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Abstract— In this paper, we take a control-theoretic approach
to answering some standard questions in statistical mechanics.
A central problem is the relation between systems which appear
macroscopically dissipative but are microscopically lossless. We
show that a linear macroscopic system is dissipative if and
only if it can be approximated by a linear lossless microscopic
system, over arbitrarily long time intervals. As a by-product, we
obtain mechanisms explaining Johnson-Nyquist noise as initial
uncertainty in the lossless state, as well as measurement back
action and a trade-off between process and measurement noise.

I. INTRODUCTION

The derivation of thermodynamics as a theory of large
systems which are microscopically governed by fundamental
laws of physics (Newton’s laws or quantum physics) has a
large literature and tremendous progress for over a century
within the field of statistical physics. See for instance [1] for
a physicist’s account of statistical mechanics. Nevertheless,
from a control theorist’s perspective, there are inadequacies
in the existing treatment both with the level of mathematical
rigor, and the applicability to far-from-equilibrium systems,
particularly when subject to complex regulatory mechanisms.
Substantial work has already been done in formulating vari-
ous results of classical thermodynamics in a more mathemat-
ical framework (e.g. [2]–[6] is a small sample), but statistical
mechanics has received much less comparable attention. This
paper focuses on simple problems in statistical mechanics in
which the issue of rigor can be pursued, but aims also to set
the stage for broader applicability.

In particular, we construct a simple and clear control-
theoretic modeling framework in which the only assumptions
on the nature of the physical systems are conservation of
energy and causality and all systems are of finite dimension
and act on finite time horizons. We construct high-order loss-
less systems that approximate low-order dissipative systems
in a systematic manner, and prove that a linear model is
dissipative if and only if it is arbitrarily well approximated
by lossless causal linear systems over an arbitrary long time
horizon. We show how the error between the systems depend
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on the number of states in the approximation and the length
of the time horizon. Since human experience is based on a
finite window of space and time, we argue that no human
can directly distinguish between a low-order macroscopic
dissipative system and its high-order lossless approximation.

The lossless systems studied here are consistent with
classical physics, since they conserve energy, are causal, and
are time reversible. Uncertainty in their initial state gives
a simple explanation of the Johnson-Nyquist noise that can
be observed at a macroscopic level. We also derive some
well-known results from statistical mechanics, including the
fluctuation-dissipation theorem. As a further application,
we study the implications of these results for an idealized
measurement device, and exhibit a back-action effect, that
there is no precise measurement without perturbation on the
measured system, that arises naturally in a purely classical
setting.

We hope this paper is a step towards building a framework
for understanding fundamental limitations in control and
estimation that arise due to the physical implementation
of measurement and actuation devices. We defer many
important and difficult issues here such as how to actually
model measurement devices realistically. It is also clear that
this framework would benefit from a behavioral setting [7].
However, for the points we make with this paper, a conven-
tional input-output setting with only regular interconnections
is sufficient. Aficionados will easily see the generalizations,
the details of which might be an obstacle to readability for
others. Perhaps the most glaring unresolved issue is how to
best motivate the introduction of stochastics. In conventional
statistical mechanics, a stochastic framework is taken for
granted, whereas we aim to explain if and when stochastics
arise naturally, and in this we are only partially successful.

The organization of the paper is as follows: In Section II,
we define the class of linear lossless/causal systems. In Sec-
tion III, we derive lossless/causal approximations of memo-
ryless dissipative systems and obtain Johnson-Nyquist noise.
In Sections IV and V, we discuss interconnections of systems
and introduce an idealized measurement device with back
action. Finally, in Section VI we generalize the procedure
from Section III to a class of linear dissipative systems with
memory, and in Section VII obtain the fluctuation-dissipation
theorem.

II. LOSSLESS/CAUSAL LINEAR SYSTEMS

In this paper, we consider linear systems in the form
ẋ(t) = Jx(t) + Bu(t), x(t) ∈ R

n,

y(t) = BT x(t),
(1)

Proceedings of the 2007 American Control Conference
Marriott Marquis Hotel at Times Square
New York City, USA, July 11-13, 2007

WeB10.1

1-4244-0989-6/07/$25.00 ©2007 IEEE. 1033



where J = −JT and (J,B) is controllable. It is assumed
that the input u(t) and the output y(t) are scalars. We define
the internal energy of (1) as

U(x(t)) ,
1

2
x(t)T x(t).

We argue these systems have desirable “physical” properties.
These properties are losslessness and causality.

Lossless [8], [9] means that the internal energy satisfies
dU(x(t))

dt
= x(t)T ẋ(t) = y(t)u(t) , w(t),

where w(t) is the work rate on the system. If there is no
work done on the system, w(t) = 0, then the internal energy
U(t) is constant and conserved. If there is work done on the
system, w(t) > 0, the internal energy increases. The work,
however, can be extracted again, w(t) < 0, since the energy
is conserved and the system is controllable. Conservation of
energy is a common assumption on microscopical models in
statistical mechanics [1].

Causal here means that there is no direct term between
the input u and the output y. This means that there is no
instantaneous reaction of the system. Also this is a reasonable
physical assumption.

Definition 1: Systems (1) that satisfy the above assump-
tions are simply called lossless/causal systems.
Later we will seek approximations of dissipative systems in
the class of lossless/causal systems.

The lossless/causal systems are rather abstract but have
properties that we argue are reasonable from a physical point
of view, as illustrated by the following example.

Example 1: The inductor-capacitor circuit in Fig. 1 with
u = i and y = v1 can be modeled by the lossless/causal
system

ẋ =

0
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´
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√
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√

C2v2

´

,
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2
xT x =

1

2
(C1v2

1
+ L1i2

1
+ C2v2

2
), w = yu = v1i.

In fact, all linear minimal lossless single-input–single-output
system with supply rate y(t)u(t) can be written in the form
(1), see [9, Theorem 5].

III. LOSSLESS/CAUSAL APPROXIMATIONS OF
DISSIPATIVE MEMORYLESS SYSTEMS

In this section, we see how dissipative models, mod-
els where energy disappears, can be approximated by the
lossless/causal systems. We start with simple memoryless

PSfrag replacements

i v1, C1 v2, C2

i1, L1

+ +

− −

Fig. 1. The inductor-capacitor circuit in Example 1.

models, which give rise to heat baths and Johnson-Nyquist
noise.
A. Dissipative memoryless systems

Many times macroscopic systems, such as resistors, can
be modeled approximately by simple input-output relations

y(t) = ku(t), (2)
where k is a scalar. If k > 0, the system is dissipative since
we can never extract any work. This is because the work
rate is always positive, w(t) = y(t)u(t) = ku(t)2 ≥ 0, for
all t and u. Hence, (2) is neither lossless nor causal. Next,
we show how we can approximate (2) arbitrarily well with
a lossless/causal system over finite, but arbitrarily long, time
horizons.

First, choose a time interval of interest, [0, τ ], and rewrite
(2) using a convolution integral

y(t) =

∫ τ

0

kδ(t − s)u(s)ds, (3)

when u is at least continuous and has compact support
on [0, τ ], and δ is the Dirac distribution. Let us call τ
the recurrence time of the model. The recurrence time
interval contains all the time instants where we perform
experiments on the model, and can be very long. Over this
time interval, the system is equally well modeled by the
impulse response κ(t) =

∑∞
l=−∞ kδ(t − l2τ) which is a

2τ -periodic distribution. κ(t) can be expanded in a Fourier
series with convergence in the sense of distributions:

κ(t) ∼ k

2τ
+

∞
∑

l=1

k

τ
cos lω0t, (4)

where ω0 = π/τ . Define the truncated Fourier series by
κN (t) , k/(2τ) +

∑N

l=1(k/τ) cos lω0t. We can split κN (t)
into its causal and anti-causal parts:

κN (t) , κc
N (t) + κac

N (t)

κc
N (t) = 0 (t < 0), κac

N (t) = 0 (t ≥ 0).

We can realize the causal part κc
N (t) as the impulse response

of a lossless/causal system of order 2N +1 with the matrices

JN =





0 ΩN 0
−ΩT

N 0 0
0 0 0



 , ΩN = diag{ω0, 2ω0, . . . , Nω0},

CN =

√

k

τ

(

1 . . . 1 0 . . . 0
1√
2

)

, BN = CT
N .

(5)
That the series (4) converges in the sense of distributions
means that for all smooth u of compact support on [0, τ ] we
have that

ku(t) = lim
N→∞

∫ τ

0

(κac
N (t − s) + κc

N (t − s)) u(s)ds.

A closer study of the two terms in the integral reveals that

lim
N→∞

∫ τ

0

κac
N (t − s)u(s)ds =

1

2
ku(t+),

lim
N→∞

∫ τ

0

κc
N (t − s)u(s)ds =

1

2
ku(t−),
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because of the anti-causal/causal decomposition. Hence,
since u is continuous, we can model y(t) = ku(t) with only
the causal part if we normalize the causal part with a factor
two.

We identify the lossless/causal approximation of (2) with
a linear operator KN : C2(0, τ) → C2(0, τ):

yN (t) = KNu(t) : yN (t) =

∫ t

0

2κc
N (t − s)u(s)ds.

It is realized by the triple (JN ,
√

2BN ,
√

2CN ). We can
bound the approximation error as seen in the following
proposition.

Proposition 1: Assume that u ∈ C2(0, τ) and u(0) = 0.
Let y(t) = ku(t), k > 0, and yN (t) = KNu(t). Then

|y(t) − yN (t)| ≤ 2kτ

π2N

(

|u̇(t)| + |u̇(0)| + ‖ü‖L1[0,t]

)

,

for t in [0, τ ].
Proof: We have that y(t) − yN (t) =

∑∞
l=N+1(2k/τ)

∫ t

0
cos lω0(t − s)u(s)ds, t ∈ [0, τ ].

We have changed the order of summation and integration
because this is how the value of the series is defined
in distribution sense. We proceed by using repeated
integration by parts on each term in the series. We have
∫ t

0
cos lω0(t−s)u(s)ds = [

∫ t

0
sin lω0(t−s)u̇(s)ds]/(lω0) =

[u̇(t) − u̇(0) cos lω0t −
∫ t

0
cos lω0(t − s)ü(s)ds]/(l2ω2

0).
Hence, we have the bound |y(t) − yN (t)| ≤
(2k/τ)

∑∞
l=N+1

(

|u̇(t)| + |u̇(0)| +
∫ t

0
|ü(s)|ds

)

/(l2ω2
0).

Since
∑∞

l=N+1 1/l2 ≤ 1/N , we can establish the bound in
the proposition.

The proposition shows that by choosing N sufficiently
large, we can approximate the memoryless model (2) as well
as we like with a lossless/causal system, if inputs are smooth.
It is a reasonable assumption that inputs, such as voltages,
are smooth since we usually cannot change them arbitrarily
fast due to physical limitations. Physically, we can think of
2N+1 as the number of degrees of freedom in a resistor. This
is usually a number with the size of Avogadro’s number, N ≈
1023. Then the recurrence time τ can be very large without
a significant error. This explains how the dissipative model
(2) is consistent with a physics based on energy conserving
systems.

B. Initial conditions in KN

The general solution to the lossless/causal approximation
KN is

yN (t) =
√

2BT
NeJN tx(0) +

∫ t

0

2κc
N (t − s)u(s)ds, (6)

where JN and BN are defined in (5), and x(0) is the initial
state. It is the second part of the solution that approximates
ku(t). The first part, the homogeneous solution, is not
desired in the approximation, but is always present for a
linear dynamical system. Next, we study the influence of
this term.

Proposition 1 suggests that we will need a system of
incredibly high order to approximate the dissipative system

(2) on a reasonably long time horizon. When dealing with
systems of such extremely high dimensions, it is reasonable
to assume that the exact initial state x(0) is not known.
Therefore, we will take a statistical approach to study its
influence.

We have that

EyN (t) =
√

2BT
NeJN t

Ex(0) +

∫ t

0

2κc
N (t − s)u(s)ds,

if the input u is deterministic and known. The covariance
function for yN (t) is then

RyN
(s, t) , E[yN (t) − EyN (t)][yN (s) − EyN (s)]

= 2BT
NeJN tXe−JN sBN , (7)

where X is the covariance of the initial state,

X , E[x(0) − Ex(0)][x(0) − Ex(0)]T . (8)

In Section III-D, we discuss how it is reasonable to choose
X . The arguments are information theoretical and physical
in nature. Both arguments result in an equipartition-type
statement that result in the concept of temperature. For
now, let us only define the notion of temperature of a
lossless/causal system.

Definition 2 (Temperature): A lossless/causal system with
deterministic input has temperature T (T is scalar) if

Ry(s, t) = T · BT eJ(t−s)B.
If X commutes with JN and admits BN as an eigenvector

with eigenvalue T , (7) satisfies Definition 2 and we have (in
the sense of distributions)

RyN
(s, t) → 2Tkδ(t − s), t, s ∈ [0, τ ], N → ∞. (9)

A stochastic signal with this property is called white noise.

C. Johnson-Nyquist noise
From Proposition 1, (6), and (9) we obtain the following

proposition.
Proposition 2: In the limit when N → ∞, the loss-

less/causal system KN , given by (6), converges to

y∞(t) = ku(t) +
√

2Tkw(t), t ∈ [0, τ ], (10)

when it has temperature T . The signal w(t) is stochastic
white noise of unit intensity. The input u(t) should satisfy
the assumptions of Proposition 1.

Definition 3 (Heat bath): A system (10) is called a heat
bath of strength k, temperature T , and recurrence time τ .

Hence, in the limit, the uncertainty in the initial state of the
microscopic lossless/causal system KN is transformed into
white noise added to the output of the macroscopic model
(2). This is a generalization of Johnson-Nyquist noise of
resistors, see [10], [11]: It is a fact that careful measurements
of the voltage across a resistor reveal that there is noise
that depends on the resistance and temperature. Usually this
noise is modeled by stochastic white noise. The noise is
often explained using methods from statistical mechanics and
circuit theory. See, for example, [1]. Here we obtain exactly
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the same result using lossless/causal systems and a suitable
definition of temperature.

Remark 1: That Proposition 2 indeed leads to the standard
form of the Johnson-Nyquist noise of a resistor can be seen
as follows: We have v = Ri from Ohm’s law. Assume that
i = 0 and study the variance of v(t) through a low-pass filter
of bandwidth B. Then we have, since |R̂w(jω)|2 = 1 (white
noise), Ev(t)2 =

∫ B

−B
2TR|R̂w(jω)|2dω = 4TRB, which

is usually how Johnson-Nyquist noise is presented. Notice
that Boltzmann’s constant here should be included in the
temperature T . It is also interesting to notice that the factor
two in the noise intensity 2TR in our derivation originates
from the causal/anti-causal decomposition in the construction
of KN . A very different argument is used in the derivation
in [1].

D. Equipartition of energy
In this section, we discuss how the covariance of the

initial state x(0) of KN , defined in (8), should be chosen.
This discussion leads up to the definition of temperature,
Definition 2. The first argument is information theoretical,
and the second argument has a more physical flavor. As
mentioned in the introduction, how to properly motivate the
introduction of the stochastic element is not easy. Here we
just give two arguments whose consequences are compatible
with macroscopic observations, if Johnson-Nyquist noise is
modeled by stochastic white noise. Neither of the arguments
is entirely convincing, and we hope to return to these issues
elsewhere.

MaxEnt argument: The first argument is based on the
MaxEnt principle, due to Jaynes [12], [13]. This means that
we should assign the distribution of x(0) that maximizes
the Shannon entropy of the distribution subject to all known
constraints. The procedure is justified because it leads to the
least biased guess. Assume that the expected internal energy
of the initial state is E:

E = E
1

2
x(0)T x(0) =

1

2
Ex(0)T

Ex(0) +
1

2
TrX.

Maximization of the Shannon entropy subject to this con-
straint leads to a distribution of x(0) that is Gaussian with
mean zero and with covariance matrix

X =
2E

2N + 1
· I2N+1.

If we define the temperature T as 2E/(2N + 1) and use
this X in (7), we see that the covariance function of yN

satisfies the requested relation in Definition 2. This means
that the energy is distributed equally between all degrees
of freedom. We have equipartition. The temperature is the
expected amount of energy (up to a factor two) of each
degree of freedom. This coincide with the usual notion of
temperature in physics.

White noise argument: Assume that KN had temperature
zero a long time back, i.e., x(−h) = 0 where h is a large
number. We will be more precise about the size of h later.
We start our experiment at time t = 0 and wonder what a
reasonable assumption on the initial state x(0) is. Let us now

assume that KN has been subject to low-intensity white noise
over the time interval [−h, 0], i.e., Eu(t)u(s) = (i/h)δ(t −
s), Eu(t) = 0, where i is an intensity constant. One can say
that KN has been weakly connected to an even larger heat
bath for a long time.

In the end, we want to compute RyN
as defined in (7),

and it is of interest to compute X . We have

X = Ex(0)x(0)T =
2i

h

∫ 0

−h

e−JN sBNBT
NeJN sds

=
2i

h

∫ 0

−h

k

τ

























cosω0s
cos 2ω0s

...
sin ω0s
sin 2ω0s

...
1/
√

2

















































cosω0s
cos 2ω0s

...
sin ω0s
sin 2ω0s

...
1/
√

2

























T

ds.

Notice that if h = 2τ we have that X = (ik/τ)I2N+1. This
is the amount of time the white noise needs to excite all the
modes equally. When h > 2τ we can use that

lim
h→∞

1

h

∫ 0

−h

cos kω0s cos lω0s ds =
1

2
δk−l

lim
h→∞

1

h

∫ 0

−h

sin kω0s cos lω0s ds = 0.

Hence we have that X → (ik/τ)I2N+1, when h → ∞, and
from (7) that

RyN
(s, t) = 2BT

NeJN tXe−JN sBN =
ik

τ
2BT

NeJN (t−s)BN .

According to Definition 2, the temperature of KN is T =
ik/τ .

IV. INTERCONNECTIONS

Definition 4: The physical interconnection of the loss-
less/causal system (J1, B1, B

T
1 ) to the lossless/causal system

(J2, B2, B
T
2 ) is given by

d

dt

[

x1

x2

]

=

[

J1 −B1B
T
2

B2B
T
1 J2

] [

x1

x2

]

+

[

B1

0

]

u

y = BT
1 x1.

The physical interconnection is still lossless/causal. The
interconnection makes physical sense if one studies inter-
connections of circuit or mechanical models, for example. It
is also a neutral interconnection, as defined in [8]. Motivated
by this definition, and that we in Section III showed that the
lossless/causal system (JN ,

√
2BN ,

√
2CN ) converges to a

heat bath, we make the following definition.
Definition 5: The physical interconnection of the loss-

less/causal system (J,B,BT ) to a heat bath of strength k,
temperature T , and recurrence time τ , is given by

ẋ(t) = (J − kBBT )x(t) + Bu(t) − B
√

2kTw(t)

y(t) = BT x(t),
(11)

for t ∈ [0, τ ], where w is stochastic white noise of unit
intensity.
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Notice that even though (J,B,BT ) is lossless, when
connected to the heat bath, (11) looks dissipative since the
eigenvalues of J − kBBT have negative real parts. This is
essentially a Langevin equation.

V. BACK ACTION OF LINEAR MEASUREMENTS

As a simple application of the results in Section III and the
definitions in Section IV, consider the problem of measuring
the output y(t) of the lossless/causal system (J,B,BT ). For
this purpose, we define an idealized measurement device

ym(t) = kmy(t), (12)

where km > 0 is a scalar, and the signal ym(t) is such
that we can read it out perfectly. With such a measurement
device, we can also read out the output y(t) = ym(t)/km

perfectly.
Now we construct a slightly less idealized measurement

device by replacing (12) by a lossless/causal approximation
of (12). This is a more physical device, as argued before.
According to Section III, we obtain

ym(t) = kmy(t) +
√

2kmTmw(t), (13)

in the limit if the initial state of the measurement device is
not perfectly known. Tm is the temperature of the device,
and (13) is essentially a heat bath. If we make a physical
interconnection of (J,B,BT ) to (13), we obtain

ẋ(t) = (J − kmBBT )x(t) − B
√

2kmTmw(t),

ŷ(t) , ym(t)/km = BT x(t) +

√

2Tm

km

w(t),
(14)

using (13) and Definition 5, where ŷ(t) is an estimate of
y(t). Acting on the system (14) we have

process noise: p(t) ,
√

2kmTmw(t)

measurement noise: m(t) ,

√

2Tm

km

w(t).

The measurement device generates process noise and dissi-
pation. This is called back action of measurements. This is a
well-known phenomenon in quantum physics. Here we ob-
tain a similar effect based on lossless/causal approximations
and using physical interconnections. Also notice that it holds
that

Ep(t)m(s) = 2Tmδ(t − s). (15)

The cross-covariance between process and measurement
noise is independent of the amplification km of the mea-
surement device. For large km, we get a good estimate of y,
but on the other hand, the process noise gets large. Hence,
there is a trade-off. It is only the temperature Tm of the
measurement device that controls the trade-off in (15).

VI. LOSSLESS/CAUSAL APPROXIMATIONS OF
DISSIPATIVE SYSTEMS WITH MEMORY

In this section, we generalize the procedure from Sec-
tion III to dissipative systems that have memory. We consider

strictly stable linear causal systems G with impulse response
g. Their input-output relation is given by

y(t) =

∫ t

0

g(t − s)u(s)ds. (16)

The system (16) is dissipative with respect to the work rate
w(t) = y(t)u(t) if

∫ T

0
y(t)u(t)dt ≥ 0, for all T ≥ 0 and

admissible u(t). An equivalent condition, see [14], is that
the transfer function is positive real

Re ĝ(jω) ≥ 0 for all ω. (17)
Here ĝ(jω) is the Fourier transform of g(t).

The following theorem shows that the system (16) is
dissipative if and only if it can be approximated arbitrarily
well by a lossless/causal system over any finite time horizon
[0, τ ].

Theorem 1: Assume that G is a linear (causal) system
with impulse response g, such that g ∈ L1 ∩ L2(0,∞) and
ġ ∈ L1(0,∞). Then G is dissipative if and only if for all
ε > 0 and τ > 0 there is a lossless/causal linear system Gτ

with impulse response gτ such that
‖g − gτ‖L2[0,τ ] ≤ ε. (18)

Proof: See appendix.
Notice that Theorem 1 shows that a large class of dissipative
systems (macroscopic systems) can be approximated by the
lossless/causal systems we introduced in Section II.

VII. FLUCTUATION-DISSIPATION THEOREM

If a lossless/causal system satisfies Definition 2, then by
definition we have

Ry(s, t) = T · BT eJ(t−s)B.

This can be said to be the fluctuation of the system. The
response of the lossless/causal system to an impulse u(t) =
δ(t) is

BT eJtB.

If the lossless/causal system approximates a dissipative sys-
tem over [0, τ ], see Theorem 1, then the impulse response
decays over this time interval. This represents the dissipation
of the system. The expressions of the fluctuation and dissi-
pation are equal up to a constant, the temperature T . This is
a property that can be observed in physical systems close to
equilibrium (and hence can be linearized).

VIII. CONCLUSIONS

In this paper, we defined the class of lossless/causal sys-
tems and used them to approximate dissipative systems. We
obtained an if and only if characterization and gave explicit
error bounds that depend on the time horizon and the order
of the approximations. When applied to memoryless models,
we saw that Nyquist-Johnson noise (macroscopic measurable
noise) can be explained by uncertainty in the initial state of
a lossless/causal approximation of very high order. We also
saw that using these techniques, it was relatively easy to
obtain a back-action effect of measurements. This gave rise
to a trade-off between process and measurement noise.
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APPENDIX

Proof of Theorem 1: We first show the ’if’ direction.
Assume the opposite: There are lossless approximations that
satisfy (18) even though G is not dissipative. If G is not
dissipative, we can find an input u(t) over an interval [0, T ]

such that
∫ T

0
y(t)u(t)dt = −K1 < 0, i.e., we extract energy

from G even though its initial state is zero. Call ‖u‖L1[0,T ] =
K2 and ‖u‖L2[0,T ] = K3. For any τ > T and ε > 0 we thus
have

∫ T

0
(yτ (t) − y(t))u(t)dt ≤ εK2K3, by the assumption

that lossless approximations Gτ exist and using the Cauchy-
Schwarz inequality. But the lossless approximation satisfies
∫ T

0
yτ (t)u(t)dt = 1

2xτ (T )T xτ (T ), since xτ (0) = 0. Hence,
−

∫ T

0
y(t)u(t)dt = K1 ≤ εK2K3 − 1

2xτ (T )T xτ (T ) ≤
εK2K3. But since ε can be made arbitrarily small, this leads
to a contradiction.

To prove the ’only if’ direction we explicitly construct a
Gτ that satisfies (18). We first need to make some definitions.
Let C , (2/π)‖ġ‖L1

. Also define δ(t) ,
∫ ∞

t
|g(s)|ds

that is a continuously decreasing function that satisfies
limt→∞ δ(t) = 0. We need that the recurrence time τ is
such that

δ(τ) ≤ ε2

8C
. (19)

If the chosen τ does not satisfy (19), we can without loss of
generality increase it to the smallest τ that satisfies (19). It
is assumed that this has been done in the following.

The model Gτ we construct is based on a truncated version
of the impulse response gN,τ (t) where

gN,τ (t) =
a0

2
+

N
∑

k=1

ak cos
kπt

τ
, t ∈ [0, τ ],

ak =
2

τ

∫ τ

0

g(t) cos
kπt

τ
dt

‖gN,τ‖2
L2[0,τ ] =

τ

4
a2
0 +

τ

2

N
∑

k=1

a2
k ≤ τ

2

N
∑

k=0

a2
k.

Assume that τ is fixed as in (19). Next pick the smallest N
such that

‖g − gN,τ‖L2[0,τ ] ≤
ε

2
. (20)

Such an N always exist since g ∈ L2 and the cos-terms are
a basis in L2[0, τ ].

Define ĝN,τ (jω) ,
∫ τ

0
g(t)e−jωtdt, and notice

that ak = (2/τ)Re ĝN,τ (jkπ/τ). We have that
|Re ĝ(jω) − Re ĝN,τ (jω)| =

∣

∣Re
∫ ∞

τ
g(t)e−jωtdt

∣

∣ ≤
‖g‖L1[τ,∞) = δ(τ) ≤ ε2/(8C), for all ω. Since,
Re ĝ(jω) ≥ 0 for all ω by (17), we have ak ≥ −ε2/(4Cτ).
We need a second bound on ak that bounds the rate of decay
to zero. It holds that ak = (−2/τ)

∫ τ

0
ġ(t) τ

kπ
sin kπt

τ
dt, and

thus |ak| ≤ C/k, independent of τ . Taken together, the
bounds give that possibly strictly negative ak, call them a−

k ,
must satisfy

|a−
k | ≤ min

{

ε2

4Cτ
,
C

k

}

. (21)

Next, define gN,τ (t) , g+
N,τ (t) + g−N,τ (t), where g−N,τ (t)

contains all the terms in gN,τ (t) with strictly negative Fourier
coefficients, ak = a−

k . Notice that g+
N,τ can be realized with

a linear lossless/causal system, compare with (5). We can
now bound the worst-case L2-norm of g−N,τ . Using (21) we
have

‖g−N,τ‖2
L2[0,τ ] ≤

τ

2

N
∑

k=0

(a−
k )2 ≤

b 4C
2

τ

ε2
c

∑

k=0

τ

2

ε4

16C2τ2

+

∞
∑

k=b 4C2τ

ε2
c+1

τ

2

C2

k2
≤ 4C2τ

ε2
τε4

32C2τ2
+

ε2

4C2τ

τC2

2
=

ε2

4
,

independent of how large N is.
A lossless/causal approximation that satisfies the bound

(18) is now given by gτ (t) = g+
N,τ (t), where τ and N were

fixed in (19) and (20). This is because the triangle inequality
gives

‖g − g+
N,τ‖L2[0,τ ] ≤ ‖g − gN,τ‖L2[0,τ ] + ‖g−N,τ‖L2[0,τ ]

≤ ε

2
+

ε

2
= ε.

This concludes the proof.
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