be explicit about which is
a distinctive “universal” feature underlying the evolution adissumed to hold.
complex network structures. The arguments provided in the For graphs that are not trees, a first attempt at formally
context of the Internet’'s physical connectivity structure [S@fefining and relating the concepts of “scaling” or “scale-free”
are similar in spirit to Kirchner’s criticism of the interpretaand “self-similar” through an appropriately defined notion of
tion of Horton’s laws in the literature on river or stream chariscale invariance” is considered by Aiello et al. and described
nel networks. In contrast to [54] where Horton’s laws aiia [3]. In short, Aiello et al. view the evolution of a graph as a
shown to be poor indicators of whether or not stream chanrehdom process of growing the graph by adding new nodes and
networks are random, [59] makes it clear that by their velipks over time. A model of a given graph evolution process
design, engineered networks like the Internet’s router-levelthen called “scale-free” if “coarse-graining” in time yields
topology are essentially non-random, and that their randorstyaled graphs that have the same power law degree distribution
constructed (but otherwise comparable) counterparts resulagthe original graph. Here “coarse-graining in time” refers to
poorly-performing or dysfunctional networks. constructing scaled versions of the original graph by dividing

time into intervals, combining all nodes born in the same inter-
. _ . valinto super-nodes, and connecting the resulting super-nodes
2.3.2 Scaling Degree Sequence and Degree Distribution via a natural mapping of the links in the original graph. For

Statistical features of graph structures that have received ex%number of graph growing models, including the Baib

sive treatment include the size of the largest connected comp Bert construction, Aiello et al. show that the evolution pro-

; ) , ; . tess is “scale-free” in the sense of being invariant with respect
nent, link density, node degree relationships, the graph digifiy; o Scaling (i.e., the frequency of sampling with respect

eter, the characteristic path length, the clustering coefﬁme&t,the growth rate of the model) and independent of the pa-

and the betweenness centrality (for a review of these and o . o T
metrics see [4, 68, 37]). However, the single feature that I;gg;g\"?:eter of the underlying power law node degree distribution

received the most attention is the distribution of node de e [3] for details). Note that the scale invariance criterion
) Y& hsidered in [3] concerns exclusively the degree distributions
and whether or not it follows a power law.

, : = . of the original graph and its coarse-grained or scaled counter-
For a graph with vertices, letl; = deg(7) denote the de- - o 5o cifically, the definition of “scale-free” considered by

g;e?e(g ggdeérl,é ihge nr’aanhd galg.)n :s{sdlr’n?d : tthZ)n}{ fggs Afiello et al. is not “structural” in the sense that it depends on
9 qu grapn, agal u withou % macroscopic statistic that is largely uninformative as far as

generality always to be ordereld > ds > ... > d,,. We will - :
say a graph hascaling degree sequence(r D is scaling topological properties of the graph are concerned.

if forall 1 < k < n, < n, D satisfies gpower law size-rank
relationshipof the formk df = ¢, wherec > 0 anda > 0 are



2.3.3 Network Motifs different database applications (e.g., molecular biology, image

or document retrieval). The task of extracting relevant or new

Another recent attempt at relating the notions of “scale—fre@r’;omedge from such databases (“data mining”) typically re-
and “self-similar” for arbitrary graphs through the more strugyires some notion ajraph similarityand there exists a vast
turally driven concept of “coarse-graining” is due to Itzkovitgie e dealing with different graph similarity measures or
etal. [52]. More specifically, the main focus in [S2] is on invespetrics and their properties [85, 30]. However, these measures
tigating the local structure of basic network building blockgang to exploit graph features (e.g., a given one-to-one map-
termedmotifs that recur throughout a network and are claim g between the vertices of different graphs, or a requirement
to be part of many natural and man-made systems [86, gk a|l graphs have to be of the same order) that are specific
The idea is that by identifying motifs that appear in a giveg the application domain. For example, a common similarity
network at much higher frequencies than in comparable r@haasure for graphs used in the context of pattern recognition
dom networks, itis possible to move beyond studying mactg-the edit distance [84]. In the field of image retrieval, the
scopic statistical features of networks (e.g. power law degiggjjarity of attributed graphs is often measured via the vertex
sequences) and try to understand some of the networks’ mat& ning distance [77]. The fact that the computation of many
microscopic and structural features. The proposed approgethese similarity measures is known to be NP-complete has
is based on simplifying complex network structures by cre@litivated the development of new and more practical mea-

ing appropriately coarse-grained networks in which each nadges that can be used for more efficient similarity searches in
represents an entire pattern (i.e., network motif) in the 0r|g|r| ge-scale databases (e.g., see [57]).

network. Recursing on the coarse-graining procedure yields

networks at different levels of resolution, and a network is

called “scale-free” if the coarse-grained counterparts are “se¥- The Existing SF Story

similar” in the sense that the same coarse-graining procedure

with the same set of network motifs applies at each level \gf this section, we first review the existing SF literature de-
resolution. When applying their approach to an engineerggibing some of the most popular models and their most ap-
network (electric circuit) and a biological network (proteinpealing features. This is then followed by a brief a critique of

signaling network), Itzkovitz et al. found that while each ghe existing theory of SF networks in general and in the context
these networks exhibits well-defined (but different) motifgf internet topology in particular.
their coarse-grained counterparts systematically display very
different motifs at each level. . . .

Alesson learned from the work in [52] is that networks that 1~ Basic Properties and Claims
have scaling degree sequences need not have coarse-graingdnain properties of SF graphs that appear in the existing
counterparts that are self-similar. This further motivates 3Rerature can be summarized as
propriately narrowing the definition of “scale-free” so that it
does imply some kind of self-similarity. In fact, the exam- 1. SF networks have scaling (power law) degree distribu-
ples considered in [52] indicate that engineered or biologi-  tion.
cal networks may be the opposite of “scale-free” or “self-
similar"—their structure at each level of resolution is differ-
ent, and the networks are “scale-rich” or “self-dissimilar.” As
pointed out in [52], this observation contrasts with prevail-
ing views based on statistical mechanics near phase-transitiod. SF networks have highly connected “hubs” which “hold
points which emphasize how self-similarity, scale invariance, the network together” and give the “robust yet fragile”
and power laws coincide in complex systems. It also suggests feature of error tolerance but attack vulnerability.
missing important suctural foatorcs (52, S3]. A more formal 2 SF,nEtWorks are generic i the sense of being preserved
definition of self-dissimilaritywas recently given by Wolpert underrandom degree preserving rewiring.
and Macready [103, 104] who proposed it as a characteristics. SF networks are self-similar.
measure of complex systems. Motivated by a data-driven ap-g - gr hetworks are universal in the sense of not depending
proach, Wolpert and Macready observed that many complex™ on domain-specific details
systems tend to exhibit different structural patterns over dif- '
ferent space and time scales. Using examples from biologiggls variety of features suggest the potential for a rich and ex-
and economic/social systems, their approach is to consider gfiibive theory. Unfortunately, it is unclear from the literature
quantify how such complex systems process information\gich properties are necessary and/or sufficient to imply the
different scales. Measuring a system'’s self-dissimilarity acregers, and if any implications are strict, or simply “likely”
different scales yields a complexity “signature” of the systefgr an ensemble. Many authors apparently define scale-free
athand. Wolpert and Macready suggest that by clustering sy¢herms of just one property, typically scaling degree distri-
signatures, one obtains a purely data-driven, yet natural, t8jtion or random generation, and appear to claim that some

2. SF networks can be generated by certain random pro-
cesses, the foremost among which is preferential attach-
ment.

onomy for broad classes of complex systems. or all of the other properties are then consequences. A cen-
tral aim of this paper is to clarify exactly what options there
2.3.4 Graph Similarity and Data Mining are in defining SF graphs and deriving their additional prop-

erties. Ultimately, we propose below in Section 6.2 a set of
Finally, the notion of graph similarity is fundamental to theninimal axioms that allow for the preservation of the most
study of attributed graphs (i.e., objects that have an intersammon claims. However, first we briefly review the existing
structure that is typically modeled with the help of a graph treatment of the above properties, related historical results, and
tree and that is augmented with attribute information). Sushortcomings of the current theory, particularly as it has been
graphs arise as natural models for structured data observefildquently applied to the Internet.
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The ambiguity regarding the definition of “scale-freehetworks of software components, and energy landscape net-
originates with the original papers [14, 6], but have contimorks (again, comprehensive reviews of these many results are
ued since. Here SF graphs appear to be defined both as graptisly available [4, 13, 68, 37, 73]). While very different in
with scaling or power law degree distributions and as beidgtail, these systems share a common feature in that their de-
generated by a stochastic construction mechanism basedyree distributions are all claimed to follow a power law, possi-
incremental growth(i.e. nodes are added one at a time) arodly with different tail indices.
preferential attachmenti.e. nodes are more likely to attach Regardless of the definitional ambiguities, the use of sim-
to nodes that already have many connections). Indeed, plestochastic constructions that yield scaling degree distribu-
apparent equivalence of scaling degree distribution and pitédns and other appealing graph properties represent for many
erential attachment, and the ability of thus-defined (if ambigtesearchers what is arguably an ideal application of statistical
ously so) SF network models to generate node degree statigilogsics to explaining and understanding complexity. Since SF
that are consistent with the ubiquity of empirically observadodels have their roots in statistical physics, a key assumption
power laws is the most commonly cited evidence that SF nist-always that any particular network is simply a realization
work mechanisms and structures are in some sense universah a larger ensemble of graphs, with an explicit or implicit
[5, 6, 13, 14, 17]. underlying stochastic model. Accordingly, this approach to

Models of preferential attachment giving rise to power launderstanding complex networks has focused on those net-
statistics actually have a long history and are at least 80 yeamsks that are most likely to occur under an assumed ran-
old. As presented by Mandelbrot [61], one early example @dm graph model and has aimed at identifying or discovering
research in this area was the work of Yule [107], who in 192B8acroscopic features that capture the “essence” of the struc-
developed power law models to explain the observed distrre underlying those networks. Thus preferential attachment
bution of species within plant genera. Mandelbrot [61] alsdfers a general and hence attractive “microscopic” mechanism
documents the work of Luria and Deilnk, who in 1943 de- by which a growth process yields an ensemble of graphs with
veloped a model and supporting mathematics for the explitie “macroscopic” property of power law node degree distribu-
generation of scaling relationships in the humber of mutamins [15]. Second, the resulting SF topologies are “generic.”
in old bacterial populations [60]. A more general and popullliot only is any specific SF graph the generic or likely ele-
model of preferential attachment was developed by Simon [88§nt from such an ensemble, but also an important prop-
in 1955 to explain the observed presence of power laws witleirty of scale-free networks is that [degree preserving] random
a variety of fields, including economics (income distributionswiring does not change the scale-free nature of the network”
city populations), linguistics (word frequencies), and biolodgee Methods Supplement to [49]). Finally, this ensemble-
(distribution of mutants in bacterial cultures). Substantial cobased approach has an appealing kind of “universality” in that
troversy and attention surrounded these models in the 19B@svolves no model-specific domain knowledge or specialized
and 1960s [61]. A recent review of this history can also Bdesign” requirements and requires only minimal tuning of the
found in [65]. By the 1990s though these models had beemderlying model parameters.
largely displaced in the popular science literature by models Perhaps most importantly, SF graphs are claimed to ex-
based on critical phenomena from statistical physics [10], otlipit a host of startling “emergent” consequences of universal
to resurface recently in the scientific literature in this contesdlevance, including intriguing self-similar and fractal prop-
of “scale-free networks” [14]. Since then, numerous refinerties (see below for details), small-world characteristics [9],
ments and modifications to the original BaiabAlbert con- and “hub-like” cores. Perhaps the central claim for SF graphs
struction have been proposed and have resulted in SF netwstkat they have hubs, what we term SF hubs, which “hold the
models that can reproduce power law degree distributions witttwork together.” As noted, the structure of such networks
any a € [1,2], a feature that agrees empirically with manig highly vulnerable (i.e., can be fragmented) to attacks that
observed networks [4]. Moreover, the largely empirical andrget these hubs [6]. At the same time, they are resilient to at-
heuristic studies of these types of “scale-free” networks haeeks that knock out nodes at random, since a randomly chosen
recently been enhanced by a rigorous mathematical treatmmtte is unlikely to be a hub and thus its removal has minimal
that can be found in [23] and involves a precise version of tefect on network connectivity. In the context of the Internet,
Baratasi-Albert construction. where SF graphs have been proposed as models of the router-

The introduction of SF network models, combined witlkevel Internet [106], this has been touted “the Achilles’ heel
the equally popular (though less ambiguous) “small worldf the Internet” [6], a vulnerability that has presumably been
network models [100], reinvigorated the use of abstract raverlooked by networking engineers. Furthermore, the hub-
dom graph models and their properties (particularly node di&e structure of SF graphs is such that the epidemic threshold
gree distributions) to study a diversity of complex network sy zero for contagion phenomena [72, 12, 74, 73], thus suggest-
tems. For example, Dorogovtsev and Mendes [37, p.76] piog that the natural way to stop epidemics, either for computer
vide a “standard programme of empirical research of a comruses/worms or biological epidemics such as AIDS, is to pro-
plex network”, which for the case of undirected graphs consistt these hubs [34, 25]. Proponents of this modeling frame-
of finding 1) the degree distribution; 2) the clustering coeffivork have further suggested that the emergent properties of
cient; 3) the average shortest-path length. The presumptioBksgraphs contributes to truly universal behavior in complex
that these features adequately characterize complex netwanksworks [21] and that preferential attachment as well is a uni-
Through the collective efforts of many researchers, this agrsal mechanism at work in the evolution of these networks
proach has cataloged an impressive list of real application &0, 37].
works, including communication networks (the WWW and
the Internet), social networks (author collaborations, movie
actors), biological networks (neural networks, metabolic n&-2 A Critique of Existing Theory
works, protein networks, ecological and food webs), telephone
call graphs, mail networks, power grids and electronic circuitg)e SF story has successfully captured the interest and imagi-

nation of researchers across disciplines, and with good reason,
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As toy models of the router-level Internet, all graphs are subject to same router technology constraints and the same traffic demand model for
routers at the network periphery. (a) Hierarchical scale-free (HSF) network:  Following roughly a recently proposed construction that combines
scale-free structure and inherent modularity in the sense of exhibiting an hierarchical architecture [78], we start with a small 3-pronged cluster
and build a 3-tier network a la Ravasz-Barabasi, adding routers at the periphery roughly in a preferential manner. (b) Random network: This
network is obtained from the HSF network in (a) by performing a number of pairwise random degree-preserving rewiring steps. (c) Poor design:
In this heuristic construction, we arrange the interior routers in a line, pick a node towards the middle to be the high-degree, low bandwidth bot-
tleneck, and establish connections between high-degree and low-degree nodes. (d) HOT network: The construction mimics the build-out of a
network by a hypothetical ISP. It produces a 3-tier network hierarchy in which the high-bandwidth, low-connectivity routers live in the network core
while routers with low-bandwidth and high-connectivity reside at the periphery of the network. (e) Node degree sequence for each network.
Only d; > 1 shown.

as the proposed properties are rich and varied. Yet the existe scale-free more narrowly than scaling degree sequences or
ing ambiguity in its mathematical formulation and many of idistributions in order to have nontrivial emergent properties,
most essential properties has created confusion about whahd thus lose central claims of applicability, or instead define
means for a network to be “scale-free.” One possible and apale-free as merely scaling, but lose all the universal emer-
parently popular interpretation is that scale-free means simghnt features that have been claimed to hold for SF networks.
graphs with scaling degres=quencesand that this alone im- We will pursue the former approach because we believe it is
plies all other features listed above. We will show that thisisost representative of the spirit of previous studies and also
incorrect, and in fact none of the features follows from scdlecause it is most inclusive of results in the existing literature.
ing alone. Even relaxing this to random graphs with scalidg the most basic level, simply to be a nontrivial and novel
degreedistributionsis by itself inadequate to imply any fur-concept, scale-free clearly must mean more than a graph with
ther properties. A central aim of this paper is to clarify thecaling degree sequence or distribution. It must capture some
reasons why these interpretations are incorrect, and propasgect of the graph itself, and not merely a sequence of in-
minimal changes to fix them. The opposite extreme interptegers, stochastic or not, in which case the SF literature and
tation is that scale-free graphs are defined as having all of this paper would offer nothing new. Other authors may ulti-
above-listed properties. We will show that this is possible mate choose different definitions, but in any case, the results
the sense that the set of such graphs is not empty, but as this paper clarify for the first time precisely what the graph
definition this leads to two further problems. Mathematicallsheoretic alternatives are regarding the implications of any of
one would prefer fewer axioms, and we will rectify this with ¢he possible alternative definitions. Thus the definition of the
minimal definition. We will introduce a structural metric thatvord “scale-free” is much less important than the mathemati-
provides a view of the extent to which a graph is scale-free acal relationship between their various claimed properties, and
from which all the above properties follow, often with neceshe connections with real world networks.
sary and sufficient conditions. The other problem is that the
canonical examples of apparent SF networks, the Internet gn
biological metabpolism, ar%pthen very far from scale-free in th%tg The Internet as a Case Study
they havenoneof the above properties except perhaps for scg jjjystrate some key points about the existing claims regard-
ing degree distributions. This is simply an unavoidable confligly S networks as adopted in the popular literature and their
between these properties and the specifics of the applicatiogkyionship with scaling degree distributions, we consider an
and cannot be f|xe_d. . plication to the Internet where graphs are meant to model
As a result, a rigorous theory of SF graphs must either ‘flé)fernet connectivity at the router-level. For a meaningful ex-
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planation of empirically observed network statistics, we musteven high variability, and much evidence to the contrary, for
account for network design issues concerned with technmlany of the existing claims of scaling are based on a combina-
ogy constraints, economic factors, and network performarnim of relying on highly ambiguous data and making a number
[59]. Additionally, we should annotate the nodes and links statistical errors, some of them similar to those illustrated in
in connectivity-only graphs with domain-specific informatiofigures 1 and 2. What is true is that a network IH©Tnet
such as router capacity and link bandwidth in such a way tligtonsistent with existing technology, and could in principle
the resulting annotated graphs represent technically realizdigdhe router level graph for some small but plausible network.

and functional networks. Thus a network with a scaling degree sequence in its router
graph is plausible even if the actual Internet is not scaling. It

33.1 The SF Internet would however look qualitatively likelOTnetand nothing like
HSFnet

Consider the simple toy model of a “hierarchical” SF net- To see in what send¢OTnetis heuristically optimal, note
work HSFnetshown in Figure 5(a), which has a “modularthat from a network design perspective, an important question
graph constructed according to a particular type of preferéshow well a particular topology is able to carry a given de-
tial attachment [78] and to which are then preferentially addethnd for traffic, while fully complying with actual technology
degree-one end systems, yielding the power law degree @sstraints and economic factors. Here, we adopt as standard
guence shown in Figure 5(e). This type of construction hagtric for network performancéhe maximum throughput of
been suggested as a SF model of both the Internet and bioldgy, network under a “gravity model” of end user traffic de-
both of which are highly hierarchical and modular [17]. Thenands [108]. The latter assumes that every end rddes a
resulting graph has all the features listed above as charactesigl bandwidth demand,, that two-way traffic is exchanged
tic of SF networks and is easily visualized and thus convenigettween all pairgi, j) of end nodes andj, the flow X;; of
for our comparisons. Note that the highest-degree nodes inttiaéfic between; andj is given by X;; = px;z;, wherep is
tail of the degree sequence in Figure 5(e) correspond to gaene global constant, and is otherwise uncorrelated from all
SF hub nodes in the SF netwoHSFnet Figure 5(a). This other flows. Our performance measure for a given network
confirms the intuition behind the popular SF view that pows then its maximum throughput with gravity flows, computed
law degree sequences imply the existence of SF hubs thatzare
crucial for global connectivity. If such features were true for Perf(g) = maXZXij, s.t. RX < B, 7)
the real Internet, this finding would certainly be startling and P
profound, as it directly contradicts the Internet’s legendary and
most clearly understood robustness property, i.e., it's high véhereR is the routing matrix obtained using standard shortest
silience to router failures [32]. path routing.R = [Ry;], with Ry; = 1 if flow [ passes through
Figure 5 also depicts three other networks with the exaiotiterk, andRy; = 0 otherwise.X is the vector of all flows
same degree sequenceHSFnet The variety of these graphsX;;, indexed to match the routing matrix, andB is a vector
suggests that the set of all connected simple graphs (i.e.cnosisting of all router bandwidth capacities.
self-loops or parallel links) having exactly the same degree se- An appropriate treatment of router bandwidth capacities
guence shown in Figure 5(e) is so diverse that its elements mgpresented irB is important for computing network perfor-
pear to have nothing in common as graphs beyond what trivance and merits additional explanation. Due to fundamental
ially follows from having a fixed (scaling) degree sequendémits in technology, routers must adhere to flow conservation
They certainly do not appear to share any of the features smoRstraints in the total amount of traffic that they process per
marized above as conventionally claimed for SF graphs. Ewanit of time. Thus, routers can support a large number of low
more striking are the differences in their structures and ant@ndwidth connections or a smaller number of high bandwidth
tated bandwidths (i.e., color-coding of links and nodes in Figennections. In many cases, additional routing overhead actu-
ure 5). For example, while the graphs in Figure 5(a) and @y causes the total router throughput to decrease as the num-
exhibit the type of hub nodes typically associated with SF néer of connections gets large, and we follow the presentation in
works, the graph in Figure 5(d) has its highest-degree noded%$] in choosing the ternB to correspond with an abstracted
cated at the networks’ peripheries. We will show this provideersion of a widely deployed Cisco product (for details about
concrete counterexamples to the idea that power law degredhiis-abstracted constraint and the factors affecting real router
guences imply the existence of SF hubs. This then createsdfsign, we refer the reader to [7, 59]).
obvious dilemma as to the concise meaning of a “scale-free The application of this network performance metric to the

ij

graph” as outlined above. four graphs in Figure 5 shows that although they have the
same degree sequence, they are very different from the per-
3.3.2 A Toy Model of the Real Internet spective of network engineering, and that these differences are

significant and critical. For example, the SF netwbl®Fnet
In terms of using SF networks as models for the Interneirs Figure 5(a) achieves a performanceRerf(H S Fnet) =
router-level topology, recent Internet research has deméri7 x 108 bps, while the HOT networkOTnetin Figure 5(d)
strated that the real Internet is nothing like Figure 5(a), size &hieves a performance Bérf(HOTnet) = 2.93 x 10! bps,
sues notwithstanding, but is at least qualitatively more like théich is greater by more than two orders of magnitude. The
network shown in Figure 5(d). We label this netwdtldOTnet reason for this vast difference is that the HOT construction
(for Heuristically Optimal Topology and note that its overall explicitly incorporates the tradeoffs between realistic router
power law in degree sequence comes from high-degree routaqgacities and economic considerations in its design process
at the network periphery that aggregate the traffic of end usetsle the SF counterpart does not.
having low bandwidth demands, while supporting aggregate The actual construction dfiOTnetis fairly straightfor-
traffic flows with a mesh of low-degree core routers [59]. Wward, and while it has high performance, it is not formally op-
fact, as we will discuss in greater detail in Section 6, theretisial. We imposed the constraints that it must have exactly the
little evidence that the Internet as a whole has scaling degseene degree sequenceHSFnet and that it must satisfy the
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router degree/bandwidth constraints. For a graph of this sather most cited SF example is metabolic networks in biology,

the design then easily follows by inspection, and mimics invehere many recent SF studies have focused on abstract graphs

highly abstracted way the design of real networks. First, tlrewhich nodes represent metabolites, and two nodes are “con-

degree one nodes are designated as end-user hosts and pteeeld” if they are involved in the same reaction. In these

at the periphery of the network, though geography per se is stitdies, observed power laws for the degree sequences associ-

explicitly considered in the design. These are then maximadlied with such graphs have been used to claim that metabolic

aggregated by attaching them to the highest degree nodeseaivorks are scale-free [18]. Though the details are far more

the next level in from the periphery, leaving one or two linksomplicated here than in the Internet story above, recent work

on these “access router” nodes to attach to the core. The lawf95] has shown there is a largely parallel story in that the

est degree of these access routers are given two links to Slkeclaims are completely inconsistent with the actual biology,

core, which reflects that low degree access routers are capdbbpite their superficial appeal and apparent popularity.

of handling higher bandwidth hosts, and such high value cus-

tomers would likely have multiple connections to the core. At

this point there are just 4 low degree nodes left, and these fe- A Structural Approach

come the highest bandwidth core routers, and are connected in

amesh, resulting in the graph in Figure 5(d). While some refr-this section, we show that considerable insight into the fea-

rangements are possible, all high performance networks udiwgs of SF graphs and models is available from a metric that

a gravity model and the simple router constraints we have imeasures the extent to which high-degree nodes connect to

posed would necessarily look essentially [IH©Tnet They other high-degree nodes. As we will show, such a metric is

would all have the highest degree nodes connected to dedred necessary and useful for explaining the extreme differ-

one nodes at the periphery, and they would all have a lognces between networks that have identical degree sequence,

degree mesh-like core. especially if it is scaling. By focusing on a graph'’s structural
Another feature that has been highlighted in the SF liteferoperties and not on not how it was generated, this approach

ture is the attack vulnerability of high degree hubs. Here agaii@es not depend on an underlying random graph model but is

the four graphs in Figure 5 are illustrative of the potential digpplicable to any graph of interest.

ferences between graphs having the same degree sequence.

Using the performance metric_defineq in (7), we compute th(_el The s-Metric

performance of each graph without disruption (i.e., the com-

plete graph), after the loss of high degree nodes, and afterlibeg be an undirected, simple, connected graph having

loss of the most important (i.e., worst case) nodes. In edth nodes and = |£]| links, whereV and £ are the sets of

case, when removing a node we also remove any corresparmaties and links, respectively. As before, defihdgo be the

ing degree-one end-hosts that also become disconnected dailee of nodé € V, D = {d;,ds, ..., d,} to be the degree

we compute performance over shortest path routes betweerseguuence foy (again assumed to be ordered), andd¢D)

maining nodes but in a manner that allows for rerouting. Videnote the set of all connected simple graphs having the same

find that forHSFnef removal of the highest degree nodes dodegree sequencB. Note that most graphs with scaling de-

in fact disconnect the network as a whole, and this is equivalgnte will be neither simple nor connected, so this is an impor-

to the worst case attack for this network. In contrast, removaht and nontrivial restriction. Even with these constraints, it

of the highest degree nodes results in only minor disruptionigoclear based on the previous examples that the elements of

HOTnet but a worst case attack (here, this is the removal @{ D) can be very different from one another, so that in order

the low-degree core routers) does disconnect the network. Iheonstitute a non-trivial concept, “scale-free” should mean

results are summarized below. more than merely thab is scaling and should depend on ad-
ditional topologicalor structural properties of the elements in
Network Complete High Degree Worst Case G(D).

Performance  Graph Nodes Removed Nodes Removed
HSFnet |5.9197¢ 1+ 09| Disconnected | = ‘High Degree’ cas¢  Definition 1. For any graphg having fixed degree sequence

HOTnet |2.9680e + 11| 2.7429¢ + 11 Disconnected D, we define the metric
This example thus illustrates two important points. The s(g)= Y did;. (8)
first is thatHSFnetdoes indeed have all the graph theoretic (i,)€E

properties listed above that are attributed to SF networks, in-

cluding attack vulnerability, whiléiOTnethas none of these  Note thats(g) depends only on the graghand not ex-
features except for scaling degree. Thus the set of graplisitly on the process by which it is constructed. Implicitly,
that have the standard scale-free attributes is neither enthg/metrics(g) measures the extent to which the grapias a

nor trivially equivalent to graphs having scaling degree. THeub-like” core and is maximized when high-degree nodes are
second point is that the standard SF models are in all impopnnected to other high-degree nodes. This observation fol-
tant ways exactly the opposite of the real Internet, and failltaws from theRearrangement Inequalifyt05], which states
capture even the most basic features of the Internet's routbet ifa; > as > --- > a, andb; > by > --- > b, then for
level connectivity. While the intuition behind these claims isny permutatiorfa’, ab, - - -, al,) of (a1, as, - - -, ay), we have
clear from inspection of Figure 5 and the performance com-

parisons, full clarification of these points requires the resultsh + azbs + - -+ + anby, > ajby +asby + - +ayby

in the rest of this paper and additional details on the Internet > apby + an_1by + -+ + aib,.

[7, 59]. These observations naturally cast doubts on the rel-

evance of conventional SF models in other application are&ziace highs(g)-values are achieved only by connecting high-
where domain knowledge and specific functional requiremedegree nodes to each other, and lgly)-values are obtained
play a similarly crucial role as in the Internet context. They connecting high-degree nodes only to low-degree nodes,
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the s-metric moves beyond simple statements concerning swling versus non-scaling or attempt to define “diversity”
presence of “hub” nodes (as is true for any degree sequepEisely here, though these are clearly interesting topics. We
D that has high variability) and attempts to quantify what roleill focus on exploring the nature of the diversity &{ D) for
such hubs play in the overall structure of the graph. In partgzalingD such as in Figure 5.
ular, as we will show below, graphs with relatively higfy) In what follows, we will provide evidence that graphs with
values have a “hub-like core” in the sense that these hubs gi&gh s(g) enjoy certain self-similarity properties, and we also
a central role in the overall connectivity of the network. Weonsider the effects of random degree-preserving rewiring on
will also demonstrate that the metri¢g) provides a view that s(g). In so doing, we argue that thhemetric, as well as many
is not only mathematically convenient and rigorous, but alebthe other definitions and properties that we will present, are
practically useful as far as what it means for a graph to b&interest for any graph or any set of graphs. However, we
“scale-free”. will continue to focus our attention primarily on simple con-
nected graphs having scaling degree sequences. The main rea-
son is that many applications naturally have simple connected
4.1.1 Graph Diversity and thePerf(g) vs.s(g) Plane graphs. For example, while the Internet protocols in princi-
ple allow router connectivity to be nonsimple, it is relatively
Although our interest in this paper will be in graphs for whickare and has little impact on network properties. Nevertheless,
the degree sequende is scaling, we can computgg) with  using other sets in many cases is preferable and will arise nat-
respect to any “background” s€t of graphs, and we needurally in the sequel. Furthermore, while our interest will be
not restrict the set to scaling or even to connected or sigh simple, connected graphs with scaling degree sequence, we
ple graphs. Moreover, for any background set, there exist@i#l often specialize our presentation to trees, in order to sim-
graph whose connectivity maximizes thenetric defined in plify the development and maximize contact with the existing
(8), and we refer to this as ar;.. graph”. Thes,,.. graphs SF literature. To this end, we will exploit the construction of
for different background sets are of interest since they are g s,,,.. graph to sketch some of these relationships in more
sentially unique and also have the most “hub-like” core strugetail.
ture. Graphs with lows-values are also highly relevant, but
unlike s, graphs they are extremely diverse with essentially
no features in common with each other or with other graphs4n 2 = Thes,,.. Graph and Preferential Attachment
the background set except the degree sequénce
Graphs with high variability and/or scaling in their degre@iven a particular degree sequenbe it is possible to con-
sequence are of particular interest, however, and not simply sedct thes,,,., graph ofG(D) using a deterministic procedure,
cause of their association with SF models. Intuitively, scalimgd both the generation process and its resulting structure are
degrees appear to create great “diversityGiiD). Certainly informative about the(g) metric. Here, we describe this con-
the graphs in Figure 5 are extremely diverse, despite havatgiction at a high level of abstraction (with all details deferred
identical scaling degreP, but to what extent does this depentb Appendix A) in order to provide appropriate context for the
on D being scaling? As a partial answer, note that at the aliscussion of key features that is to follow.
tremes of variability aren-regular graphs witlC'V (D) = 0, The basic idea for constructing the,., graph is to or-
which haveD = {m,m,m,...,m} for somem, and per- der all potential linkgi, j) for all i, 5 € V according to their
fect star-like graphs witth = {n —1,1,1,1,...,1}, which weightd;d; and then add them one at a time in a manner that
have maximal'V (D) = /n/2. In both of these extremes allresults in a simple, connected graph having degree sequence
graphs inG(D) are isomorphic and thus have only one valuB. While simple enough in concept, this type of “greedy”
of s(g) for all g € G(D) so from this measure the spaGéD) heuristic procedure may have difficulty achieving the intended
of graphs lacks any diversity. In contrast, whBnis scaling sequence) due to the global constraints imposed by connec-
with a < 2, CV(D) — oo and it is easy to construgtsuch tivity requirements. While the specific conditions under which
thats(g)/smax — 0 @asn — oo, suggesting a possibly enorthis procedure is guaranteed to yield thg,. graph are de-
mous diversity inG(D). ferred to Appendix A, we note that this type of construction
Before proceeding with a discussion of some of the feaorks well in practice for the networks under consideration in
tures of thes-metric as well as for graphs having higty) val- this paper, particularly those in Figure 5.
ues, we revisit the four toy networks in Figure 5 and consider In cases where the intended degree sequéncatisfies
the combined implications of the performance-oriented methc, d; = 2(n—1), then all simple connected graphs having de-
Perf(g) introduced in (7) and the connectivity-specific metrigree sequencP correspond to trees (i.e., acyclic graphs), and
s(g) defined above. Figure 6 is a projectiongo€ G(D) onto this simple construction procedure is guaranteed to result in an
a plane ofPerf(g) versuss(g) and will be useful throughout s,,,. graph. Acyclics,.x graphs have several nice properties
in visualizing the extreme diversity in the 98(D) for D in that we will exploit throughout this presentation. It is worth
Figure 5. Of relevance to the Internet application is that grapiating that since adding links to a tree is equivalent to adding
with high s(g)-values tend to have low performance, althougtodes one at a time, construction of acydlig.. graphs can
alow s(g)-value is no guarantee of good performance, as séenviewed essentially as a type of deterministic preferential at-
by the network in Figure 5(c) which has both smdly) and tachment. Perhaps more importantly, by its construction the
small Perf(g). The additional points in th€erf(g) vs. s(g) smax tree has a natural ordering within its overall structure,
plane involve degree preserving rewiring and will be discussetiich we now summarize.
in more detail below. Recall that a tree can be organized into hierarchies by des-
These observations undermine the claims in the SF liteignating a single vertex as the “root” of the tree from which all
ture that are based on scaling degree alone implying any addanches emanate. This is equivalent to assigning a direction
tional graph properties. On the other hand, they also suggestach arc such that all arcs flow away from the root. As a
that the sheer diversity @¥(D) for scalingD makes it an in- result, each vertex of the graph becomes naturally associated
teresting object of study. We won't further comp&#éD) for with a particular “level” of the hierarchy, adjacent vertices are
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Figure 6: EXPLORATION OF THE SPACE OF CONNECTED NETWORK GRAPHS HAVING EXACTLY THE SAMEPOWER LAW) DEGREE SEQUENCE Values
for the four networks are shown together with the values for other networks obtained by pairwise degree-preserving rewiring. Networks that are
“one-rewiring” away from their starting point are shown in a corresponding color, while other networks obtained from more than one rewiring are
shown in gray. Ultimately, only a careful design process explicitly incorporating technological constraints, traffic demands, or link costs yields
high-performance networks. In contrast, equivalent networks resulting from even carefully crafted random constructions result in poor-performing
networks.

separated by a single level, and the position of a vertex witlretric, in that for any vertex € V', we can write

the hierarchy is in relation to the root. For example, assuming

the root of the tree is at level 0 (the “highest” level), then its s(g)= Y sg®").

neighbors are at level 1 (“below” level 0), their other neighbors kEN (v)

in turn are at level 2 (“below” level 1), and so on. ]
Mathematically, the choice of the root vertex is an arbfurthermore, the-value for any subtree can be defined as a

trary one, however for the,,., tree, the vertex with largestrecursive relationship on its downstream subtrees, specifically

degree sits as the natural root and is the most “central” (a no- (o) (k)

tion we will formalize below). With this selection, two vertices s(g') = dudu + Z s(g"™").

u,v € Vthat are directly connected to each other in the acyclic EEN (v)\u

smax graph have the following relative position within the hi-

erarchy. Ifd, > d,, then vertex: is one level “above” vertex - roPOSItion 1. Let g be thesy.ax acyclic graph correspond-

v (alternatively, we say that vertexis “upstream” of vertexy N9 {0 degree seque_lndfé."T hen Lor two vertices, v € V with
or that vertex is “downstream” from vertex). Thus, moving d > dy, it necessarily follows that
up the hierarchy of the tree (i.e., upstream) means that vertegq) vertexv cannot be upstream from vertex
degrees are (eventually) becoming larger, and moving down
the hierarchy (i.e., downstream) means that vertex degrees af) the number of vertices ") cannot be greater than the
(eventually) becoming smaller. number of vertices ig* (i.e.,|D(§™)| > |D(G™)));

In order to illustrate this natural ordering within thg . ~ ) .
tree, we introduce the following notation. For any vertex (C) the degree sequence @t dominates that 0§ (i.e.,
v € V, let N(v) denote the set of neighboring vertices for ~ d{*) > d{"),da{" > d{"’,..); and
v, where for simple connected graph¥(v)| = d,. For ~ R
an acyclic graphy, defineg() to be thesubgraph (subtree) (d) s(3™)) > s(3™).
of vertexv; that is, g*) is the subtree containing vertex Although we do not prove each of these statements formally,
along with all downstream nodes. Since the notion of upach of parts (a)-(d) is true by simple contradiction. Essen-
stream/downstream is relative to the overall root of the grapially, if any of these statements is false, there is a rewiring
for convenience we will additionally use the notatigfi:) operation that can be performed on the grgghat increases
to represent thesubgraph of the vertex that is itself con- its s-value, thereby violating the assumption thas the s, .,
nected to upstream neighbor vertex The (ordered) degreegraph. See Appendix A for additional information.

sequence of the subtrgg” (equivalently forg®-) is then Proposition 2. Let g be thes,.x acyclic graph correspond-
D(g™) = {d{",d", ...}, whered|") = d, and the rest of ing to degree sequend@. Then it necessarily follows that for
the sequence represents the degrees of all downstream negg$,, < 1 and anyk # v € V, the subgraplj*) maximizes

D(§) is clearly a subsequence BK(g). Finally, let&(3(")) s(g™*)) for the degree sequend(j(®)).

denote the set of edges in the subtj&e.

For this subtree. we define itsvalue as The proof of Proposition 2 follows from an inductive argu-

ment that starts with the leaves of the tree and works its way
S(g(v,u)) = dydy, + Z d;dy,. (9) upstream. Essentially, in order for a tree to bedhg, acyclic
(GB)EE(G™) graph, then each of its branches must beshg, subtree on
' the corresponding degree subsequence, and this must hold at
This definition provides a natural decomposition for the all levels of the hierarchy.
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Figure 7: Left: The centrality of nodes as defined by total traffic throughput. The most “central” nodes in HOTnetare the low-degree core routers
while the most “central” node in HSFnetis the highest-degree “hub”. The HOTnetthroughputs are close to the router bandwidth constraints. Right:
The betweenness centrality versus node degree for non-degree-one nodes from both the HSFnetand HOTnetgraphs in Figure 5. In HSFnet node
centrality increases with node degree, and the highest degree nodes are the most “central”. In contrast, many of the most “central” nodes in
HOTnethave low degree, and the highest degree nodes are significantly less “central” than in HSFnet

4.2 Thes-Metric and Node Centrality through nodev. In this manner, betweenness centrality pro-
Whil iderabl ion has b q q vides a measure of the trafficad that a node must handle. An
lle considerable attention has been devoted to NetWaf nate interpretation is that it measures the influence that

node degree sequences in order to measure the structurg,Ghqividual node has in the spread of information within the
complex networks, it is clear that such sequences alone aLg, -k

insufficient to characterize the aggregate structure of a grap 'New.man [66] introduces a more general measure of be-

Figure 5 has shown that high degree nodes can exist at theypeenness centrality that includes the flow along all paths (not

riphery of the network or atits core, with serious consequences; the shortest ones), and based on an approach using random
for issues such as network performang:e an.d .robustness iN{Bfks demonstrates how this quantity can be computed by ma-
presence of node loss. At the same time, it is clear from g methods. Applying this alternate metric from [66] to the
Smax CONStruction procedure that graphs with the 1arges}  simple annotated graphs in Figure 5, we observe in Figure 7
values will have their highest degree nodes located in the gk the high-degree nodesttSFnetare the most central, and
work core. Thus, animportant question relates tactit@rality i, tact this measure of betweeness centrality increases with

of individual high-degree nodes within the larger network angl 4o degree. In contrast, most of the node#i®Tnetthat
how this relates, if at all, to the-metric for graph structure. : .

. . h - re central are not high degree nodes, but the low-degree core
Again, the answer to this question helps to quantify the rc?@uters. g g g

that individual “hub” nodes play in the overall structure of a Understanding the betweenness centrality of individual
net\fl\_/grk. | ol ; . de Jodes is considerably simpler in the context of trees. Recall
€re are several possIbie means for measuring Node Geh in an acyclic graph there is exactly one path between any

trality, and in the context of the Internet, one such measurgz, yertices, making the calculation 6 (v) rather straight-
the total throughput (outilization) of a node when the net-¢) o4 Specifically, observe thaf, _, ., o5 = n(n—1)/2

work supports its maximum flow as defined in (7). The idea I%d ;
. ; . : that for eacly # v # t € V, ou(v) € {0,1}. This
that under a gravity model in which traffic demand occurs beg ognition facilitates the following more general statement re-

tween all node pairs, nodes that are highly utilized are cen : . Cp . ;
to the overall ability of the network to carry traffic. Figure %rzgwg the centrality of high-degree nodes inhgx acyclic

shows the utilization of individual nodes withiiSFnetand

HOTnet when each network supports its respective maxim . .
flow, along with the corresponding degree for each node. #F@posnmn 3. Iaet g bedthesmax a((:ijhC graph for degree
picture forHOTnetillustrates that the most “central” nodes ar%equenceDh, and consl er_ltv¥ollno eﬁ’ v €V salisfying

in fact low-degree nodes, which correspond to the core rout s~ dy. Then, it necessarily follows thak,(u) > Cy(v).
in Figure 5(c). In contrast, the node with highest utilization
HSFnetis the highest degree node, corresponding to the “c
tral hub” in Figure 5(a).

('flp_e proof of Proposition 3 can be found in Appendix A, along
with the proof of thes,,.x construction. Thus, the highest
Another, more graph theoretic, measure of node centd#dre€e nodes in the.. acyclic graph are the most central.
ity is its so-calledbetweennestalso known adetweenness Vore generally for graphs that are not trees, we believe that
centrality), which is most often calculated as the fraction df€'€ is @ direct relationship between high-degree *hub” nodes
shortest paths between node pairs that pass through the rllradgrge_s(_g) graphs and a “central” role in overall network
of interest [37]. Definer,, to be the number of shortest pathgonnectlwty, but this has not been formally proven.
between two nodes andt¢. Then, the betweenness centrality

f t b ted . T
ol any veriex can be compuied as 4.3 Thes-Metric and Self-Similarity

Zs<tev ost(v) o ) )

S o When viewing graphs as multiscale objects, natural transfor-
s<tey ws mations that yield simplified graphs are pruning of nodes at

whereo . (v) is the number of paths betweerandt that pass the graph periphery and/or collapsing of nodes, although these

C’b(v) =

17



are only the simplest of many possible “coarse-graining” oguaranteed to ha\dé1 > ds, and the overall ordering db’ is

erations that can be performed on graphs. These transforpiaserved. Similarly when aggregating notleand3 we have

tions are of particular interest because they are often inhergot -oviated degree sequenoé — {d” du, ... dy}, where
in measurement processes that are aimed at detecting the Ld ol

On- 1’
nectivity structure of actual networks. We will use these trarf%— - _dl +da +d3 —4. Soaslong a_d?’ > 2thend, > d, and
formations to motivate that there is a plausible relationship ggdering of D is preserved. And in general, as long as each
tween highs(g) graphs and self-similarity, as defined by thegt€W node is aggregated in order and satisfies 2, then we
simple operations. We then consider the transformation of r@he guaranteed to maintain an ordered degree sequence. As a
dom pairwise degree-preserving (link) rewiring that suggest&egult, we have proved the following proposition.

more formal definition of the notion of a self-similar graph. . . .
grap Proposition 5. For acyclicg € G(D) with s(g) = Smax:

o ) coarse graining according to the above procedure yields
4.3.1 Graph Trimming by Link Removal smaller graphsy’ € G(D’) that are also thes,,.x graphs of

Here, we consider the propertiesf.. graphs under the op—thIS truncated degree distribution.
eration of graph trimming, in which links are removed from
the graph one at a time. Recall that by construction, the Iir“@n

in the sy graph are selected from a list of potential Iinkauence remains ordered, ig, > ds > d, after the first

(denoted agi, j) for i,5 € V) that are ordered according tocoarse graining operation arg: > dy > ds after the second

their weightsd;d;. Denote the (ordered) list of links in thecoarse graining operation, etc. It is relatively easy to gener-

Smax graph as€’ = {(i1, j1), (i, j2), ..., (i1, i)}, @Nd CON- o caqes where arbitrary node aggregation violates this con-
sider ?‘her’C‘?d“feD”;?‘t rgmovebs I'T]ks In reverse order:, Sftﬁf fon and the resulting graph is no longer self-similar in the
f[g? t‘a’g réiﬁ’(ff/éﬂ of ea:lnigf tthoe f‘iarsgc € rlerl?r?lirs"ng' grapﬂ asense of having a largeg)-value. However, when this con-

L T . o N (ie., after dition is satisfied, the resulting simpler graphs seem to sat-
remoY'hg(Zl’jl)’ (Zl—,l’]l—l)""’(Z,’“H’lk“)’ (ik, 1)) The isfy a broader self-similar property. Specifically, for high-
remaining grgph will haye a partial degree sequebge = s(g) graphsy € G(D), properly defined graph operations
{dy,dy,...,d.}, whered,, < d,,m = 1,2,...k, but the of coarse-graining appear to yield simplified graph<:iD)
original ordering is preserved, i_eyjf1 > d’2 > > d;c' with high s-values (i.e., such graphs are self-similar or in-
This last statement holds because when removing links sts@iant under proper coarse-graining), but this has not been
ing with the smallestl;d;, nodes will “lose” links in reverse proved.
order according to their node degree. These are of course not the only coarse graining, pruning,

Observe for trees that removing a link is equivalent to rer merging processes that might be of interest, and for which
moving a node (or subtree), so we could have equivalently derx graphs are preserved, but they are perhaps the simplest to
fined this process in terms of “node pruning”. As a result, fétate and prove.
acyclicsmax graphs, itis easy to see the following.

Proposition 4. Let g be an acyclics,,.x graph satisfying or- 4.4  Self-Similar and Self-Dissimilar

dered degree sequenée= {d;,ds,...,d,}. Forl <k <mn, . . . N

denote by, the acyclic graph obtained by removing (“trim-Wh'le graph transformations such as I_|nk trimming or node

ming”) in order nodesu, n — 1, ..., k + 1 fromg. Then,g is collapse reflect some aspects of what it means for a graph to

the raph for degree sequend, — {d' d d } be self-similar, the graph transformation of random pairwise
Smax grap 9 q - LR TS degree-preserving link rewiring offers additional notions of

The proof of Proposition 4 follows directly from our proof of€lf-similarity which potentially are even richer and also con-

the construction of the,... graph for trees (see Appendix A) Nected with the claim in the SF literature that SF graphs are

More generally, for graphs exhibiting largég)-values, prop- Preserved under such rewirings.

erly defined graph operations of link-trimming appear to yield

sim_plified graphs \_/vith high.s—val_ues, thus suggesting a br_oagq_l Subgraph-Based Motifs

notion of self-similarity or invariance under such operations.

However, additional work remains to formalize this notion. For any graphy € G(D), consider the set of local degree-
preserving rewirings of distinct pairs of links. There are

4.3.2 Coarse Graining By Collapsing Nodes (3) = (1 — 1)/2 pairs of different links on which degree
preserving rewiring can occur. Each pair of links defines its

A kind of coarse grainingof a graph can be obtained folown network subgraph, and in the case whgis an acyclic

producing simpler graphs by collapsing existing nodes inggaph (i.e. a tree), these form three distinct types of subgraphs,

aggregate or super nodes and removing any duplicate liBkSshown in Figure 8(a). Using the notatidh = 5 d,,?,

emanating from the new nodes. Consider the case of a fee () we can enumerate the number of these subgraphs as
g having degree sequend® = {di,ds,...,d,} satisfying fg|lows:
dy > dy > ... > d, and connected in a manner such that

s(g) = smax. Then, as long as node aggregation proceeds in1, The two links share a common node. There are

For cyclic graphs, this type of node aggregation opera-
maintainss,,.. properties only if the resulting degree se-

order with the degree sequence (i.e. aggregate nb@es! 2 S (dz) = 1d? — | possible ways that this can oc-
into 1/, then aggregate nodésand3 into 1”, and so on), all cur.

intermediate graphg will also haves(§) = smax. TO see this,

observe that for trees, when aggregating notlesd2, we 2. The links have two nodes that are connected by a third
have an abbreviated degree sequebte= {d;,ds, ...,d,}. link. There are}_; ;o (di —1)(d; —1) = s — d?+1
whered'1 = di + do — 2. Provided thatl, > 2 then we are possible ways that this can occur.
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Figure 8: (a) Three possible subgraph-based motifs in degree-preserving rewiring in acyclic giBlpleslinks represents links to be rewired. Rewiring
operations that result in non-simple graphs (shaded) are assumed to revert to the original configuration. Thus defined, rewiring of motif (i) does
not result in any new graphs, rewiring of motif (ii) results in one possible new graph, and rewiring of motif (iii) results in two possible new graphs.
(b) The numbers of the three motifs and successively the number for each possible rewiring oWeodigtinguish between equal, not equal but con-
nected and simple, not connected but simple, and not simple graphs that are similar to each graph with the given motif selected for rewiring.
The total number of cases (column sum) is (12 — 1)/2, while the total number (row sum) of outcomes is twice that at i> — I. Here, we use the

abbreviated notation d? = >k di? and s = s(g), with [ equal to the number of links in the graph.

3. The links have end points that do not share any dirgreviously, network motifs have already been used as a way
connections. There a(é)fZl-Ll (d;),zuj)eg(dw to study self-similarity and coarse graining [52, 53]. There,
D(d; —1) = 12 — s + 112 — 2) ossible wavs that ©N€ defines a recursive procedure by which node connectivity
this ]can ocaJrQ 2 P Y patterns become represented as a single node (i.e. a different

' kind qf motif), gnd i; was shown that many i_mporjtant _tech—
Collectively, these three basic subgraphs account for all pog§llogical and biological networks were self-dissimilar, in the
ble (z) — I(I — 1)/2 pairs of different links. The subgraphssense coarse-grained counterparts display very different motifs
9 .

in cases (i) and (ii) are themselves trees, while the subgr I;-f\ach level of abstraction. Our notion of motif self-similarity

in case (iii) is not. We will refer to these three cases for su%—mUCh simpler, but consistent, in that the Internet has ex-

graphs as “motifs”, in the spirit of [64], noting that our notio €MelY 1ows(g) and thus minimally self-similar at the motif

of subgraph-based motifs is motivated by the operation of rafve!- The nextquestionis whether higly) is connected with

dom rewiring to be discussed below. self-similar” in the sense of being preserved under rewiring.
The simplest and most striking feature of the relationship

between motifs and(g) for acyclic graphs is that we can de4.4.2 Degree-preserving Rewiring

rive formulas for the number of subgraph-based (local)

tifs (and the outcomes of rewiring) entirely in terms @,

s = s(g), andl. Thus, for example, we can see that grap

having higherd? (equivalently higheC'V') values have fewer

of the second motif. If we fixD, and thusl andd?, for all

graphs of interest, then the only remaining dependenceds o

and graphs with highe(g)-values contain fewer disconnecte®

(case iii) motifs. This can be interpreted as a motif-level con- r— with o . ’i

nection between(g) and self-similarity, in that graphs with L grigir?aYVgPagrg (grgé)zhé?gfgfgv a?srg%@silriglqeu?:%%g]eited

highers(g) contain more motifs that are themselves trees, and graph inG(D)); ’

thus more similar to the graph as a whole. Graphs having lower '

s(g) have more motifs of type (iii) that are disconnected and 2. ¢’ £ g with ¢’ € G(D): the new graply’ is not equal to

"WRe can also conneatg) in several ways with the effect that
cal rewiring has on the global structure of graphs in the set
(D). Recall the above process by which two network links

are selected at random for degree-preserving rewiring, and

Rote that when applied to a graghe G(D), there are four

ossible distinguishable outcomes:

thus dissimilar to the graph as a whole. Thus high} graphs g, but is still a simple, connected graph in the G¢D)
have this “motif self-similarity,” lows(g) graphs have “motif (note that this can includg which are isomorphic tg);
self-dissimilarity” and we can precisely define a measure of

this kind of self-similarity and self-dissimilarity as follows. 3. ¢ =gwith ¢’ € G(D): the new graply’ is still simple,

but is not connected;

Definition 2. For a graphg € G(D), another measure of the
extent to whichy is self-similar is the metries(g) defined as 4. ¢’ = g with ¢’ ¢ G(D): the new graply’ is no longer
the number of motifs (cases i-ii) that are themselves connected  simple (i.e. it either contains self-loops or parallel links).
graphs. Accordingly, the measure of self-dissimilasiiyg) is . o
then the number of motifs (case iii) that are disconnected. | Nere are two possible outcomes from the rewiring of any par-

ticular pair of links, as shown in Figure 8(a) and this yields

For treesss(g) = s — d?/2 andsd(g) = —s + (I — 1+ atotal of2(}) = I(I — 1) possible outcomes of the rewiring

d?)/2, so this local motif self-similarity (self-dissimilarity) isprocess. In our discussion here, we ignore isomorphisms and
essentially equivalent to highly) (resp. lows(g)). As noted assume that all non-equal graphs are different.
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We are ultimately interested in retaining within our newave high-degree nodes or “hubs”, only for higty) graphs
definitions the notion that high(g) graphs are somehow pre-do such hubs tend to be critical for overall connectivity. While
served under rewiring provided this is sufficiently random aiitds certainly possible to construct a graph with legy) and
degrees are preserved. Scaling is of course trivially preserbagling a central hub, this need not be the case, and our work
by any degree-preserving rewiring, but higly) value is not. to date suggests that most log) graphs do not have the
Again, Figure 5 provides a clear example, since succesdiyge of central hubs that create an “Achilles’ heel”. Addition-
rewirings can take any of these graphs to any other. More &lly, we have illustrated that highkg) graphs exhibit strik-
teresting for highs(g) graphs is the effect aandomrewiring. ing self-similarity properties, including that they are largely
Consider again thBerf(g) vs.s(g) plane from Figure 6. In ad- preserved under appropriately defined graph transformations
dition to the four networks from Figure 5, we show ferf(g) of trimming, coarse graining and random pairwise degree-
ands(g) values for other graphs i@(D) obtained by degree-preserving rewiring. In the case of random rewiring, we of-
preserving rewiring from the initial four networks. This idered numerical evidence and heuristic arguments in support
done by selecting uniformly and randomly from thé — 1) of the conjecture that in general higklg) graphs are the likely
different rewirings of thé(! — 1) /2 different pairs of links, and outcome of performing such rewiring operations, whereas low-
restricting rewiring outcomes to elements@{D) by reset- s(g) graphs are unlikely to occur as a result of this process.
ting all disconnected or nonsimple neighbors to equal. Points Collectively, these results suggest that a definition of
that match the color of one of the four networks are only ofigcale-free graphs” that restricts graphs to havboghscaling
rewiring operation away, while points represented in gray ategreeD andhigh-s(g) results in a coherent story. It recovers
more than one rewiring operation away. all of the structural results in the SF literature and provides a

The connections of the results in Figure 8(b) to motifossible explanation why some graphs that exhibit power laws
counts is more transparent however than to the consequeirtdseir node degrees do not seem to satisfy other properties
of successive rewiring. Nevertheless, we can use the resultsighlighted in the SF literature. This non-stochastic picture
Figure 8(b) to describe related ways in which le{y) graphs represents what is arguably a reasonable place to stop with a
are “destroyed” by random rewiring. For any graptwe can theory for “scale-free” graphs. However, from a graph theo-
enumerate among all possible pairs of links on which degmegic perspective, there is considerable more work that could
preserving rewiring can take place and count all those thatlbe-done. For example, it may also be possible to expand the
sult in equal or non-equal graphs. In Figure 8, we consider tiscussion of Section 4.4 to account more comprehensively for
four cases for degree-preserving rewiring of acyclic graplise way in which local motifs are transformed into one an-
and we count the number of ways each can occur. For nother and to relate our attempts more directly to the approach
tifs (i) and (ii), it is possible to check locally for outcomegonsidered in [64]. Elaborating on the precise relationships
that produce non-simple graphs and these cases corresgotiproviding a possible interpretation of motifs as captur-
to the shaded outcomes in Figure 8(a). If we a priori eig a kind of local as well as global self-similarity property
clude all such nonsimple rewirings, then there remain a totaladfan underlying graph remain open interesting problems. Ad-
I(1—1) — s+ d?/2 simple similar neighbors of a tree. We caditionally, we have also seen that the use of degree-preserving
define a measure of local rewiring self-dissimilarity for treeswiring among connected graphs provides one view into the
as follows. space (D). However, the geometry of this space is still com-
Cplicated, and additional work is required to understand its re-
ining features. For example, our work to date suggests that
scalingD it is impossible to construct a graph that has both

igh Perf(g) and highs(g), but this has not been proven. In
addition, it will be useful to understand the way that degree-

For treesysd(g) = sd(g) = —s + (I — 1 + d*)/2, SO preserving rewiring causes one to “move” within the space
this local rewiring self-dissimilarity is identical to motif self-G(D) (see for example, [44, 42]).
dissimilarity and directly related to low(g) values. This is It is important to emphasize that the purpose of he)
because only motif (iii) results in simple but not connectefletric is to provide insight into the structure of “scale free”

Definition 3. For atreeg € G(D), we measure the extent t
which g is self-dissimilar under local rewiring by the metric;na
rsd(g) defined as the number of simple similar neighbors t
are disconnected graphs.

similar neighbors. graphs anchot as a general metric for distinguishing among
all possible graphs Indeed, since the metric fails to distin-
4.5 A Coherent Non-Stochastic Picture guish among graphs having losig), it provides little insight

other than to say that there is tremendous diversity among such

Here, we pause to reconsider the features/claims for SF gragieghs. However, if a graph has higly), then we believe that
in the existing literature (Section 3.1) in light of our structurahere exist strong properties that can be used to understand the
approach to graphs with scaling degree sequéhctn doing - structure (and possibly, the behavior) of such systems. In sum-
so, we make a simple observation: higy) graphs exhibit mary, if one wants to understand “scale-free graphs”, then we
most of the features highlighted in the SF literature, but lowrgue that(g) is an important metric and highly informative.
s(g) graphs do not, and this provides insight into the diversijowever, for graphs with lows(g) then this metric conveys
of graphs in the spad&(D). Perhaps more importantly, giverimited information.
a graph with scaling degre® the s(g) metric provides a “lit- Despite the many appealing features of a theory that con-
mus test” as to whether or not the existing SF literature migéitiers only non-stochastic properties, most of the SF literature
be relevant to the network under study. has considered a framework that is inherently stochastic. Thus,

By definition, all graphs inG(D) exhibit power laws in we proceed next with a stochastic version of the story, one that
their node degrees provided thatis scaling. However, pref- connects more directly with the existing literature and com-
erential attachment mechanisms typically yield only highy mon perspective on SF graphs.
graphs—indeed the,,,, construction uses what is essentially
the “most preferential” type of attachment mechanism. Fur-
thermore, while all graphs having scaling degree sequéhce
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5 A Probabilistic Approach 5.1 A Likelihood Interpretation of s(g)

While the introduction and exploration of tkemetric fits nat- Using the construction procedure associated withgireeral
urally within standard studies of graph theoretic propertieshiiodel of random graphs with a given expected degree se-
differs from the SF literature in that our structural approaéienceconsidered in [31] (also called th@eneralized Ran-
does not depend on a probability model underlying the $m Graph (GRG) modébr short) we show that the(g) met-
of graphs of interest. The purpose of this section is to Coﬁ"ﬁ allows for a more familiar ensemble-related interpretation
pare our approach with the more conventional probabiliséi§(relative) likelihoodwith which the graply is constructed
and ensemble-based views. For many application domamgs;ording to the GRG method. To this end, the GRG model is
including the Internet, there seems to be little motivation g®ncerned with generating graphs with givetpectediegree
assume networks are samples from an ensemble, and our teggtuence) = {d,...d,} for verticesl, ..., n. The link be-
ment here will be brief while trying to cover this broad subjediveen vertices andj is chosen independently with probability
Here again, we show that thég) metric is potentially inter- pi;, With p;; proportional to the produet;d; (i.e. p;; = pdid;,
esting and useful, as it has a direct relationship to notionsvdiere p is a sufficiently small constant), and this defines a
graph likelihood, graph degree correlation, and graph asggiebability measure” on the space of all simple graphs and
tativity. This section also highlights the striking differenceéus induces a probability measure GD) by conditioning
in the way that randomness is treated in physics-inspired ap-having degre®. The construction is fairly general and can
proaches versus those shaped by mathematics and enginedgagVver the classic Eés-Renyi random graphs [39] by tak-
The starting point for most probabilistic approaches to thg the expected degree sequence tq e, pn, ..., pn} for
study of graphs is through the definition of an appropriaite constantp. As a result of choosing each lirfk, j) € £ with
tistical ensemblgsee for example [37, Section 4.1]). a probability that is proportional td;d; in the GRG model,
I - . ) different graphs are typically assigned different probabilities
Definition 4. A statistical ensemble of graphs is defined by \,nqer .~ This generation method is closely related to the
(i) asetG of graphsg, and Power Law Random Graph (PLR@)ethod [2], which also at-
. . ) .. tempts to replicate a given (power law) degree sequence. The
(i) a rule that associates a real number (“probability”) pf RG method involves forming a sét of nodes containing
0 < P(g) < 1 with each graphg € G such that a5 many distinct copies of a given vertex as the degree of that
dec P(g) =1 vertex, choosing a random matching of the elements, @nd
applying a mapping of a given matching into an appropriate
To describe an ensemble of graphs, one can either assigmaiti)graph. It is believed that the PLRG and GRG mod-
specific weight to each graph or define some process (i.eelfare‘basically asymptotically equivalent, subject to bound-
stochastic generator) which results in a weight. For examplgy error estimates’[2]. Defining thelikelihood of a graph
in one basic model of random graphs, theGetonsists of all ; ¢ G(D) as the logarithm of its probability under the mea-
graphs with vertex seét’ = {1,2,...,n} having! edges, and sure P, we can show that the log likelihood (LLH) of a graph
each element i is assigned the same probability(’}). In g € G(D), can be computed as
an alternative random graph model, the &etonsists of all
graphs with vertex sét’ = {1,2,...,n} in which the edges ~
are chosen independently gnd with pr}obab'ﬂ)’ty( p<1.1In LLH(g) ~ r+ p s(9), (10)
this case, the probabilit#(g) depends on the number of edgevsvhere is 2 constant
H H H 0 n—I K .
Ir?u?n?)réorl l;sfgeL\j/en byP(g) = p'(1—p)"™", wherel denotes the Note that the probability of any graphunderP is given
gesip € G.
The use of stochastic construction procedures to assign Qfé[n]
tistical weights has so dominated the study of graphs that the
assumption of an underlying probability model often becomes P(g) = H Dij H (1—pi),
implicit. For example, consider the four graph construction GDeE  (if)gE
procedures listed in [37, p.22] that are claimed to fdthe ’ '
basis of network science@nd include (1) classical random .
graphs due to Efis and Reriy[39]; (2) equilibrium random @nd using the fact that under the GRG model, we haye-=
graphs with a given degree distribution such as @ener- Pdid;, whereD = (dy,...dy) is the given degree sequence,
alized Random Graph (GRG)ethod [31]; (3) “small-world W€ g€t
networks” due to Watts and Strogatz [100]; and (4) networks
growing under the mechanism of preferential linking due to P(g) = le dgli H (1 — pd;d;)
Baralasi and Albert [14] and made precise in [23]. All of
these construction mechanisms are inherestihchasticand
provide a natural means for assigning, at least in principle, B lH P Hi,jev(l — pdid;)
probabilities to each element in the corresponding space of -7 11 H(, ‘)55(1 — pd;d;)’
realizable graphs. While deterministic (i.e., non-stochastic) €V "
construction procedures have been considered [19], their studz_ )
has been restricted to the treatment of deterministic preferéaking the log, we obtain
tial attachment mechanisms that result in pseudofractal graph
structures. Graphs resulting from other types of deterministj _ , , g
constructions are generally ignored in the context of statistic?gig Plg) = logp+ Zd’ log d; + Z log(1 — pd;d;)
physics-inspired approaches since within the space of all fea- i wjev
sible graphs, their likelihood of occurring is typically viewed — Z log(1 — pd;d;).
as vanishingly small. (i.7)€E

i€V (i,))¢E
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Defining While graphs resulting from stochastic preferential attach-
ment construction may have a different underlying probabil-
k= 1llogp+ Zdi logd; + Z log(1 — pdid;), ity model than GRG-generated graphs, both result in simple
i€y i,jev graphs having approximate scaling relationships in their de-
. . gree distributions. One can understand the manner in which
we observe that is constant for fixed degree sequenide high-s(g) graphs are “highly likely” through the use of a sim-
Also recall thatlog(1 + a) ~ a for |a| << 1. Thus, ifpis e Monte Carlo simulation experiment. Recall that the toy

sufficiently small so thap;; = pd;d; << 1, we get graphs in Figure 5 each contained 1000 nodes and that the
graph in Figure 5(b) was “random” in the sense that it was
LLH(g) =log P(g) ~ K+ > pdid;. obtained by successive arbitrary rewiringsh$Fnetin Fig-
(i,4)€E ure 5(a). An alternate approach to generating random graphs

having a power law in their distribution of node degree is to
use the type of preferential attachment mechanism first out-
lined in [14] and consider the structural features that are most
“likely” among a large number of trials. Here, we generate
100,000 graphs each having 1000 nodes and measute the
value of each. It is important to note that successive graphs
resulting from preferential attachment will have different node
n n n degree sequences (one that is undoubtedly different from the
E(d) =Y pij =Y pdidj = pd; »_dj = d. degree sequence in Figure 5(e)), so a raw comparisefyof
=1 =1 =1 is not appropriate. Instead, we introduce the normalized value
] S(g) = s(g)/smax and use it to compare the structure of these
However, thisp may not havep;; = pdid; << 1 and can graphs. Note that this means also generatingsthe graph
even makep;; > 1, particularly in cases when the degree sgssociated with the particular degree sequence for the graph re-
quence is scaling. Thysmust often be chosen much smallegy|ting from each trial. Fortunately, the construction procedure
thanp = 1/3 ¢\, d; = 1/20 to ensure thap;; << 1 for jn Appendix A makes this straightforward, and so in this man-
all nodesi, j. In this case, the “typical” graph resulting fromher we obtain the normalizestvalues for 100,000 graphs re-
this construction with have degree sequence much less tBafling from the same preferential attachment procedure. Plot-
D, however this sequence will be proportional to the desirgflg the CDF and CCDF of thé-values for these graphs in
degree seql_,lencE,(di) xd;. ) ~_ Figure 9, we observe a striking picture: all of the graphs re-
~ While this GRG construction yields a probability distribusyiting from preferential attachment had valuesSofreater
tion onG(D) by conditioning on having degree sequeti2e than 0.5, most of the graphs had valies < S(g) < 0.9,
this is not an_efﬁment, pracu_cal me_thod to generate membgrs a significant number had valus$g) > 0.9. In con-
of G(D), particularly whenD is scaling and it is necessary tqrast, the graphs in Figure 5 had valueS{HSFnet) =
choosep << 1/21. The appeal of the GRG method is that if 9791, S(Random) = 0.8098, S(HOTnet) = 0.3952,
is easy to analyze and yields probabilities@(D) with clear ang S(PoorDesign) = 0.4536. Again, from the perspec-
interpretations. All elements 6#(D) will have nonzero prob- tjve of stochastic construction processes, I§walues typical
ability with log likelihood proportional tas(g). But even the of HOT constructions are “very unlikely” while high-values
Smaz graph may be extremely unlikely, and thus a naive Mond@e much more “likely” to occur at random.
Carlo scheme using this construction would rarely yield any wjth this additional insight into the-values associated
elements inG(D). There are many conjectures in the SF lityith different graphs, the relationship in tierf(g) vs. s(g)
erature that suggest that a wide variety of methods, includiigt of Figure 6 is clearer. Specifically, high-performance net-
random degree-preserving rewiring, produce “essentially {jgrks resulting from a careful design process vanishingly
same” ensembles. Thus it may be possible to generate pigle from a conventional probabilistic graph point of vieim
abilities onG(D) that can both be analyzed theoretically anghntrast, the likely outcome of random graph constructions
also provide a practical scheme to generate samples from@n carefully handcrafted ones) are networks that have ex-

resulting ensemble. While we believe this is plausible, it's rigemely poor performance or lack the desired functionality
orous resolution is well beyond the scope of this paper. (e.g., providing connectivity) altogether.

This shows that the graph likelihodtlL H(g) can be made
proportional tos(g) and thus we can interpre{g)/smax as
relative likelihoodof g € G(D), for the s,.x-graph has the
highest likelihood of all graphs i7(D). Choosingp =
1/3 ey di = 1/21in the GRG formulation results in the ex
pectation

5.2 Highly Likely Constructions

The interpretation of(g) as (relative) graph likelihood pro-5'3 Degree Correlations

vides an explicit connection between this structural metric aggen an appropriate statistical ensemble of graphs, the expec-

the extensive literature on random graph models. Since thgon of a random variable or random vec#6ris defined as
GRG method is a general means of generating random graphs,

we can in principle generate random instances of “scale-free” _
graphs with a prescribed power law degree sequence, by using (X) = Z X(9)P(g). (11)
GRG as described above and then conditioning on that degree
sequence. (And more efficient, practical schemes may also be ) _
possible.) In the resulting probability distribution on the spa&®r example, forl < i < n, let D; be the random vari-
of graphsGZ(D), high-s(g) graphs with hub-like core structure2Ple denoting the degree of noddor a graphg € G and
are literally “highly likely” to arise at random, while low¢g) 1€tD = {D1,D,,..., D, } be the random vector representing
graphs with their high-degree nodes residing at the graphs’ jit& node degrees of Then thedegree distributioris given by
ripheries are “highly unlikely” to result from such stochastic

construction procedures. Pk)=P{geG:Di(g)=k;i=1,2,...,n})

geG
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Figure 9: RESULTS FROMMONTE CARLO GENERATION OF PREFERENTIAL ATTACHMENT GRAPHS HAVINGLOOONODES. For each trial, we compute
the value s(g) and then renormalize to S(g) against the smax graph having the same degree sequence. Both the CDF and CCDF are shown. In
comparison, the HOTnetgraph has S(HOTnet) = 0.3952 and S(H SFnet) = 0.9791.

and can be written in terms of an expectation of a random varhus, there is an inherent relationship between the structural
able, namely metric s(g) and the degree-degree distribution, which we for-
malize as follows.

1 n
“n <; oD: k]> Proposition 6.

2
n / /
= — P .
SID. i — 1 if nodei of graphg has degreé 2 ;;kk ) )
[Di(9) =kl =19 0 otherwise. ’

One previously studied topic has been the correlations Beeof of Proposition 6: For fixed degree sequenég
tween the degrees of connected nodes. To show that this no-
tion has a direct relationship to tkéy) metric, we follow [37,
Section 4.6] and define the degree correlation between two ad- (s) <
jacent vertices having respective degkesndk’ as follows.

> kK Z 8[di — klai;old; —k’]>
k,k’eD i,j=1
Definition 5. The degree correlation between two neighbors < Z

8ld; — kla;;0]d; — k’]>

having degree& andk’ is defined by Z kk'
k k'eD i,j=1

Pk, <Z5 klai;o[d; —k’]> (12) — ”; Z kk'P(k, k).

=1
“J )

where thes;; are elements of the network node adjacency ma-

trix such that This result shows that for an ensemble of graphs having
1 if nodesi, j are connected Qegree sequenae, the expecta_tion of can be written purely

aij = { 0 otherwis:e in terms of the degree correlation. While other types of corre-
lations have been considered (e.g., the correlations associated
with clustering or loops in connectivity), degree correlations
of the above type are the most obviously connected with the
As an expectation of indicator-type random variableg;, k')  s-metric.
can be interpreted as the probability that a randomly chosen
link connects nodes of degreksandk’, thereforeP (k, k') is
also called the “degree-degree distribution” for links. Obser
that for a given grapl having degree sequenég

and where the random variablé$D; — k| are as above.

5 Assortativity/Disassortativity of Networks

(9) = Z dod. Another ensemble-based notion of graph degree correlation
)= that has been studied is the measufg) of assortativityin
(1.5)€€ networks as introduced by Newman [67], who descriags
- Z Z ko[d; — k) Z 8ld; — K|k’ sortative mixingr > 0) as“a preference for high-degree ver-
(i-7)e heD weh tices to attach to other high-degree verticemiddisassorta-
’ tive mixing(r < 0) as the converse, whethigh-degree ver-
= Y )Y kéld; — k|o[d; — KK tices attach to low-degree onesSince this is essentially what
(i.j)€E keD k'eD we have showrs(g) measures, the connection betwegn)
and assortativity(¢) should be and ultimately is very direct.
_ Z [ Z Sld; — Klas;0[d; — K] As with all concepts in the SF literature, assortativity is de-
k oD gl veloped in the context of an ensemble of graphs, but Newman

provides a sample estimate of assortativity of any given graph

23



g. Using our notation, Newman'’s formula [67, Eq. 4] can k&en from that graph. The question of assortativity can then be

written as understood in terms of some (properly normalized) statistical
) average between the degrees of the nodes at either end of the
{Z(meg did]} - [Ziev %dﬂ /1 link. We defer the explicit connection between the ensemble-
r(g) = . 12 ) (14) based and sample-based notions of assortativity and our struc-
[Xiev 3d7] = [Xiev 3] /1 tural metrics(g) to Appendix B.

where! is the number of links in the graph. Note that the

first term of the numerator of(g) is preciselys(g), and the § SF Graphs and the Internet Revisited
other terms depend only aP and not on the specific graph
g € G(D). Thusr(g) is linearly related tos(g). HOW- Gjyen the definitions of(g), the various self-similarity and
ever, when we compute(g) for the graphs in Figure 5 thepigp |ikelihood features of high{g) graphs, as well as the
values all are in the intervgh-0.4815, —0.4283]. Thus all gytreme diversity of the set of graphi D) with scaling de-
are roughly equally disassortative angy) seems not to dis- gree ), we look to incorporate this understanding into a theory
tinguish between what we have viewed as extremely diff¢fe SE graphs that recovers both the spirit and existing resullts,
ent graphs. The assortativity interpretation appears to dweiggme making rigorous the notion of what it means for a graph
contradict both what appears obvious from inspection of thepe “scale-free”. To do so, we first trace the exact nature of
graphs, and the analysis baseds¢y). Recall that forS(g) = previous misconceptions concerning the SF Internet, introduce
5(9)/smax the graphs in Figure 5 hadl(H.SFnet) = 0.979 a5 yndated definition of a scale-free graph, clarify what state-
andS(HOTnet) = 0.395, with high-degree nodes iHSFnet enis in the SF literature can be recovered, and briefly outline
attached to other high-degree nodes and@inetattached to ¢ prospects for applying properly defined SF models in view
low-degree nodes. _ o of alternative theoretical frameworks such as HOT (Highly
The essential reason for this apparent conflictis e  optimized/Organized Tolerance/Tradeoffs). In this context, it
r(g) < 1and0 < S(g) < 1 are normalized against a difs 3150 important to understand the popular appeal that the SF
ferent "background set” of graphs. F6i(g) = s(g)/smax approach has had. One reason is certainly its simplicity, and
here, we have computeg,., constrained to simple, con-ye will aim to preserve that as much as possible as we aim
nected graphs, whereagy) involves no such constraints. Thgg repjace largely heuristic and experimental results with ones
r = 0 graph with the same degree sequencéi@&netand 416 mathematical in nature. The other is that it relies heavily
HOTnetwould be non-simple—having, for example, the highs, methods from statistical physics, so much so that replacing
est degreed; ) node highly connected to itself (with multipley, e with techniques that are shaped by mathematics and engi-
sgalf-loops) and with multiple p.arallel connections to the Othﬁéering will require a fundamental change in the way complex
high-degree nodes (e.g. multiple links to tie node). The éystems such as the Internet are viewed and studied.
corresponding: = 1 graph would be both non-simple and” tpe |ogic of the existing SF theory and its central claims

disconnected—having the highest degrég (ode essentially reqarding the Internet consists of the following steps:
connectedbnly to itself. SoHSFnetcould be thought of as

assortative when compared with graphgd(D), but dissas- 1. The claim that measurements of the Internet’s router-
sortative when compared with all graphs. To emphasize this level topology can be reasonably modeled with a graph
distinction, the description afssortative mixingr > 0) could g that has scaling degree sequeiite

be augmented to “high-degree vertices attach to other high- ) o . .
degree vertices, including self-loops.” Since high variability, 2. The assertion, or definition, that a graplvith scaling
simple, connected graphs will all typically hawgy) < 0, this degree sequende is a scale-free graph.

measure is less useful than simply comparing sé&yy for this
class of graphs. Thus conceptuallyg) and s(g) have the
same aim, but with different and largely incomparable normal-
izations, both of which are interesting.

We will now briefly sketch the technical details behind
the normalization ofr(g). The first term of the denomina-
tory ..y d? /2l is equal tosy,.x for “unconstrained” graphs
(i.e., those not restricted to be simple or even connected; see
Appendix A for details), and the normalization term in the de-
nominator can be understood accordingly as this.. The

term (Ziev dg/z)z /1 can be interpreted as the “center” ol the following, we (evigit the steps of this logic and iIIus-_
zero assortativity case, again for unconstrained graphs. TH€ that the conclusion in Step 4 is based on a series of mis-
the perfectly assortative graph can be viewed as the graph conceptions and errors, ranging in scope from taking highly
(within a particular background sét), and the assortativity of ambiguous Internet measurements at face value to applying an
graphs is measured relative to the., graph, with appropriate inherently inconsistent SF theory to an engineered system like
centering. the Internet.

Newman’s development of assortativity [67] is motivated
by a definition that works both for an ensemble of graphs a?dl Scaling Degree Sequences and the Internet
as a sample-based metric for individual graphs. Accordingly,
his definition depends o} (k, k'), the joint distribution of the The Internet remains one of the most popular and highly cited
remaining degreesf the two vertices at either end of a ranapplication areas where power laws in network connectivity
domly selected link belonging to a graph in an ensemble. Thatve “emerged spontaneously”, and the notion that this in-
is, consider a physical process by which a graph is selecteglasingly important information infrastructure exhibits a sig-
from a statistical ensemble and then a link is arbitrarily choature of self-organizing complex systems has generated con-

3. The claim that scale-free graphs have a host of “emer-
gent” features, most notably the presence of several
highly connected nodes (i.e. “hubs”) that are critical to
overall network connectivity and performance.

4. The conclusion that the Internet is therefore scale-free,
and its “hubs,” through which most traffic must pass, are
responsible for the “robust yet fragile” feature of failure
tolerance and attack vulnerability.
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siderable motivation and enthusiasm for SF networks. Holaw-type degree distributions when the true underlying con-
ever, as we will show here, this basic observation is hightgctivity structure is a regular graph (e.g., &eReny[39]).
questionable, and at worst is the simple result of errors em- Ongoing research continues to reveal new idiosyncrasies
anating from the misinterpretation of available measuremeatstraceroute-derived measurements and shows that their in-
and/or their naive and inappropriate statistical analysis of tleepretation or analysis requires great care and diligent mining
type critiqued in Section 2.1.2 of other available data sources. Although the challenges as-
To appreciate the problems inherent in the available datasadtiated with disambiguating the available measurements and
is important to realize that Internet-related connectivity meidentifying those contributions that are relevant for the Inter-
surements are notorious for their ambiguities, inaccuraciest’s router-level topology can be daunting, using these mea-
and incompleteness. This is due in part to the multi-layersdrements at face value and submitting them to commonly-
nature of the Internet protocol stack (where each level defineed, black box-type statistical analyses—as is common in the
its own connectivity), and it also results from the efforts of Icomplex systems literature—is ill-advised and bound to result
ternet Service Providers (ISPs) who intentionally obscure thigirrroneous conclusions. To illustrate, Figure 10(a) shows the
network structure in order to preserve what they believe isiae-frequency plot for the raw traceroute-derived router-level
source of competitive advantage. Consider as an exampledhenectivity data obtained by the Mercator project [45], with
router-level connectivity of the Internet, which is intended teigure 10(b) depicting a smoothed version of the plot in (a),
reflect (physical) one-hop distances between routers/switcleained by applying a straightforward binning operation to
Although information about this type of connectivity is typithe raw measurements, as is common practice in the physics
cally inferred fromtracerouteexperiments which record sucfiterature. In fact, Figures 10(a)—(b) are commonly used in
cessive IP-hops along paths between selected network liostSF literature (e.g., see [4]) as empirical evidence that the
computers (see for example the Mercator [45], Skitter [33futer-level topology of the Internet exhibits power-law de-
and Rocketfuel [90] projects), there remain a number of chglee distributions. However, in view of the above-mentioned
lenges when trying to reverse-engineer a network’s physieahbiguities of traceroute-derived measurements, it is highly
infrastructure from traceroute-based measurements. The fikglly that the two extreme points with node degrees above
challenge is that IP connectivity is an abstraction (at “Lay&r000 are really instances where the high IP-level connectiv-
3") that sits on top of physical connectivity (at “Layer 2"), saty is an illusion created by an underlying Layer 2 technology
traceroute is unable to record directly the network’s physi@id says nothing about the actual connectivity at the physical
structure, and its measurements are highly ambiguous ablewtl. When removing the two nodes in question and relying
the dependence between these two layers. Such ambiguitgrirthe statistically more robust size-rank plots in Figures 10
Internet connectivity persists even at higher layers of the p(o) and (d), we notice that neither the doubly-logarithmic nor
tocol stack, where connectivity becomes increasingly virtuagmi-logarithmic plots support the claim of a power law-type
but for different reasons (see for example Section 6.4 belaade degree distribution for the Internet’s router-level topol-
for a discussion of the Internet's AS and Web graphs). ogy. In fact, Figures 10(c) and (d) strongly suggest that
To illustrate how the somewhat subtle interactions amotite actual router-level connectivity is more consistent with an
the different layers of the Internet protocol stack can give tegponentially-fast decaying node degree distribution, in stark
(false) appearance of high connectivity at the IP-level, recatintrast to what is typically claimed in the existing SF litera-
how at the physical layer the use of Ethernet technology néane.
the network periphery or Asynchronous Transfer Mode (ATM)
technology.irj the. network core can give thg appearance of h@l@ (Re)Defining “Scale-Free” Graphs
IP-connectivity since the physical topologies associated with
these technologies may not be seen by IP-based tracerout&Vhile it is unlikely that the Internet as a whole has scaling
such cases, machines that are connected to the same Ethdegte sequences, it would not be in principle technologically
or ATM network may have the illusion of direct connectivityor economically infeasible to build a network which did. It
from the perspective of IP, even though they are separatedaayuld, however, be utterly infeasible to build a large network
an entire network (potentially spanning dozens of machinesaith high-degree SF hubs, or more generally one that had both
hundreds of miles) at the physical level. In an entirely difigh variability in node degree and larggy). Thus in making
ferent fashion, the use of “Layer 2.5 technologies” such peecise the definition of scale-free, there are essentially two
Multiprotocol Label Switching (MPLS) tend to mask a netpossibilities. One is to define scale-free as simply having a
work’s physical infrastructure and can give the illusion of ongealing degree sequence, from which no other properties fol-
hop connectivity at Layer 3. Note that in both cases, it is th@v. The other is to define scale-free more narrowly in such a
explicit and intended design of these technologies to hide they that a rich set of properties are implied. Given the strong
physical network connectivity from IP. Another practical prolset of self-similarity properties of graplshaving highs(g),
lem when interpreting traceroute data is to decide which IP agk propose the following alternate definition of what it means
dresses/interface cards (and corresponding DNS names) tigfiea graph to be “scale-free”.

to the same router, a process knownadias resolution[89]. Definition 6. For graphsg € G(D) whereD is scaling, we

While one of the contributing factors to the high fidelity of th : . }
current state-of-the-art Rocketfuel maps is the use of an img?riscu;?gghe extent to which the grapfis scale-free by the

proved heuristic for performing alias resolution [90], further
ambiguities remain, as pointed out for example in [98]. Yet ahhis definition for “scale-free graphs” is restricted here to sim-
other difficulty when dealing with traceroute-derived measurle, connected graphs having scalifilg but s(g) can obvi-
ments has been considered in [58, 1] and concerns a potestigly be computed for any graphs having any degree sequence,
bias whereby IP-level connectivity is inferred more easily aadd thus defining(g) as a measure of “scale-free” might po-
accurately the closer the routers are to the traceroute sourcé&gsially be overly narrow. Nonetheless, in what follows, for
Such bias possibly results in incorrectly interpreting powéegree sequences that are scaling, we will informally call
graphsg € G(D) with low s(g)-values“scale-rich”, and
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Figure 10: TRACEROUTEDERIVED ROUTERLEVEL CONNECTIVITY DATA FROM THE MERCATOR PROJECT[45]. (a) Doubly logarithmic size-
frequency plot: Raw data. (b) Doubly logarithmic size-frequency plot: Binned data. (c) Doubly-logarithmic size-rank plot: Raw data
with the 2 extreme nodes (with connectivity > 1,000) removed. (d) Semi-logarithmic size-rank plot: ~ Raw data with the 2 extreme nodes (with
connectivity > 1,000) removed.

those with highs(g)-values“scale-free” Being structural in variations and embellishments of scale-free models have been
nature, this alternate definition has the additional benefit of pobposed, with appealing but ultimately irrelevant details and
depending on a stochastic model underlying the set of gragiscussions of emergence, self-organization, hierarchy, modu-
of interest. It does not rely on the statistical physics-inspir&atity, etc. However, their additional self-similarity properties,
approach that focuses on random ensembles and their miostigh still largely unexplored, have made the resulting scale-
likely elements and is inherent, for example, in the originflke networks intuitively appealing, particularly to those who
Baralfsi-Albert construction procedure. continue to associate complexity with self-similarity.

Our proposed definition for scale-free graphs requires that The practical implication is that while our proposed defi-
for a graphg to be called scale-free, the degree sequébcenition of what it means for a graph to be “scale-free” recovers
of g must be scaling (or, more generally, highly variatdayl many claims in the existing SF literature, some aspects can-
self-similar in the sense thafg) must be large. Furthermorenot be salvaged. As an alternate approach, we could accept a
s(g) gives a quantitative measure of the extent to which a scaéfinition of scale-free that is equivalent to scaling, as is im-
ing degree graph is scale-free. In addition, this definition cagicit in most of the SF literature. However, then the notion of
tures an explicit and obvious relationship between graphs ttetale-free” is essentially trivial, and almost all claims in the
are “scale-free” and have a “hub-like core” of highly connectexisting literature about SF graphs are false, not just the ones
centrally-located nodes. More importantly, in view of Step 2 specific to the Internet. We argue that a much better alterna-
the above-mentioned logic, the claim that scale-free netwotike is a definition of scale-free, as we propose, that implies
have “SF hubs” is true with scale-free defined as scaling degtlee existence of “hubs” and other emergent properties, but is
sequencandhigh s(g), but false if scale-free were simply tomore restrictive than scaling. Our proposed alternative, that
mean scaling degree sequence, as is commonly assumed isthke-free is a special case of scaling that further requires high
existing SF literature. s(g), not only provides a quantitative measure about the extent

With a concise measurg(g) and its connections withto which a graph is scale-free, but also already offers abundant
rich self-similarity/self-dissimilar properties and likelihoodemergent properties, with the potential for a rigorous and rich
we can look back and understand how both the appeal and fiigory.
ure of the SF literature is merely a symptom of much broader In summary, notwithstanding the errors in the interpreta-
and deeper disconnects within complex networks reseattdtn and analysis of available network measurement data, even
First, while there are many possible equivalent definitions ibthe Internet’s router-level graph were to exhibit a power law-
scale-free, all nontrivial ones would seem to involve combitype node degree distribution, we have shown here and in other
ing scaling degree with self-similarity or high likelihood angapers (e.g., see [59, 101]) that the final conclusion in Step
appear to be equivalent. Thus defined, models that gene#date necessarily wrong for today’s Internet. No matter how
scale-free graphs are easily constructed and are thereforesnate-free is defined, the existing SF claims about the Inter-
our main focus here. Indeed, because of the strong invarianegs router-level topology cannot be salvaged. Adopting our
properties of scaling distributions alone, it is easy to createfinitions, the router topology at least for some parts of the
limitless varieties of randomizing generative models that chrternet could in principle have high variability and may even
“grow” graphs with scaling degreP. Preferential growth is be roughly scaling , but it is certainly nowhere scale-free. It
perhaps the oldest of such models [107, 60, 88], so it is isan fact necessarily extremely “scale-rich” in a sense we have
surprise that it resurfaces prominently in the recent SF litenrade rigorous and quantifiable, although the diversity of scale-
ature. No matter how scaling is generated however, the higth graphs means that much more must be said to describe
likelihood and rewiring invariance of hightg) graphs make it which scale-rich graphs are relevant to the Internet. A main
further easy—literally highly likely—to insure that these scalesson learned from this exercise has been that in the context
ing graphs are also scale-free. of such complex and highly engineered systems as the Inter-

Thus secondly, the equivalence between “highand net, it is largely impossible to understand any nontrivial net-
“highly likely” makes it possible to define scale-free as th@ork properties while ignoring all domain-specific details such
likely or generic outcome of a great variety of random growts protocol stacks, technological or economic constraints, and
models. In fact, that “lows” or “scale-rich” graphs are van-user demand and heterogeneity, as is typical in SF treatments
ishingly unlikely to occur at random explains why the SF libf complex networks.
erature has not only ignored their existence and missed their
relevance but also conflated scale-free with scaling. Finally,
since scaling and highare both so easily and robustly gener-
ated, requiring only few simple statistical properties, countless
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6.3 Towards a Rigorous Theory of SF Graphs a heuristic test as to whether or not a given graph is scale-free

Havi dth . | 'gto explore the impact of degree-preserving random rewiring.
aving proposed the quantityg) as a structural measures ORecent work on the Internet [59] and metabolic networks [95]

the extent to which a given graph is “scale-free”, we can N \ye|| as on more more general complex networks [103]
review the characteristics of scale-free graphs listed in Sectif}, onstrates that many important large-scale complex sys-
3anduse 0u|r resdults to clarify what 'Sctjr:“'e if scale-free is takgling are scale-rich and display significant self-dissimilarity,
to mean scaling degree sequence and lafgg suggesting that their structure is far from scale-free and the

1. SF networks have scaling (power law) degree sequefiBEOSIte Of self-similar.
(follows by definition).

2. SF networks are the likely outcome of various rando;i4 SF Models and the Internet?

growth processes (follows from the equivalence @f)
with a natural measure of graph likelihood). For the Internet, we have shown that no matter how scale-

free is defined, the existing SF claims about the “robust, yet
3. SF networks have a hub-like core structure (follows dragile” nature of these systems (particularly any claims of
rectly from the definition ofs(g) and the betweenessan “Achilles’ heel” type of vulnerability) are wrong no matter

properties of high-degree hubs). how scale-free is defined. By tracing through the reasoning be-
o ) hind these SF claims, we have identified the source of this error

4. SF networks are generic in the sense of being pigthe application of SF models to domains like engineering

served by random degree-preserving rewiring (followgy piology) where design, evolution, functionality, and con-
from the characterization of rewiring invariance of selktyaints are all key ingredients that simply cannot be ignored.
similarity). In particular, by assuming that scale-free is defined as scaling

: . more generally, highly variable) plus higllg), and fur-
5. SF networks are universal in the sense of not depen ﬁ : L _
on domain-specific details (follows from the structu% r usings(g) as a quantitative measure of how scale-free a

nature ofs(g)) raph is, the failure of SF models to correctly and usefully ap-
59))- ply in an Internet-related context has been limited to errors due

6. SF networks are self-similar (is now partially clarified ifP ignoring domain-specific details, rather than to far more se-
that highs(g) trees are preserved under both appropf9us and general mathematical errors about the properties of

as restriction to small motifs). potential for a rich and interesting theory of SF graphs, looking

for relevant and useful application domains.

Many of these results are proven only for special cases andOne place where SF graphs may be appropriate and prac-
have only numerical evidence for general graphs, and thigslly useful in the study of the Internet is at the higher levels
can undoubtedly be improved upon by proving them in greatdmetwork abstraction, where interconnectivity is increasingly
generality. However in most important ways the proposed daficonstrained by physical limitations. That is, while the low-
inition is entirely consistent with the spirit of “scale-free” agst layers of the Internet protocol stack involving the physical
it appears in the literature, as noted by its close relationshiprnirastructure such as routers and fiber-optic cables have hard
previously defined notions of betweeness, assortativity, degieehnological and economic constraints, each higher layer de-
correlation, and so on. Since a higfy)-value requires high- fines its own unique connectivity, and the corresponding net-
degree nodes to connect to other high-degree nodes, thekgoik topologies become by design increasingly more virtual
an explicit and obvious equivalence between graphs that anel unconstrained. For example, in contrast to routers and
scale-free (i.e., have high(g)-value) and have a “hub-like physical links, the connectivity structure defined by the docu-
core” of highly connected nodes. Thus the statement “scateents (nodes) and hyperlinks (connections) in the World Wide
free networks have hub-like cores™—while incorrect under thigeb (WWW) is designed to be essentially completely uncon-
commonly-used original and vague definition (i.e., meanistrained. While we have seen that it is utterly implausible that
scaling degree sequence)—is now true almost by definiti®® models can capture the essential features of the router-level
and captures succinctly the confusion caused by some of ¢hanectivity in today’s Internet, it seems conceivable that they
sensational claims that appeared in the scale-free literaturecdald representirtual graphs associated with the Internet such
particular, the consequences for network vulnerability in terras, hypothetically, the WWW or other types of overlay net-
of the “Achilles’ heel” and a zero epidemic threshold followvorks.
immediately. However, even in the case of more virtual-type graphs as-

When normalized against a proper background set, @aciated with the Internet, a cautionary note about the applica-
proposeds(g)-metric provides insight into the diversity of netbility of SF models is needed. For example, consider the Inter-
works having the same degree sequence. On the one haetlat the level of autonomous systems, wheraw@onomous
graphs havings(g) ~ smax are scale-free and self-similaisystem (AS)s a subnetwork or domain that is under its own
in the sense that they appear to exhibit strong invariaredministrative control. In an AS graph representation of the
properties across different scales, where appropriately defilgdrnet, each node corresponds to an AS and a link between
coarse-graining operations (including link trimming) give riswvo nodes indicates the presence of a “peering relationship”
to the different scales or levels of resolution. On the otheetween the two ASes—a mutual willingness to carry or ex-
hand, graphs having(g) << smax are scale-rich and self-change traffic. Thus, a single “node” in an AS graph (e.g.,
dissimilar; that is, they display different structure at diffelAS 1239 is the Sprintlink network) represents potentially hun-
ent levels of resolution. While for scale-free graphs, degreireds or thousands of routers as well as their interconnections.
preserving random rewiring does not significantly alter theMthough most large ASes have several connections (peering
structural properties, even a modest amount of rewiring gmints) to other ASes, the use of this representation means that
stroys the structure of scale-rich graphs. Thus, we suggest trat is collapsing possibly hundreds of different physical (i.e.,
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router-level) connections into a single logical link between tvare largely meaningless. On the other hand, the economic and
ASes. In this sense, the AS graph is expressively not a repegulatory environment for ISPs remains treacherous, so ques-
sentation of any physical aspect of the Internet, but defingms about the robustness (or lack thereof) of the Internet at
a virtual graph representing business (i.e., peering) relatitive AS-level to this type of disruption seem appropriate. And
ships among network providers (i.e., ASes). Significant attezven if one could make sense of physically “attacking and dis-
tion has been directed toward discovering the structural aspetiéng” nodes or links in the AS graph, any rigorous investiga-
of AS connectivity as represented by AS graphs and inferrdoh of its “robust yet fragile” nature would have to at least ac-
from BGP-based measurements (where Boeder Gateway count for the key mechanisms by which BGP detects and reacts
Protocolor BGPis the de facto standard inter-AS routing prao connectivity disruptions at the AS level. In fact, as in the
tocol deployed in today'’s Internet [93, 82]) and speculating ease of the Internet’s router-level connectivity, claims of scale-
what these features imply about the large-scale propertiegreé structure exhibited by inferred AS graphs fail to capture
the Internet. However, the networking significance of these A& most essential “robust yet fragile” features of the Internet
graphs is very limited since AS connectivity alone says littleecause they ignore any significant networking-specific infor-
about how the actual traffic traverses the different ASes. Foation encoded in these graphs beyond connectivity. Again,
this purpose, the relevant information is encoded in the littke actual fragilities are not to physical attacks on AS nodes but
type (i.e., peering agreement such as peer-to-peer or proviteAS-related components “failing on,” particularly via BGP-
customer relationship) and in the types of routing policies usedated software or hardware components working improperly
by the individual ASes to enforce agreed-upon business ar-being misconfigured, or via malicious exploitation or hi-
rangements between two or more parties. jacking of BGP itself.

In addition, due to the infeasibility of measuring AS con-
nectivity directly, the measurements that form the basis for in-
ferring AS-level maps consist of BGP routing table snapsh@ss The Contrasting Role of Randomness
collected, for example, by the University of Oregon Route
Views Project [82]. To illustrate the degree of ambiguity io put our SF findings in a broader context, we briefly review
the inferred AS connectivity data, note for example that dueab alternate approach to the use of randomness for understand-
the way BGP routing works, snapshots of BGP routing tabliég system complexity that implicitly underpins our approach
taken at a few vantage points on the Internet over time are ifha way similar to how statistical physics underpins the SF
likely to uncover and capture all existing connections betwelierature. Specifically, the notions bfighly Optimized Toler-
ASs. Indeed, [29] suggests that AS graphs inferred from tece (HOT)27] or Heuristically Organized Tradeoffd0] has
Route Views data typically miss between 20-50% or even mdxeen recently introduced as a conceptual framework for cap-
of the existing AS connections. This is an example of the ggrring the highly organized, optimized, and “robust yet fragile”
eral problem ofzantage pointnentioned in [75], whereby thestructure of complex highly evolved systems [28]. Introduced
location(s) of exactly where the measurements are perforniigthe spirit of canonical models from statistical physics—such
can significantly skew the interpretation of the measuremer@s, percolation lattices, cellular automata, and spin glasses—
often in quite non-intuitive ways. Other problems that are bfOT is an attempt to use simple models that capture some
concern in this context have to do with ambiguities that c@gsence of the role of design or evolution in creating highly
arise when inferring the type of peering relationships betwegifuctured configurations, power laws, self-dissimilarity, scale-
two ASes or, more importantly, with the dynamic nature #ichness, etc. The emphasis in the HOT view is on “organized
AS-level connectivity, whereby new ASes can join and exigtomplexity”, which contrasts sharply with the view of “emer-
ing ASes can leave, merge, or split at any time. gent complexity” that is preferred within physics and the SF

This dynamic aspect is even more relevant in the contextcginmunity. The HOT perspective is motivated by biology
the Web graph, another virtual graph associated with the Int@fd technology, and HOT models typically involve optimiz-
net that is expressively not a representation of any physicalifg functional objectives of the system as a whole, subject
pect of the Internet structure but where nodes and links reg-constraints on their components, usually with an explicit
sent pages and hyperlinks of the WWW, respectively. Thuss@urce of uncertainty against which solutions must be tolerant,
addition to the deficiencies mentioned in the context of rout®r- robust. The explicit focus on function, constraints, opti-
level Internet measurements, the topologies that are more Riization, and organization sharply distinguish HOT from SF
tual and “overlay” the Internet’s physical topology exhibit aBpproaches. Both consider robustness and fragility but reach
aspect of dynamic changes that is largely absent on the phggiposite and incompatible conclusions.
cal level. This questions the appropriateness and relevance ofA toy model of the HOT approach to modeling the router-
a careful analysis or modeling of commonly considered stalgyel Internet was already discussed earlier. The underlying
counterparts of these virtual topologies that are typically ogea is that consideration of the economic and technologi-
tained by accumulating the connectivity information contain€al factors constraining design by Internet Service Providers
in a number of different snapshots taken over some time per{gPs) gives strong incentives to minimize the number and
into a single graph. length of deployed links by aggregating and multiplexing traf-

When combined, the virtual nature of AS or Web graptfis at all levels of the network hierarchy, from the periphery
and their lack of critical networking-specific information mak&® the core. In order to efficiently provide high throughput to
them awkward objects for studying the “robust yet fragile” naisers, router technology and link costs tmeessitatehat
ture of the Internet in the spirit of the “Achilles’ heel” arguby and large link capacities increase and router degrees de-
ment [6] or largely inappropriate structures for investigatirgfease from the network’s periphery to its more aggregated
the spread of viruses on the Internet as in [20]. For exa@®re. Thus, the toy modéiOTnetin Figure 5(d), like the
ple, what does it mean to “attack and disable” a node suchrégl router-level Internet, has a mesh of uniformly high-speed
Sprintlink (AS 1239) in a representation of business relatid@w connectivity routers in its core, with greater variability in
ships between network providers? Physical attacks at this les@hnectivity at its periphery. While a more detailed discussion

of these factors and additional examples is available from [59],
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the result is that this work has explained where within the In- In the SF literature, on the other hand, random graph
ternet’s router-level topology the high degree nodes might im@dels and statistical physics-inspired approaches to networks
and why they might be there, as well as where they can't pase so deep-rooted that an underlying ensemble is taken for
sibly be. granted. Indeed, in the SF literature the phrase “not random”

The HOT network that results is not just different than thgpically does not refer to a deterministic process but means
SF network but completely opposite, and this can be seen rastdom processes having some non-uniform or high variability
only in terms relevant to the Internet application domain, sudlstribution, such as scaling. Furthermore, random processes
as the performance measure (7), robustness to router anddirgk used to directly generate SF network graphs rather than
losses, and the link costs, but in the criteria considered witmmdel uncertainty in the environment, leading in this case to
the SF literature itself. Specifically, SF models are gendigh s(g) and lowPerf(¢) graphs. This particular view of ran-
ated directly from ensembles and random processes, and lttraness also blurs the important distinction between what is
generic microscopic features that are preserved under randoikely and what is impossible. That is, what is unlikely to
rewiring. HOT models have highly structured, rare configeecur in a random ensemble (e.g. a lefy) graph) is treated
rations which are destroyed by random rewiring, unless tlaatimpossible, while what is truly impossible (e.g. an Internet
is made a specific design objective. SF models are univessdh SF hubs) from an engineering perspective is viewed as
in ignoring domain details, whereas HOT is only universal likely from an ensemble point of view. Similarly, the relation
the sense that it formulates everything in terms of robust, cdretween high variability, scaling, and scale-free is murky in
strained optimization, but with highly domain-specific perfothe SF literature. These distinctions may all be irrelevant for
mance objectives and constraints. some scientific questions, but they are crucial in the study of

One theme of the HOT framework has been that engineengineering and biology and also essential for mathematical
ing design or biological evolution easily generates scalingrigor.
a variety of toy models once functional performance, compo-
nent constraints, and robustness tradeoffs are considered. Both .
SF and HOT models of the Internet yield power laws, but onde Conclusions
again in opposite ways and with opposite consequences. HOT
emphasizes the importance of high variability over power lafie setG (D) of graphsg with fixed scaling degre® is ex-
per se, and provides a much deeper connection between \iggmely diverse. However, most graphs@{D) are, using
ability or scaling exponents and domain-specific constraimtgr definition, scale-free and have higivalues. This implies
and features. For example, the HOT Internet model considetieat these scale-free graphs are not diverse and actually share
here shows that if high variability occurs in router degree it c&nwide range of “emergent” features, many of which are of-
be explained by high variability in end user bandwidth togethi@n viewed as both intriguing and surprising, such as hub-like
with constraints on router technology and link costs. Thasres, high likelihood under a variety of random generation
HOT provides a predictive model regarding how different efaechanisms, preservation under random rewiring, robustness
ternal demands or future evolution of technology could chanigerandom failure but fragility to attack, and various kinds
network statistics. The SF models are intrinsically incapalsié self-similarity. These features have made scale-free net-
of providing such predictive capability in any application dovorks overwhelmingly compelling to many complex systems
main. The resulting striking differences between these tWgsearchers and have understandably given scale-free findings
modeling approaches and their predictions are merely syrfigmendous popular appeal [14, 106, 6, 70, 13, 11]. This paper
tomatic of a much broader gap between the popular phydi@s confirmed that these emergent features are plausibly con-
perspective on complex networks versus that of mathemagigient with our definition, and we have proven several con-
and engineering, created by a profoundly different perspectigctions, but much remains heuristic and experimental. Hope-
on the nature and causes of high variability in real world dafally, more research will complete what is potentially a rich
For example, essentially the same kind of contrast holds @saph-theoretic treatment of scale-free networks.
HOT and SOC models [28], where SOC is yet another theoreti- Essentially all of the extreme diversity iG'(D) is in
cal framework with specious claims about the Internet [91, 18 fringes that are occupied by the rare scale-rich small

In contrast to the SF approach, the HOT models descrilggdphs. These graphs have little or nothing in common with
above as well as their constraints and performance measéagh other or with scale-free graphs beyond their degree se-
do not require any assumptions, implicit or explicit, that thejuence so, unfortunately, is a nearly meaningless measure
were drawn directly from some random ensemble. Traded®s scale-rich graphs. We have shown that those technolog-
in the real Internet and biology can be explained without ii#al networks which have functional requirements and com-
sisting on any underlying random models. Sources of randagp@nent constraints tend to be scale-rich, and HOT is a theo-
ness are incorporated naturally where uncertainty needs tdesial framework aimed at explaining in simplified terms the
managed or accounted for, say for the case of the router-ldegltures of these networks. In this context, scale-free networks
Internet, in a stochastic model of user bandwidth demands &gtlve at best as plausible null hypotheses that typically col-
geographic locations of users, routers, and links, followed lapse quickly under scrutiny with real data and are easily re-
a heuristic or optimal design. This can produce either an édted by applying varying amounts of domain knowledge. A
semble of network designs, or a single robust design, depeitdighly parallel SF vs HOT story exists in metabolic networks
ing on the design objective, but all results remain highly cotsee for example [95]), which is another application area that
strained and are characterized by Is{y) and highPerf(g). has been very popular in the SF and broader “complex net-
This is typical in engineering theories, where random mod#&erks” literature [18].
are common but not required, and where uncertainty can beAt the same time, scale-free networks may still be relevant
modeled with random ensembles or worst-case over setsWhen applied to social or virtual networks where technolog-
all cases, uncertainty models are mixed with additional hae@l, economic, or other constraints play perhaps a lesser or
constraints, say on component technology. no role whatsoever. Indeed, a richer and more complete and

rigorous theory could potentially help researchers working in
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such areas. For example, as discussed in Section 4.4.1,aexeng these graphs can be achieved trivially, by applying the
ploring the impact of degree-preserving random rewiring fifllowing two-phase process. First, for each veriexf d;
components can be used as a simple preliminary litmus teséven, then attacli; /2 self-loops; ifd; is odd, then attach
for whether or not a SF model might be appropriate. It takés — 1)/2 self-loops, leaving one available “stub”. Second,
little domain expertise to see that randomly rewiring the ifer all remaining vertices with “stubs”, connect them in pairs
ternal connections of, say, the microchips or transistors iraecording to decreasing valuesdf Obviously, the resulting
laptop computer or the organs in a human body will utterfyraph is not unique as thg,.. element (indeed, two vertices
destroy their function, and thus that SF models are unlikeljth the same degree could replace their self-loops with con-
to be informative. On the other hand, one can think of somections among one another). Nonetheless, this construction
technological (e.g. wireless ad-hoc networks) and many sodaks maximize(g), and in the case whet) is even for alli €
networks where robustness to some kinds of random rewir¥igone achieves as,.. graph withs(g) = > (d;/2) - d3.
is an explicitly desirable objective, and thus SF graphs are Aat discussed in Section 5.4, against this background of un-
so obviously inapplicable. For example, it might be instrucenstrained graphs, thg,.. graph is the perfectly assortative
tive to apply this litmus test to an AS graph that reflects A®.g.,7(g) = 1) graph. In the case when sonrigare odd, then
connectivity only as compared to the same graph that also fte s,,,.x graph will have a value of(g) that is somewhat less
vides information about the type of peering relationships aadd will depend on the specific degree sequence. Thus, the
the nature of routing policies in place. value}""_, (d;/2) - d? represents an idealized upper bound for
This paper shows that scale-free networks have the potdre value ofs,,,,, among unconstrained graphs, but it can only
tial for an interesting and rich theory, with most questions, pdre realized in the case when all vertex degrees are even.
ticularly regarding graphs that are not trees, still largely open.
Eerhaps a final message of this paper is that to develop ago Among Graphs in G(D)
erent theory for scale-free networks will require adhering t0
more rigorous mathematical and statistical standards than Rasignificantly more complicated situation arises when con-
been typical to date. structing elements of the spacg( D), that is, simple con-
nected graphs having vertices and a particular degree se-
quenceD. Even so, not all sequencéswill allow for the con-
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As already noted, one possible problem is that the se-
; _ guence may have “too many” or “too few” degree-one vertices.
A Constructmg an Smax graph For example, since the total number of lirika any graph will
be equaltd = >, d;/2, a connected graph cannot have an
dd """ | d;, but if this happens then adding or subtracting a
egree-one vertex t® would “fix” this problem. Theorem
1 further states that additional conditions are required to en-
sure a simple connected graph, specifically that the degree of
. X any vertex cannot be “too large”. For example, the sequence
ordered according tdy > dz > ... > d,, there will usually {10,1,1,1} cannot correspond to a simple graph. We will
be many different graphs with vertices satisfyifg The pur- 4 attempt to explain all such conditions, except to note that

pose of this Appendix is to describe how to construct such iy, ements have been made to Theorem 1 that reduce the
element for different background sets, as well as to discuss tfyfner of sufficient conditions to be checked [99] and also
importance of choosing the “right” background set. that several algorithms have been developed to test for the ex-
istence of a graph satisfying a particular degree sequénhce

A.1  Among “Unconstrained” Graphs (e.g., see the section on “Generating Graphs” in [87]).

Our approach to constructing thg. element ofG(D) is
As a first case, consider the set of graphs having degreevéa-a heuristic procedure that incrementally builds the network
quenceD, with only the requirement that ;" , d; be even in a greedy fashion, by iterating through the set of all poten-
That is, we do not require that these graphs be simple (ital links O = {(4,j) : i < j;i,5 = 1,2,...,n}, which we
they can have self-loops or multiple links between verticesjder according to decreasing valuesigf;. In what follows
or that they even be connected, and we accordingly call this refer to the valud,d; as theweightof link (¢, j). We add
set of graphs “unconstrained”. Constructing the element links from the ordered list of elements @& until all vertices

As defined previously, the,,.. graph is the elementin some
background setr whose connectivity maximizes the quantit
s(9) = 2_(ij)ee did;j, Whered; is the degree of verteke V),
£ is the set of links that defing, andD = {d;,ds,...d,}
is the corresponding degree sequence. Recall that gnise
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have been added and the corresponding links satisfy the degeztces in/5 to them stubs we have
sequencd). To facilitate the exposition of this construction, m

we introduce the following notation. Led be the set of ver- _ o

tices that have been added to the partial graphsuch that ds = Zdl n Z Z d
B = V\ Ais the set of remaining vertices to be added. At each
stage of the construction, we keep track of tiuerent degree
for vertexi, denotedd;, so that it may be compared with its - Z (2851 = 1)

intended degred; (note thatd; = 0 for all ¢ € B). Define =l

w; = d; — d; as the number of remainingtubs that is, the 2Bl = m

number of connections still to be made to vertexNote that = 2|B| —wa.

values ofd; andw; will change during the construction pro- )

cess, while the intended degréeremains fixed. For any point 1 hus, at the point when (15) occurs, only trees can be con-
during the construction, defines = >, , @ to be the total Structed from the remaining verticesh O
number of remaining stubs id andds = ),z d; to be the

total degree of the unattached vertice8irThe valueso 4 and The Algorithm

dp are critical to ensuring that the final graph is connected a{ﬂd

ieB j=1keB,

m

: : -Here, we introduce the algorithm for our heuristic construc-
has the intended degree sequence. In particular, our algori |o?é and then discuss the conditions when this construction is

will make use of several conditions. X
guaranteed to result in theg,,, graph.
Condition A-1: (Disconnected Cluster). If at any point

during the incremental construction the partial grgphhas e STEPO (INITIALIZATION ):

wa = 0 while [B| > 0, then the final graph will be discon- Initialize the construction by adding vertex 1 to the
nected. partial graph; that is, begin with = {1}, B =
Proof: By definition @ 4 is the number of stubs available in {2,3,...,n}, andO = {(1,2),...}. Thus,wa = dy

the partial graply 4. If there are additional nodes to be added anddp = 3 _;_, di.

to the graph but no more stubs in the partial graph, then any . o1 (| nk SELECTION): Check to see if there are
incremental growth can occur only by forming an additional, anyadmissibleslements in the ordered li€l.

separate cluster. O

Condition A-1a: (Disconnected Cluster). If at any point () If |O] = 0, thenTERMINATE. Return the graph
during the construction algorithm the partial graph has gA-

w4 = 2 with |B] > 0, then adding a link between the two (b) If |O] > 0, select the element(s), denoted here as
stubs ing 4 will result in a disconnected graph. (i,7), having the largest weight;d;, noting that

there may be more than one of them. For each
such link(¢, j), checkw,; andw;: If either@w; = 0
or w; = 0 then removéi, j) from O.

(c) If no admissible links remain, return 8rep 1(a).

(d) Among all remaining links havingoth @w; > 0
andw; > 0, select the elemen(, j) with the
largest valuew; (where for each(i,j) w; is the
smallerof w; andw;), and proceed t&TEP 2.

Proof: Adding a link between the two stubs will yield4 = 0
with |B| > 0, thus resulting in Condition A-1. O

Condition A-2: (Tree Condition). If at any point during the
construction

dp = 2|B| — 4, (15)

then the addition of all remaining vertices and links to the e STEP2 (LINK ADDITION): For the link (4, j) to be

graph must becyclic (i.e., tree-like, without loops) in order added, consider two types of connections.
to achieve a single connected graph while satisfying the de-
gree sequence. —Type l:i € A,j € B. Here, vertex; is the

highest-degree vertex il with non-zero hubs
(i.e., d; = maxge dr andw; > 0) andj is the
highest-degree vertex i. Add link (4, j) to the
partial graphg 4: remove vertex from 5 and add
it to A, decrementy; and@;, and update botty 4

anddg accordingly. Removési, j) from the or-

Proof: To see this more clearly, suppose that for some inter-
mediate point in the construction process tiigt = m. That

is, there are exacthy» remaining stubs in the connected com-
ponent to which the remaining verticesfhmust attach. We
can prove that, in order to satisfy the degree sequence while
maintaining a single connected graph, each of thesgubs

must become the root of a tree. First, recall from basic graph dered listO.

theory that an acyclic graph connectingvertices will have - Typell:ii € A, j € A1 # j. Here,iandj are the
exactlyl = n — 1 links. DefineB; ¢ Bforj = 1,...,m largest vertices it for whichw; > 0 andw; > 0.
to be the subset of remaining vertices to be added to stub + Check theTree Condition

whereuz.”:lBj = B. Further assume for the moment that If dg = 2|B| — w4, then Type Il links are
Nj=, B; = 0, that is, each vertex if¥ connects to a subgraph not permitted. Remove the lin, j) from O
rooted at one and only one stub. Connecting the vertic8s in without adding it to the partial graph

to a subgraph rooted at stytwill require a minimum of| 3, | x Check theDisconnected Cluster Condition
links (i.e.|B;| — 1 links to form a tree among th#;| vertices If w4 = 2, then adding this link would re-
plus one additional link to connect the tree to the stub). Thus, sultin a disconnected graph. Remove the link
in order to connect the vertices in the #stas a tree rooted (i,4) from O without adding it to the partial
at stubj, we requireZkij dr = 2|B;| — 1, and to attach all graph
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x Else, add the link(i, j) to the partial graph: To show part (b), observe that aftg#| Type | link addi-
decrements; andw;, and updatev 4 accord- tions (each of which results in|B| = —1) the setB will be
ingly. Remove(i, j) from the ordered lis©. empty, thereby implying also thdi = 0. Since the relation-

shipdg = 2|B| — w4 continues to hold after each Type I link
Note: There is potentially a third case in whi¢he addition, then it must be thd3| = 0 andds = 0 collec-
B.j € B,i # j; however this can only occur if theretively imply w4 = 0. Furthermore, sincé& 4 = >, , w; and
are no remaining stubs in the partial graph Thisis 5. _ ;. 7. > o forall 4, thend; = 0 for all 4, and the degree
precluded by the test for the Disconnection Cond't'cgéqueﬁce is satisfied. ! ' 0
among Type Il link additions; however if the algorithm '
were modified to allow this, then this third case would An important question is under what conditions the Tree
represent the situation where graph construction cont@endition is met during the construction process. Rewriting
ues with a new (disconnected) cluster. Adding l{nkj) this condition asiz — [2|B| — w4] = 0, observe that when
to the graph would require moving both verticgeand; the algorithm is initialized irSTEP 0, we havedg = >, d;,
from B to A, decrementingy; andw;, updating both w4 = d; and thai3| = n — 1. This implies that after initial-
w4 anddg accordingly, and removingi, j) from the ization, we have
ordered listO.

e STEP 3 (REPEAT): Return toSTEP 1. dg — 21B| =4l = > di —2|B|l+dy =Y _di —2(n—1)
=2 i=1

Each iteration of the algorithm either adds a link from the list

in @ or removes it from consideration. Since there are a fin}tﬁ)te that minimal connectivity amongnodes is achieved by
number of elements i, the algorithm is guaranteed to tery iee having total degrég”_, d; = 2(n — 1), and this cor-
1= ]

minate in a finite number of steps. Furthermore, the orderg@nonds to the case when the Tree Condition is met at initial-

nature of© ensures the following property. ization. However, if the sequend® is graphical and the Tree
Proposition A-3: At each point during the above constructiorfondition is not met at initialization, thety — [2|B| — w.4] =
for any vertices € Aandj € B, d; > d;. 2z > 0, wherez = (3°1 ,d;/2) — (n — 1) is the number

of “extra” links above what a tree would require. Assuming
> 0, consider the outcome of subsequemik ADDITION
perations, as defined Brep 2:

Proof: By construction, ifi € A andj € B, then for some
previously added vertek € A, it must have been the case thaé
drd; > did;. Sincedy, > 0, it follows thatd,; > d;. O

A less obvious feature of this construction is whether or e As already noted, when a Type | connection is made
not the algorithm returns a simple connected graph satisfying (thus adding a new vertex to the graph), we have
degree sequende (if one exists). While this remains an open Adp = —dj, Awg = d;j — 2, andA|B| = -1,
question, we show that if the Tree Condition is ever reached, which in turn means that Type | connections result in
then the algorithm is guaranteed to return a graph satisfying A (dg — [2|B| — w4]) = 0.
the intended degree sequence.

Proposition A-4: (Tree Construction). Given a graphic se-
quenceD, if at any point during the above algorithm the Tree
Condition is satisfied, then

e Accordingly, when a Type Il connection is made
between two stubs ind, we have Aw, = -2,
and both |B| and dg remain unchanged. Thus,
A(dp — [2|B| — wa]) = —2.
(a) the Tree Condition will remain satisfied through all in- _ .
termediate construction, and So ifdg — [2|B| — wa] = 2z > 0, then subsequent link ad-
(b) the final graph will exactly satisfy the intended degr ditions will cause this value to either decrease by 2 or remain
qfhchanged, or in other words, adding additional links can only
sequence. bring the algorithm closer to the Tree Condition. Nonetheless,
our algorithm isnot guaranteed to reach the Tree Condition
Proof: To show part (a), assume thé = 2|B| — @4 and ob- for all graphic sequence® (i.e., we have not proved this),
serve that as a result only a link satisfying Type | can be addgithough we have not found any counter-examples in which
next by our algorithm. Thus, the next lirfk, j) to be added the algorithm fails to achieve the desired degree sequence. If
will havei € A and;j € B, and in doing so we will move ver-that were to happen, however, the algorithm would terminate
tex j from the working sef3 to .A. As a result of this update,with ; > 0 for some vertex € A, even thoughB| = 0.

we will haveAds = —d;, A|B| = —1, andAw4 = d; — 2. Nonetheless, in the case where the graph resulting from our
Thus, we have updated the following values. construction does satisfy the intended degree sequbnoe
, can prove that it is indeed the, .. graph.
dg = dp+ Adp
— dg—d, Proposition A-5: (General Construction). If the graphg
J resulting from our algorithm is a connected, simple graph sat-
isfying the intended degree sequerigethen this graph is the
2B —w'y = 2(1B|+ A|B|) — (W4 + A a) Smax graph ofG(D).
= 208l ~1) = (@4 +d; —2) Proof: Observe that, in order to satisfy the degree sequéhce
= 2|B| —wa—d; the graphy contains a total of = Y7, d;/2 links from the
dg — d; ordered listD. Since elements @ are ordered by decreasing

weight d;d;, it is obvious that, in the absence of constraints
Thus,dy = 2|B’| — @y, and the Tree Condition will continuethat require the final graph to be connected or satisfy the se-
to hold after the addition of each subsequent Type | {iglf). quenceD, a graph containing the firdtelements of® will
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maximize)_; ; ¢ did;. However, in order to ensure thats i € Aandm € Bto j € A. All other scenarios can be decom-

an element of the spac&(D), when selecting thélinks itis Posed into these two cases, thus proving that the algorithm’s

usually necessary to “skip” some elementsfand Condi- incremental construction for a tree is guaranteed to result in

tions A-1 and A-2 identify two simple situations where skiph€ smax graph.

ping a potential link is required. While skipping links under There are many important propertiessgf,. trees that are

other conditions may be necessary to guarantee that thediseussed in Section 4, which we now prove.

sulting graph satisfie® (indeed, the current algorithm is not

guaranteed to do this), our argument is thtitese are the only . .

conditionsunder which elements @ have been skipped dur—A'e"l Properties ofsmax Acyclic Graphs

ing constructiorandthe resulting graph does satisfy, then geca)l that our working definition of so-calldzetweenness

the resulting graph maximizegg). (also known asbetweenness centraljtjor a vertexv € V
To see this more clearly, consider a second gi@ph g in an acyclic graph is given by

also constructed from the ordered I8t LetE C O be the

(ordered) list of links in the graph, and let€ C O be the > screy Tst(V) a(v)

(ordered) list of links in the graph. Assume that these two Co(v) = > P nn—1)/2

lists differ by only a single element, namelye &£.e ¢ & s<tey Tst

ande ¢ £,¢é € £, where€\e = £\é. By definition, bothe where we use the notatia{v) to denote the number of unique
ande are elements of), and there are two possible cases fgyaths in the graph passing through nagend where the to-
their relative position within this ordered list (here, we use th& number of unique paths between vertex pairsndt is
notation “<” to mean “proceeds in order”). n(n —1)/2.

- - . . For a given node < V, let V(v) denote the set of neigh-
¢ Ifl aferiirf ’tggesneg Llj':r?gé')n Ia?v(\:/:voe? asim(l;’)t?satnfdcgrlgds boring nodes, where by definitid/ (v)| = d,. For all nodes
by weight usincggé cannbt result iﬁ a higher value forth_at are not the root of.the tree, exaqtly one of these nelghbors
- ’ will be “upstream” while the rest will be “downstream” (in
s(9). contrast, the root node has only downstream neighbors). De-

e If & < e, theng uses in place of a link that occurs “ear- fineb; to be the total number of nodes “connected” through the
lier” in the sequenc&—one that had been “skipped” inj‘" neighbor. Our convention will be to denote the “upstream”
the construction of. However, the “skipped” elementsneighbor with index O (if it exists); thus for all nodesother
of O will cor(espond to instances of Cpnditions_ A-1 anthan the root, one hagjigl b; = n — 1 (for the root node,
A-2, and using them must necessarily result in a gra&% aporobriate summation Ed" b = n —1). Using this
g ¢ G(D) because it is either disconnected or becau pprop j=1% =T ' 9
its degree sequence does not satisfy notation, it becomes clear that, for each nedether than the

root of the tree, we can express
Thus, for any other graph, it must be the case that either

5(g) < s(g) or g ¢ G(D), and therefore we have shown that B dy—1 dy—1 dy—1

g iS the smax graph. O Gv)= > bibk=bo »_ bx+ Y bib.
g, k=0 k=1 dik=1
i<k i<k

A.3 Among Connected, Acyclic Graphs Thus,(v) decomposes into two components: the first mea-

; n : the number of paths between upstream and downstream

In the special case when;_ ; d; = 2(n — 1), there exists sures

only one type of graph structure that will connectrathodes, nodebs tha} pa?ﬁ throug.h nq{trzll,eandhtheozzcr:}or;d measmtjres the

namely an acyclic graph (i.e., a tree). All connected acyc Him etr of pa ; passllngs_ rough n hat are te V\t/efen

graphs are necessarily simple. Because acyclic graphs nstream nodes only. Singe,_,.,, o5 is a constant for
rees containing: nodes, when comparing the centrality for

special case of elements ®(D), generatings,,.x trees is ; o -
; ; ; ; in t4g nodesu andv, we work directly witha(u) anda(v). In
achieved by making the appropriate Type | connections |ne§9 doing, for nodes andy we will denoteb", bt as the number

aforementioned algorithm. In effect, this construction is . R AR .

sentially a type of deterministic preferential attachment, ofénodes connected to each via their respegiieneighbor.

in which we iterate through all vertices in the ordered Iist One property of thesy,.x graph that will be useful for
and attach each to the highest-degree vertex with a remairshgwing that there exists monotonicity between node central-
stub. ity and node degree is given by the following Lemma.

In the case of trees, the arguments underlying sheg,
proof can be made more precise. Observe that the incre
tal construction of a tree is equivalent to choosing for ea
vertex in B the single vertex in4 to which it becomes at- "

nJreFr{pma 1. Let g be thesyax acyclic graph for degree se-
HenceD, and consider two nodes, v € V satisfyingd, >
. Then, it necessarily follows that

tached. Consider the choices available for connecting two 41 g1

verticesk,m € B to verticesi,j € A whered;, > d;, " pupu o N pope

di. > o, and observe that;dy + didy, > didy, + d;dy, > ; b0 > ; ;0% (16)
djdx+did, > d;jdy+d;d,,, where second inequality follows i<k i<k

from Proposition 3 while the first and last inequalities are by

assumption. There are two cases of interest. Firgh,; i~ 1 Note that the summation is ovdownstrearmodes only, thus
andw; > 1, then it is clear that it is optimal to conndadth Lemma 1 states that, for,.x trees, the contribution to central-
verticesk,m € B to vertexi € A. Second, ifio; = 1 and ity from paths between downstream nodes is greater for nodes
w; > 1, then it is clear that it is optimal to connefete B to  with higher degree.
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Proof of Lemma 1: Recalling from Proposition 1 thaf > b7
forallj =1,2,...,d, — 1, and noting thatl,, > d,,,

dy—1 dy,—1 dy—1d,—1 dy—1
wpu uUpu upu upU
PN N R N N S S 3
J k=1 J =1 j=1 k=d, Jik=dy
i<k i<k i<k
dy—1 dy—1d,—1 dy—1
> 3 g+ >0 S b+ > ovby
k=1 = = i k=d,
Jj<k =1 k=d, Jj<ku
dy—1
VU
> ) by

k=1
i<k

Thus, the proof is complete. O

Lemma 1 in turn facilitates a proof of the more general
statement regarding the centrality of nodes inghg, acyclic

graph, as stated in Proposition 3.

Proof of Proposition 3: We proceed in two parts.

First,
we show that if nodev is downstream from node, then

As before, we observe from Lemma 1 tlﬁguk;ll_ <k D3l >

Eil}g_:ll;j<k bj by, so proving that (u) > &(v) in this case re-

quires simply that we show

bg((nq)fbg) >b8<(n71)7b8).

du—1
J=Lij#v

by ((n = 1) — b5
dy—1
(bg +14 2 b;)

JFv

(19)

Observe thaby = b +1+ > bY. As aresult, we have

-

dy—1

(=1 —v—1-3 )
g

dy—1

bg((n - bg) + (1 + Z b;)

Jv

a(u) > a(v). Second, we show thatifis in a different branch
of the tree from (i.e., neither upstream nor downstream from
u) butd,, > d,, theng(u) > 5 (v).

Starting first with the scenario wherés downstream from

((n ~ 1) - 2bp — (1 + dg b;))

v

u, there are two cases that need to be addressed.

Case 1nodev is directly downstream from node and nod

u is the root of the treeObserve that we can represeéiiv) as

dy—1 dy—1

du=l

Sincel + 3 ;" .., b} > 0, (19) is true if and only if

e
dy—1

(n—1) -2 — (1+ be;) <0

g(v) = by > b+ > by =
k=1 71~<:kl
. ! L which is equivalent to
= (Zb;) (b:j - 1) + )by, (A7) du=1
. . U U U
= S (n—1)—by < by+1+ ) b
j=1
sinceby = S0, ., b and also thaby = 1+ S0 7" by - ]:“ X
For nodeu, we have — —
. Db o< b1+ > by
u k=1 j=1;j#v
6(u) = bubz u u
J_Zk; J by < by+1.
i<k
d, d, This final statement will always be true for thg., tree, since
_ pu u upu the “upstream” branch from nodewill always contain at least
= b ; b+ ;1 il (18) as many nodes as the downstream branch corresponding to
P <K kv nodev.

Comparings(u) anda(v), we observe that the first term

of These two cases prove that any “upstream” node in the

(18) is clearly greater than the first term of (17). Furthermoreyax tree is always more central than any “downstream” node,
by Lemma 1, we also observe that the second term of (18pi#&ce by extension if is directly upstream from thena (u) >
also greater than the second term of (17). Thus, we concldde), and ifv is directly upstream fronw thena (v) > & (w).

for this case thaf (u) > & (v).

It therefore follows that (u) > &(w), and, by induction, that
the “root” node of thes . tree (having highest degree) is the

Case 2nodev is directly downstream from node but node most central within the entire tree.
u is notthe root of the tree. Recognizing for any nodnat

Z?;‘ll bj = (n— 1) — by, we write

dy—1
Glu) = by(n—1—by)+ > biby

g

dy—1
G(v) = by(n—1-bf)+ > bby

jk=1
i<k

Case 3Now we turn to the case where nodés not directly
downstream (or upstream) from nodeAs before, we write

du—1 du—1

— U U U .U

o(u) = by E by + E b3 by,
k=1 Jk=1;j<k
dy—1 dy—1

o) = B+ S w
k=1 Jk=1;j<k
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Case 1.

Figure 11: Centrality of high-degree nodes in the smax tree.

As with the previous cases, by Lemma 1 we know thatimber of “additional” connections for each node at either end

Shdl o pupu > S0l bt so proving that () > Of the chosen link). LeD = {d; —1,d>

J,k=1;5<k “j jk 1<k VJ
a(v) in this case requires simply that we show that

dy—1 dy,—1
by > b > 05y by (20)
k=1 k=1
We rewrite each of these as
d,—1 dy,—1
b= Yo b+ (- o)
j=1 j=1
dy—1 dy—1
T by + (o5 - > by)
j=1 j=1

so that we have

dy—1 du—1
U v __ LU U
b= D b=t = Db
Jj=1 Jj=1

which is a non-negative constant, that we denot&hus,

dy—1 dy,—1 dy—1 dy—1

- = (- n).
j=1 j=1 =1 j=1

which is also non-negative sm@ o b“ > Zd”_l by, and

so (20) also holds. Thus, we have shown tJﬁ(at) > a(v)
in the s, tree whenever, > d,, thus completing the

proof.

B The s(g)-Metric and Assortativity

Following the development of Newman [67], I&({D; =
k) be the node degree distribution over the ensemble

1)/ 35epiP0)

to be the normalized distribution eémaining degredi.e., the

k}) = P(k)

of graphs and defin@ (k) = (k + 1)P(k +

,2’...’dnfl}de-
note the remaining degree sequencegforhis remaining de-
gree distribution is)(k) = >, .5 Q(k, k'), whereQ(k, ')

is the joint probability distributionamong remaining nodes,
i.e.,Qk,k') = P{D; = k+1,D; = k' +1|(i,5) € £}).

In a network where the remaining degree of any two ver-
tices is independent, i.eQ(k, k') = Q(k)Q(k'), there is

no degree-degree correlation, and this defines a network that
is neither assortative nor disassortative (i.e., the “center” of
this view into the ensemble). In contrast, a network with
Q(k, k') = Q(k)d[k — k'] defines a perfectly assortative net-
work. Thus, graph assortivityis quantified by theverageof
Q(k, k") over all the links

2kwen FF QK K) — Q(R)Q(K))
Ykwen B (QK)O[k — K] — Q(R)Q(K))’

with proper centering and normalization according to the value
of perfectly assortative network, which ensures that< r <

1. Many stochastic graph generation processes can be under-
stood directly in terms of the correlation distributions among
these so-called remaining nodes, and this functional form fa-
cilitates the direct calculation of their assortativity. In particu-
lar, Newman [67] shows that both ErstRenyrandom graphs

and Barahsi-Albert preferential attachment growth processes
yield ensembles with zero assortativity.

Newman [69] also develops the following sample-based
definition of assortativity

[E(i,j)eé‘ didj/l} - [Z(i,j)eé’ %(di + dj)/l}2
[Ssyee 5@+ )1 =[S ee (i +dy)/1]

which is equivalent to (14).

While the ensemble-based notion of assortativity in (21)
has important differences from the sample-based notion of
assortativity in (14), their relationship can be understood by
viewing a given graph as a singleton on an ensemble of graphs
(i.e., where the graph of interest is chosen with probability 1
from the ensemble). For this graph, if we define the number
of nodes with degrek as N (k), we can derive the degree dis-
tribution P(k) and the remaining degree distributi@ik) on
the ensemble as

T =

(21)

r(g) =

)

(k+1)P(k+1) _

(k+ )N (k + 1)
>ieniP() '

Y jep N ()

Q(k) =
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Also it is easy to see that node adjacency matrix of non-negative real values, represent-
ing the “link weights” in the pseudograph. That s, links are not

Z d; = Z kN (k) = 21, constrained to integer values but can exist in fractional form.
; The zero assortative pseudograph will have symmetric weights
i€V keD

given by

Zd? = Y K*N(k), | | _ |
c () (4) - () (4) -

Z an : Z KN (E), Thus, the weight;; for each link emanating out of nodés in
proportion to the degree of nogein a manner that is relative

to the sum of all node degrees. In general, the graphs of interest

wherem is a positive integer. to us are undirected, however here it is notationally convenient

. . to consider the construction of directed graphs. Using these
Equations (21)and (;4) can be related term-by-terrr) n t\*/?/(laéights, the total weight among all links entering and exiting

following manner. The first term of the numerat@¥(k, k'), articular node eauals

represents the joint probability distribution of the (remaining‘}&p q

degrees of the two nodes at either end of a randomly chosen § o e g
link. For a given graph, let(k, k') represent the number of Z aij + Z aki = di/2+di/2 = d;.

S% keD

links connecting nodes with degréeo nodes with degre#'. jev kev
Then, we can writ€)(k, k') = I(k, k') /1, and hence Accordingly, the total “link weights” in the pseudograph are
1 equal to
> EKQRE) = 7 > did;. Y ai =) dj/2=1,
k,k’€D (i,5)€€ 1,jEV JjeEVY

where! corresponds to the total number of links in a tradi-

The first term of the denominator ofin equation (21) can beyjonal graph. The-metric for the pseudogragh, represented

written as by matrix A can be calculated as
/ / _ 2
S owawik -k = TR @ gy - Y da
k,k'eD keD jeviev
_ Ykep(k+1)PN(k+1) d: d:
ZicpiNG) - () (5)] @
Z< vd? JjE 1€
= Lv (23) d2 d2
21 B Zjev 7 Ziev i
and the “centering” term (in both the numerator and the de- 2<Zkev dk)
nominator) is 9
2 . (Zjev d?)
N 41 ’
Yo KKQRQK) = | Y kQ(K) (24)
kkeD keD and we have
= (ZkED(k+1)2N(k+1)>2 5(ga)  _ <Ziev d?>2
> ieniNG) l 2 7
_ Diev i ’ (25) which is equal to (25).
N 21 ' In principle, one could imagine a deterministic procedure

that uses the structural pseudographto generate the zero

In both of these cases, the offset of a constant in representisgortativity graph among an “unconstrained” background set
the degree sequence BsversusD does not effect the over-G. That is, graphs resulting from this procedure could have
all calculation. The relationships between the ensemble-basedtiple links between any pair of nodes as well as multiple
quantities (LHS of 22) and (LHS of 24) and their sampleself-loops and would not necessarily be connected. The chal-
based (i.e., structural) counterparts (23) and (25) holds (&ge in developing such a procedure is to ensure that the re-
proximately) when the expected degree equals the actual sidting graph has degree sequence equdD t@lthough one
gree. can imagine that in the limit of large graphs this becomes less

To see why (25) can be viewed as the “center”, we coffan issue. By extension, it is not hard to conceive a stochas-
sider the following thought experimentvhat is the structure tic process that uses the structural pseudogfapto generate
of a deterministic graph with degree sequer2and having @ statistical ensemble Qf graphs having expected assortativity
zero assortativity?In principle, a node in such a graph willequal to zero. Infact, itis not hard to see why the GRG method
connect to any other node in proportion to each node’s degiige/ery close to such a procedure.
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