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Fundamental Limitations of Disturbance Attenuation
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Abstract—1In this paper, we study fundamental limitations of dis-
turbance attenuation of feedback systems, under the assumption
that the controller has a finite horizon preview of the disturbance.
In contrast with prior work, we extend Bode’s integral equation for
the case where the preview is made available to the controller via
a general, finite capacity, communication system. Under asymp-
totic stationarity assumptions, our results show that the new fun-
damental limitation differs from Bode’s only by a constant, which
quantifies the information rate through the communication system.
In the absence of asymptotic stationarity, we derive a universal
lower bound which uses Shannon’s entropy rate as a measure of
performance. By means of a case-study, we show that our main
bounds may be achieved.

Index Terms—Fundamental limits, information constraints,
preview control.

I. INTRODUCTION

INCE it was first published in 1945 [1], Bode’s integral
Sequation is one of the most significant results in the theory
of linear feedback. If S(z) is the sensitivity transfer function
[51, [37] of a single-input linear feedback loop, in discrete time,
then Bode’s integral equation can be written as

™

log |S(e7*)|dw = Z log ||
- XeUP

ey

where UP are the unstable poles of the open-loop system [5],
[37], which is assumed to be rational and strictly proper. By
using feedback, one would expect that disturbance rejection can
be improved. On the other hand, (1) quantifies a fundamental
limitation which says that disturbance rejection can be, at most,
shaped in frequency. Equivalently, |S(e’*)| cannot be made
small at all frequencies. Due to its importance, Bode’s funda-
mental limitation has been extended to more general frame-
works [29] than the linear and time invariant one. The multidi-
mensional version was provided in [9], while the time-varying
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case has been addressed in [13] and certain nonlinear systems
have been analyzed in [40], [12], [30]. In recent publications,
such as [20] and references therein, the study of fundamental
limitations generalizes to controllers with preview.

Using an information theoretic formulation, Bode-like limita-
tions of performance were derived for feedback systems where
the controller belongs to a general class [18], [19], which might
include systems operating on a discrete or finite alphabet. While
causality is responsible for Bode’s fundamental limitation, in-
formation constraints in the feedback loop give rise to a new
limitation [18], [19]. Prior results on extending Bode’s result to
nonlinear systems, via an information theoretic approach, can
be found in [12]. Articles [14], [15] establish a relationship be-
tween Shannon’s entropy rate and Bode’s integral [37] for linear
and time-invariant feedback systems. The work in [6] explores
the connection between Bode’s integral formula for linear and
time-invariant systems and the ability to transmit information
over a Gaussian channel, by means of linear and time invariant
systems acting as encoders and decoders. Bode’s fundamental
limitation is derived for a deterministic setting in [38], under
certain convergence conditions.

A. Main Contributions

It is well known that the use of disturbance previews may
improve controller performance [36]. In [34], one finds results in
optimal preview control as well as a source of references to other
related approaches. Recent results on fundamental limitations of
tracking in the presence of reference preview are given in [2],
[20].

In this publication, we consider the diagram of Fig. 1, where
the controller has access to a remotely transmitted disturbance
preview, represented as r. This scheme portrays a formulation
where the disturbance results from a physical phenomenon,
which must travel in space until it reaches the system. The
travel time is represented as a delay of i units of time. At
the same time, a remote preview signal r may be available to
the controller, subject to information transmission/processing
constraints at the remote preview system (RPS) block. We also
adopt a Markovian model for the disturbance, where G is a
stable auto-regressive shaping filter and w is the innovations
process.

This work characterizes the fundamental limits of preview
control in a general remote setting (see Fig. 1). Examples of
remote preview systems can be found in animal life, such as the
ones that use vision and hearing to perceive a future physical in-
teraction. In these cases, the information/processing constraints
arise from limited vision and hearing resolution as well as noise
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Fig. 1. Structure of a remote preview system.

and limited information processing in the brain [8]. Further ex-
amples are the information path of a heat-shock mechanism at
the cellular level [7] as well as navigation engineering systems.

There are two extreme cases in this setup: the first is when
the disturbance can be fully transmitted,! in that case the distur-
bance can be canceled by the controller, and the second is the
absence of remote preview information, which is the classical
framework. In this paper, we study the situation in between, i.e.,
we consider that C' > I (r,d) > 0, where C is a finite posi-
tive constant, representing the Shannon capacity [3] of the RPS
block, and I, (r, d) is the mutual information rate? between the
disturbance d and the remote preview signal r, in bits per unit
of time.

The following summarizes the contributions of this paper.

* We consider a new type of networked control system,
where a preview of the disturbance is available to the
controller via a general communication system. We derive
an extension of Bode’s integral formula for the aforemen-
tioned scheme.

* By making use of information theoretic principles, our
bounds incorporate explicitly the information rate con-
straints at the remote preview system.

* Our derivations are valid for strictly proper linear and time-
invariant plants, in the presence of arbitrary causal control,
which includes time-varying, non-linear controllers oper-
ating on arbitrary alphabets.

* Our work brings a host of open problems, which are de-
scribed at the end of this paper.

The paper is organized as follows. Sections I-B and C intro-
duce the notation and the main definitions. The technical frame-
work is given in Section II, where we also describe the mea-
sures of performance adopted in the paper. In Section III, we
derive an entropy rate inequality which holds under general as-
sumptions. The frequency domain interpretation of the afore-
mentioned result is developed in Section IV, where we also es-
tablish a comparison with Bode’s integral. A case-study is pro-
vided in Section V, characterizing a class of plants and remote
preview systems for which the frequency domain lower-bounds
of Section IV can be achieved. The conclusions and a discussion
of research opportunities, is provided in Section VI.

B. Notation

The following notation is adopted.

IThis would require a RPS block with infinite capacity.
2This quantity is precisely defined in Section I-C.

¢ Whenever it is clear from the context, we refer to a se-

quence {a(k)}3° of elements in R™ as a. A finite segment
of a sequence a is indicated as a:"‘ et {a(k)}* e If
Fmax < Kmin then ajmx = 0.

* Random variables are represented using boldface letters,
such as a

 Ifa(k) is a stochastic process, then we use a(k) to indicate
a specific realization. Similar to the convention used for
sequences, we may denote {a(k)}5° justasaand {a(k)}§°
as a. A finite segment of a stochastic process is indicated
as ajmex,

* The probability density of a random variable a, if it exists,
is denoted as p,. The conditional probability, given b, is
indicated as p, |-

* The expectation operator over a is written as £[a].

* The variance of a real random variable a is given by
Var(a) < &[(a— &[a))?].

» We write log,( - ) simply as log( - ).

* We adopt the convention 0log (0 = 0.

C. Basic Definitions of Information Theory

In this section, we summarize the main definitions of Infor-
mation Theory used throughout the paper. We adopt [25], as
a primary reference, because it considers general probabilistic
spaces in a unified framework. The definitions and properties
listed in this section hold under general assumptions, we refer
to [25] for further details.

Definition 1.1 (from [25, p. 9]): The mutual information [ :
(a;b) — Ry |J{oo}, between a and b, is given by

Pa,b (Ez X Fj)

12 b) = sup 3 Pan(Fi x Fi)log 2 pp

ij

The supremum is taken over all partitions { £;} of A and {F};}
of B, where A and B are the alphabets of a and b.

The definition of conditional mutual information can be
found in [3] or in [25, p. 37].

Notice that, in Definition 1.1, A and B may be different.
Without loss of generality, we consider probability spaces which
are countable or R?, for some ¢q. We also define the following
quantities, denoted as differential entropy and conditional dif-
ferential entropy, which are useful in the computation of the mu-
tual information (-, -), for certain cases relevant in this paper.

Definition 1.2: 1f a is a random variable with alphabet A =
R? then we define the differential entropy of a as

ha) = — / pa()logpa(2)d.

If b is a random variable with alphabet B = RY then we define
the conditional differential entropy of a given b as:

;b) — h(b)

U

Pap(Va, 1) 108 Pa|b(Va, %)d%> dye. (2)
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If B is countable then h(a|b) is defined as

h(a|b) = — Z/ pa,b(’)/a:’yb)logpa|b(7a77b)d7a 3

Y EB R

Likewise, the quantity h(a|b,c) is defined by incorporating
another sum if the alphabet of c is discrete, or an integral if the
alphabet is continuous.

Using [25, Th. 2.1.2], we know that the following holds:

I(asb) = h(a) - h(a|b) @)
where h(a) and h(a|b) are assumed well defined.

In order to simplify our notation, we also define the following
quantities.

Definition 1.3 (Information Rate): Let a and b be stochastic
processes. The following is the definition of (mutual) informa-
tion rate3:

I(a) by

I(a;b) = limsup N

N—oo
The use of information rates is motivated by its universality
[3],1.e., it quantifies the rate at which information can be reliably
transmitted through an arbitrary communication medium.
Definition 1.4 (Entropy Rate): For a given stochastic process,
we also define entropy rate as:

hag )

—m

®)

heo(a) = limsup
N —o0

where m is the time delay represented in Fig. 1.

In our formulation, ej'~* and d{j' ! may be deterministic or
may take values on a countable set. Since the differential en-
tropy for these variables is undefined, we choose to define en-
tropy rate as in (5). On the other hand, for any eg”_l and dg”_l,
there are no technical problems in using them with mutual in-
formation or conditional entropy, such as I((ej'~*,b);c) and
h(b|c,eg™"). In the real world, all signals in Fig. 1 should
have some noise, with finite differential entropy, added to them.
If that was the case then we could have defined entropy rate in
the standard way. We chose not to add noise everywhere, be-
cause it would complicate the paper and it would lead to the
same results and conclusions.

In this paper, we will refer to channels which are stochastic
operators conforming to the following definition.

Definition 1.5 (Channel): Let V and R be given input and
output alphabets, along with a stochastic process, denoted as c,
with alphabet C. In addition, consider a causal map f : C*> x
V> — R. The pair (f,c) defines a channel. The following
are examples of channels.

¢ Additive white Gaussian channel: V = R = C = R,c

is an i.i.d. white Gaussian sequence with unit variance and

Fe,v)(k) = (k) + v(k).

3Throughout the paper, for simplicity, we refer to mutual information rate
simply as information rate.
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* Binary symmetric channel: V = R
is an i.i.d sequence satisfying P(c(k)
f(cv V)(k) = C(k) +mod2 V(k)

For any given channel specified by (f, c), the supremum of
the rates, at which information can be reliably transmitted from
the input to the output, is a fundamental quantity denoted as
capacity [3]. The formal definition of capacity, denoted by C,
can be found in [3], for which the following holds:

Cc = {0,1}, ¢
1) = pe and

sup Io(v; f(v,c)) < C.

Pv

(6)

D. Spectral Properties of Asymptotically Stationary Stochastic
Processes

We adopt the following definition of asymptotic power spec-
tral density.

Definition 1.6: A given zero mean real stochastic process a
is (wide-sense) asymptotically stationary if the following limit
exists for every v € N:

Ra(y) ™ lim €[(a(k +7) - Elalk + 7)) (alk) - Ela(k)])].

N

We also use (7) to define the following asymptotic power
spectral density:

®)

II. TECHNICAL FRAMEWORK AND ASSUMPTIONS

Regarding the general scheme of Fig. 1, the following as-

sumptions are made.

* w is a scalar (w(k) € R), unit variance, identically and
independently distributed stochastic process. For each
k,w(k) is distributed according to a density p,, satisfying
oo (W(K))| < 00

e (@ is an all-pole stable filter of the form

. @
=3

where p > 1,a; and o > 0 are given. We chose this form
of (G, as a way to model the disturbance d, not only be-
cause it is convenient that G—! is well defined and causal,
but also because there exists a very large class of power
spectral densities that can be arbitrarily well approximated
by |G(e7*)|? [26]. In addition, we assume that G has zero
initial conditions.
» given n, P is a single input discrete-time plant with state
z(k) € R™, satisfying the following state—space equation:
][ 2] [
(10)

Ox(k), Mi(Ad)] > 1, \i(A)] < Land k > 0

G(z)

©)

Ay 2~

x(k+1):[

y(k)
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where the state—space representation is assumed minimal.
The state partitions x, and X, represent the unstable
and stable open-loop dynamics, respectively. In addi-
tion, the initial state x(0) is a random variable satisfying
|h(x,(0))] < 0.

* The RPS system includes a communication channel. In ad-
dition, q, w,x(0), and c are mutually independent, where
c represents the channel noise according to Definition 1.5.

* The measurement noise q is such that the following holds:

I (x(0);u5™") < oo

meaning that the controller does not have access to an
exact description of the initial state of the plant, for & €
{0,...,m — 1}. Since uJ'"! = ef""*, we could have
equivalently required that I(x(0); el ") < oo.

* e is a scalar (e(k) € R) stochastic process, for which
efmx hag a probability density function for every finite

kmin

min;kmax Z m.

A. Performance Measures Using Entropy Rates and
Asymptotic Power Spectra

In Section III, which comprises our most general results, we
characterize limits of performance by means of a lower bound
to the difference ho(€) — hoo(d). In standard texts, such as
[24] and [3], the entropy rate of a given stochastic process is
interpreted as a measure of randomness or power. We use en-
tropy rate to gage performance, not only because it is technically
convenient, by allowing us to derive inequalities involving the
information rate at the remote preview system (RPS) block, but
also because it is a fundamental quantity which can be related to
other, more common, measures of performance. The following
is a list containing a few inequalities, which relate the entropy
rate with other performance measures?.

* For a general stochastic process a, the following holds:

1
. ) > 22hm(a).
llfi)solip Var(a(k)) > v

¢ If a is asymptotically stationary with an integrable power
spectral density F,(w) then the following holds:

heo(a) < % /7T log(2meFy(w)) dw.

—T

1) A Brief Note on the Comparison Between Kol-
mogorov=Sinai’s and Shannon’s Notions of Entropy: In
[14] and [15], the authors study the conditions under which
our definition of entropy rate, which is due to Claude Shannon
[31], is comparable to Kolmogorov—Sinai’s entropy rate [16],
[32], [23]. It is concluded that, for stochastic as well as for
chaotic continuously valued processes, Kolmogorov—Sinai’s
and Shannon’s notions of entropy rate may not be compatible.
Typically, the former is used in the classification of dynamical

4The first fact follow from standard results in [3]. Since the second fact does
not follow immediately from [3], we also include a proof in Lemma 4.3.

systems according to their degree of chaoticity, while the latter
is usually defined for stochastic processes. The comparative
analysis in [14], [15] is interesting and fundamental. The Kol-
mogorov—Sinai entropy of a linear and time invariant system
can be computed from the unstable eigenvalues of the dynamic
matrix.

2) Definition of a Sensitivity-Like Function:

Definition 2.1: If the stochastic process e, represented in
Fig. 1, is asymptotically stationary> then we define the following
sensitivity-like function:

(&) . Fe
Sd,e(w) 4f Jim sup 4/ = (w) i (1D
o,—0 Fd(w)

The following is a list of remarks regarding Sq e(w).

» If the RPS block is absent in Fig. 1 and K is linear and
time-invariant then Sq(w) is the absolute value of the
standard sensitivity function [5], [14].

* We define Sq o (w) in the limit, as o, goes to zero, because
we want Sq o(w) to capture the effect of the RPS block in
disturbance attenuation. In general, the existence of mea-
surement noise, with o, > 0, would add an extra term
on F,(w) that could mask the beneficial effect of the RPS
block.

* ingeneral, if K is non-linear, or if the RPS block is present,
then Sq . will depend on G (see [4]). Limitations in terms
of the ratio represented by Sq . should be interpreted as
follows: once we have a spectral model of the disturbance,
say Fd, then limitations in Sq e translate immediately to
limitations in Fe. Clearly, for each spectral model of the
disturbance, Sq . gives as much information about Fe asa
classic sensitivity function would. As a consequence, our
results show, for any given disturbance spectrum, that there
are limits to attenuation and that certain spectra E, are not
attainable.

* in our formulation, d is asymptotically stationary, but
e may not be. If e is not asymptotically stationary then
Sd,e(w) is undefined. We have not tried to attribute a
frequency domain interpretation based on other non-sta-
tionary notions, such as wavelets or evolutionary power
spectral densities. In the absence of stationarity, we resort
directly to entropy rates.

III. MAIN ENTROPY RATE INEQUALITY

The central result of this section is the main entropy rate in-
equality stated in Lemma 3.1. The frequency domain interpreta-
tions of Lemma 3.1 are developed in Section I'V. For simplicity,
we consider the scheme® of Fig. 2. In such a case, the remote
preview system is constructed by means of an arbitrary channel
and a general encoder.

In the rest of the paper, we adopt the following assumptions.

* Al) F and K are causal operators defined in the appro-

priate spaces, i.e., the output of £ must belong to the

SWhen we refer to e as asymptotically stationary, we mean that e is asymp-
totically stationary for all o, > 0.

6Although our results are valid for the general scheme of Fig. 1, for simplicity,
we consider the concrete scenario depicted in Fig. 2.
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Fig. 2. Structure of a remote preview system, using an encoder and a commu-
nication channel.

channel input alphabet, which might be discrete or contin-
uous. Similarly, the output of the channel must be defined
in the alphabet of r, at the input of K (see Fig. 2).

* A2) (Feedback well-posedness) we assume that the feed-
back system is well-posed, i.e., that there exists a causal
operator .J such that the following is well defined:

VE>0,  u(k)

J(x(0),r,d,q)(k). (12)

A. Basic Facts Involving Differential Entropy and Mutual
Information

Here, we provide a list of seven properties used throughout
the paper. The proofs can be found” in [3] or in [25], for arbitrary
alphabets. For simplicity, we will refer to these properties by
their number, i.e., P1)-P7).

e P1): I(a;b) = I(b;a) > 0and I(a;b|c) > 0.

¢ P2) Kolmogorov’s formula3 (3.6.6 in [25]):

I((a,b);c|d) = I(bsc|d) + I(aic| (b,d)).

¢ P3): (data processing inequality) [25, Th. 3.7.1]: If ¢ and
@ are measurable functions in the appropriate probability
spaces then I(¢(a);0(b)|c) < I(a;b]|c) and equality
holds if ¢ and 6 are injective®.

e P4): From property P3), we conclude that
I(a;(b,c)|d) = I(a;(b — ¢,c)|d). Using (P2), such
equality alsoleadsto I(a; b | (c,d)) = I(a;b—c|(c,d)).

* P5): By means of P1) and recalling that I(a; b) = h(a) —
h(a|b), we infer that h(a) > h(a|b), where equality
holds if and only if a and b are independent. Likewise, we
can use properties (P1)—(P2) to state that I(a;(b,c)) >
I(a;b), which can be used with I(a; b) = h(a) —h(a|b)
to derive h(a|b) > h(a|(b,c)).

* P6): Using a change of variables in the integrals of Defini-
tion 1.2, we reckon that if ¢ : B — A is any given function
then h(a|b) = h(a — ¢(b) |b).

e P7)[3]: If a has a finite covariance matrix X, € R™*" then
h(a) < (1/2)log((2me)" det(Xs)).

7In [3] most of the results involving mutual information require that all the
processes are either discrete or continuous.

8Notice that 3.6.3 in [25] has a typographic mistake. On the left hand side of
the equality, the correct is I(£, ()
9In [25] equality is guaranteed for everywhere dense ¢ and #. Every time

we say that a function is invertible or injective in this context we are implicitly
assuming that it is everywhere dense.
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B. Derivation of the Main Entropy Rate Inequality

The following lemma is the central result of this section. It
shows that the entropy rate of the error signal is lower bounded
by the entropy rate of the disturbance plus an extra term.

Lemma 3.1 (Main Entropy Rate Inequality): Consider the
feedback interconnection represented in Fig. 2. For any encoder
FE and controller K, satisfying assumptions Al) and A2), the
following holds:

N-1
hoo(€) = hoo(d) > lim inf I(xmiv—e‘)) ~ Lo(r;d). (13)
Remark 3.1: (Interpretation of (13)): The right-hand side of
(13) consists of two terms: the first quantifies the information
flow from the initial condition x(0) to the input of the plant e,
while the second is the information rate from the disturbance
d to the controller preview input r (see Fig. 2). Notice that if
the remote preview system is absent then the second term on
the right hand side of (13) is zero while, by the non-negativity
property of mutual information P1), the first term is always non-
negative, implying that the entropy rate of e is no less than the
entropy rate of d. This fact holds for any controller K satisfying
assumptions Al) and A2), and it indicates that entropy rate re-
duction can be achieved only in the presence of a remote preview
system. Important frequency domain interpretations to Lemma
3.1 can be found in Section IV.

Proof of Lemma 3.1: We start by choosing arbitrary k > m

and using the fact that G has zero initial conditions to write:
hoo(d)

= h(d(k)|d§™") (14)

By means of (P2), (14) and using I(a;b) = h(a) — h(a|b),
we obtain
hoo(d) = h (d(k) | (d§717x(0)7u§7 qg))

+1 ((x(0),u5,qf) ;d(k) [d§ ") . (15)
We proceed by re-writing each of the terms in the right-hand

side of (15). By means of P6) and using the fact that e(k)
d(k) + u(k), we find that

h(d(k) [ (d5™". %(0), ug., a5) )
= h (e(k) [(dg ™", x(0),e5 ™", u(k). qg) )

(e(k) |(e§_1, X(O)) )

—~
Ny
~—
I
=
3
N
~
=>
—
0]
—
™
~
[¢)
(=
L
~—
|
~
—
@
—~
Dy
~
il
—~
=}
~
[¢)
Ed
L
~—

(16)

Using the well-posedness assumption A2), together with P2)
and P3), we can bound the second term on the right-hand side
of (15) by means of the following inequality:

I((x(0),uf,qf) ;d(k) [dg™")

< I ((x(0), 6, af) sd(k) [d§~1) ()

which, since x(0), g% and (rk, d%) are mutually independent,
can be expressed as:
I((x(0), ug, qp) :d(k) [dg™") < I (rg:d(k) [dg™").
(18)
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By direct substitution of (18) and (16) into (15), we arrive at

hoo(d) < h (e(k) leg™") — I (e(k);x(0)|ef™")

+1 (rf;d(k)|dg™"). (19)

Now, choose arbitrary N > m so that we have the following
inequality based on (19):

1 ‘ -
hoo(d) < N_mgnl(r’a;d(md’a Y)
1 N-1

k—1
+N—m k:mh(e(k)|e0 )

(20)

From P3) we know that for any k& < N — 1 the following
holds:

I(cg:d(k)|d§™") < T (ed "5 d(k)|dg")

which, together with P2), P5), and (20), leads to

T () (e x(0)))
1
N-—-m

heo(d) <

+

(I(cy™hdy™") +1 (e hx(0)). @D
Using the fact that I(e{' ";x(0)) is finite, we conclude the
proof by considering the limit as N — oo in (21). O

C. Further Comments and Comparison With Prior Work

In [14] and [15], it is shown that for the standard configura-
tion (no remote preview), with linear and time-invariant strictly
proper loop gain, the entropy rate of the error signal is always
lower bounded by the entropy rate of the disturbance. In the
same publications, the authors relate such a property to Bode’s
integral [37], for linear and time-invariant systems. In the ab-
sence of a remote preview system, Lemma 3.1 is a natural ex-
tension of the result in [14], [15]. Indeed, Lemma 3.1 holds even
if we consider arbitrary nonlinear loop gains with a delay of
at least one time unit. In particular, inspection of the proof of
Lemma 3.1 shows that the validity of the result does not depend
on the linearity of the plant. In Section IV, we make use of the
plant linearity, while requiring stability of the feedback loop and
asymptotic stationarity of the error signal as a way to provide an
extension of Bode’s integral. However, even in Section IV, the
controller is not required to be linear.

IV. ENTROPY RATE INEQUALITIES UNDER STABILITY AND
ASYMPTOTIC STATIONARITY ASSUMPTIONS

In this section, we specialize and interpret the main entropy
rate inequality of Lemma 3.1 under stability and asymptotic sta-
tionarity assumptions. The main results of this section are The-
orems 4.2 and 4.5.

A. Incorporating Stability

According to the following Lemma, stability suffices to de-
rive a lower bound to the information rate from the initial state
x(0) to the error signal e. Such result follows from [35], [39],
[22], [27] and it precisely characterizes the minimum informa-
tion rate, between the initial condition and the error signal e,
which is necessary for stabilization. The aforementioned ref-
erences address the problem of control under finite-rate con-
straints, but their proofs regarding the minimum stabilizing rate
hold in general. An example of a control design method for such
a class of problems is given in [28].

Lemma 4.1: Let x(k) be the solution of the state-space (10).
If the plant is interconnected with a stabilizing feedback scheme,
leading to mean-square stability, i.e., sup,, [(x(k))Tx(k)] <
00, then the following is satisfied:

N-1,
lim inf —I (eo 7X(0))

imin ¥ > ) " max{0,log [A:(4)[}.  (22)

=1

Proof: If A = A, then we just use I(e}) ~*;x(0)) > 0. If
A # A, then we consider the following homogeneous system:

Xe(k+1) = Ayxe(k) + bye(k) z.(0)=0  (23)

and define the estimate X(k) = —A;*x.(k). Since x,,(k) =
Akx,(0) + x.(k) = A¥(x,(0) — %(k)), we know that

klog |det (A, Ay)| + log det(Rx,,.. (k)

= logdet(Rx, (k) < B < oo (24)

where Xerror (k) = X(k) — x,,(0), while Ry_,__ (k) and Ry, (k)
represent the covariance of Xeror(k) and x,,(k), respectively.
Since %(k) is a function of eX, we use (P4) to arrive at:

1 (X(O);eé\bl)
>1 (x,u(O);eév_l)

> h(x%,(0)) — h(X(N = 1) — x,(0)). (25)
However, from P7) we know that
. h(x(N — 1) — x,(0))
1
i
. logdet(Rx,,... (N — 1))

<1 srrer . (26

< lfvn jip 2N (26)
As a consequence, we can use (24) to get

limsupy_, o (A(X(N = 1) —x%,(0))/N) < —log|det(A,)|.
The proof follows by direct substitution. O

B. Derivation of a General Bound Involving Entropy Rates

As we have discussed in Section II-A, we use oo (€) —hoo (d)
as a performance measure for the most general case, where we
do not require e to be asymptotically stationary. The following
Theorem provides a universal lower bound for i (e) — hoo(d)
as a function of the unstable poles of P and the capacity of the
remote preview channel.
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Theorem 4.2: Consider the feedback interconnection repre-
sented in Fig. 2. In addition, assume that the state of P satisfies
supy, €](x(k))Tx(k)] < oo. For any encoder E and controller
K, satisfying A1) and A2), the following is true:

hoo(€) = hoo(d) > max{0,log [\(A)|} —C (27
i=1
where C represents the capacity [3] of the remote preview
channel.
Proof: By direct substitution of (22) into (13), we obtain:

hoo(€) = hoo(d) > Y~ max{0,log |\i(A)[} — Lo (r;d)
1=1
(28)
The proof follows from the definition of channel capacity [3],
i.e., Io(r;v) < C and by the data processing inequality (P3)
we have I (r;d) < Io(r;v) < C. O

C. Expressing Performance Limitations by Means of
Asymptotic Power Spectral Densities: An Extension of Bode’s
Integral Formula

We start with the following Lemma, which establishes a con-
nectionbetween h. (€e) andits asymptotic power spectral density
l:"e. At the end of this section, we state and prove Theorem 4.5,
ascribing a frequency domain interpretation to Theorem 4.2.

Lemma 4.3: If e is an asymptotically stationary process!o
then the following holds:

! log(2meFy(w))dw > hoo(e).

—T

(29)

Remark 4.1: Notice that Lemma 4.1 holds under asymptotic
stationarity assumptions, and that it remains valid regardless of
the rate of convergence of the second moment statistics of the
error signal e. Such level of generality will carry on to The-
orem 4.5. In general, feedback systems will exhibit stationary
behavior only if the external excitation is stationary and the
overall initial state (plant and controller) is distributed according
to the stationary measure. Since the latter assumption is unreal-
istic, we gather that the nonstationary extension is relevant.

Proof of Lemma 4.3: Let € be a zero-mean Gaussian sto-
chastic process such that £[e(k + v)é(k)] = E[e(k + v)e(k)]
holds. We can write

m

h(el=1)

heo(€) < limsup (30)

N—oo

where we used the fact that Gaussian distributions maximize
differential entropy [3], under the same covariance matrix. In
addition, we have:

. h (éN—l)
Vv € N4, limsup .
N—o0 —m
N—1 - ~k—1
. O (e(k) ‘e,H)
< limsup 31
N—oo N-m

10Tn more rigorous terms, we should also require that . is Lebesgue inte-
grable. More details can be found in [10, pp. 64—65].
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Now choose € as a zero mean Gaussian stationary stochastic
process with auto-correlation given by Re(7y), the asymptotic
auto-correlation of e. We can use such limit auto-correlation and
substitute (31) in (30) to obtain:

vy €Ny, hooe) < () |6 ") (32)
as well as the following limit:
heo(e) < lim h (é(’y) ‘égfl) (33)
y—o0
On the other hand, we know that [3]:
lim h (é(’y) ‘év—l) -1 / " log(2refu(w))dw.  (34)
y—0o0 0 ar J_,
d

By means of Lemma 4.3 and Theorem 4.2, we arrive at the
following lemma.

Lemma 4.4: Consider the feedback interconnection repre-
sented in Fig. 2. In addition, assume that the state of P satisfies
supy, £[xT (k)x(k)] < oo. For any encoder E and controller K,
satisfying A1) and A2) and such that e is asymptotically sta-
tionary, the following is true:

™

log(2meFy(w))dw

AT J_,
>3 max{0,log |\ (A)]} — C + hoo(d)  (35)

i=1

where C represents the capacity of the RPS channel.

We can use Lemma 4.4 to state the following theorem, which
provides a fundamental limitation in terms of Sg e.

Theorem 4.5: Consider the feedback interconnection repre-
sented in Fig. 2. In addition, assume that the state of P satisfies
supy, E[xT (k)x(k)] < oo. If the encoder E and the controller
K are such that A1) and A2) are satisfied and e is asymptoti-
cally stationary then the following is true:

1

5 log(vV2meSa,e(w))dw
T

J—m

> 'S max{0, log i (A)]} = C + hoo(w)  (36)

i=1

where C represents the capacity [3] of the RPS channel. In ad-
dition, if w is Gaussian then (36) is given by

5o | 108Sae(w)dw > > max{0, log |X;(A)[} - C.

- i=1

(37

Remark 4.2: (Interpretation of (37)): By inspection, we infer
that if the capacity of the RPS block is zero (C' = 0) then (37)
is comparable to Bode’s classic result. If the capacity of the
RPS block is nonzero then C' quantifies a relaxation of Bode’s
original result. In Section V, we provide a case study where the
lower bound in (37) is attained.
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Proof of Theorem 4.5: Since w is i.i.d., we can write the
following equality:

hoo(d) = lim h (d(k) |dE71) =log(a) + heo(w)  (38)

where we used the facts that G has zero initial conditions and
that, in the time-domain, G is represented as

d(k) = aw(k) + Z a;d(k — i)

Using the fact that [”_log |G(ei*)|dw = 27a, we know that
(38) can be rewritten as

hoo(d) = S /7r log |G(e7*)|2dw + hoo (W). (39)

dr J_

Since d is asymptotically stationary and w(k) is unit variance,
we also have that Fg(w) = |G(e’*)|? and (39) can be written
as:

heo(d) = L /7r log Fa(w) dw + heo (W) (40)

ar J_,

From Lemma 4.4 and (40), we arrive at:

Vo, >0 —

L[ log < 2me lf’e(w)> dw
2 —r Fd(w)
>y " max{0,log [Ai(A)[} — C + hoo(W)  (41)

=1

After taking limits, and from the definition of Sq ¢ (w), we get

ZL/ log(V2meSq e(w)) dw
T )%

1 [ E,
> limsup — log 2me— (w) dw (42)
oq—0 2m A Fd(w)
The proof of (36) follows from (42) and (41). If w is Gaussian
then hoo(w) = (1/2)log(2me) and (37) follows from (36) by
direct substitution. O

V. CASE STUDY: THE ADDITIVE WHITE GAUSSIAN CHANNEL
CASE

In this section, we consider a particular case of the scheme
of Fig. 2, where the RPS block is constructed by means of an
encoder and an additive white Gaussian channel. We will show
that if the plant is stabilizable by a stable, linear and time-in-
variant controller then the lower bound expressed in Theorem
4.5 is attainable.

A. Technical Framework for the Case-Study

For the purposes of this example, we consider the following.

* w(k) is unit variance, zero mean, white and Gaussian.

* P is stabilizable by means of a stable, linear and time in-
variant controller H(z).

e qisi.i.d. zero mean and Gaussian with variance 02 > 0.

* The channel is specified by r = v + ¢, where c(k) is
white, zero mean Gaussian and the variance is 02 > 0.
The channel has an input power constraint given by

Var(v(k)) < 2, k>0 (43)

where &2 is a pre-specified parameter. The capacity of such
a Gaussian channel [3] is given by

1 =2
Cor = Slog (1 + ”—2> . (44)

2 oz

B. Achieving Equality of (37)
Consider the following selection!! of £ and K:
E=G"1o, (45)
—m  Ou

K(ny):—(z 55+02>Gr+Hy (46)

where H is a stable linear and time-invariant stabilizing con-
troller.

Referring to Fig. 2 and by adopting (45)—(46), standard com-
putations lead to the following asymptotic power spectral den-
Sity:

G 4 |H (o) 202
E (Hj’_g) 4
e = - : : 7
W)= P “
Using Definition 2.1 and (47), we arrive at the following:
1
2\ %
. Fu(w) (+%)
Sde(w) = limsu - = - —,
de(w) o'q—>0p Fu(w) 1 — P(ei*)H (ei*)]
(48)

By making use of (48), we can compute the following inte-
gral:

/ log Sq.e(w)dw

i 1
= /_ log <|1 — P(ejw)H(ejw)|> dw —27Cq. (49)

™

By means of Bode’s equality [5], [37] applied to the right
hand side of (49), we can write:

L [" -
— / log Sa e(w)dw = max{0, log [;(4)|} - Ca-
27 Jr / i=1
(50)
We conclude that (50) attains the lower bound in Theorem
4.5.
C. Limitations in the Mean Square Sense

So far, we have derived fundamental limitations concerning
the integral of the logarithm of S4 «(w). In the subsequent anal-

Notice that, from (9), G is causally invertible.
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ysis, we use such results as a way to derive bounds involving
mean square measures. Our inequalities relate the integral of
Sd.e(w)? with the unstable poles of the plant and C, the ca-
pacity of the remote preview system. The interplay between log-
arithmic integrals in the frequency domain and various quadratic
measures can be found in [21], for the standard configuration
(no remote) in continuous time. The quest for universal mean
square bounds in estimation over channels, as a function of the
capacity, has seen recent developments in [11], where a list of
relevant references can be found.

The following Proposition comprises the main tool used
throughout this subsection.

Proposition 5.1: Consider the feedback interconnection rep-
resented in Fig. 2. In addition, assume that the state of P satisfies
supy, £[xT(k)x(k)] < oo. If the encoder E and the controller
K are such that (A1)—(A2) are satisfied and e is asymptotically
stationary then the following is true:

i/ 2me (Sq.e(w))” dw
2 J_, ’

> 22(27:1 max{0,log [A; (A)|}—C+he (W)) 51)

where C represents the capacity [3] of the remote preview
channel.
Assuming that w is Gaussian, the following holds:
1 ™

> (Sd,e(w))zdw > 22(2::1 max{0,log |A; (4)|}—-C)
™

J—m

(52)

Proof: The proof follows from Jensen’s inequality and
Theorem 4.5. |

D. Example of the Achievability of the Mean Square Bounds

In this section, we construct an example where the lower-
bound (52) is attained. The basic framework is described in Sec-
tion V-A. In addition, consider a plant P(z) given by

a(z)

1 -
[Tic (L =piz—1)
where « is a rational outer transfer function and p; are the un-
stable poles of zP(z).

Adopt the encoder and the controller given by (45)—(46),
where the following H is selected:

za(z)™! <H(1 —piz7h)
- TIa- (m)‘lz‘l)) . (54

i=1

(53)

From the Definition 2.1, we arrive at the following:

. Fe(w) H’l‘=1 |pz|2
Sde(w))” = lim — = == (55)
( d ( )) 7q—0 Fd(w) (1+ %)
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Consequently, we can form the following integral:

T l
L/ [Liz: |pi]?

= 92001, loglpil=Ca)

(Sd7e(w))2dw =

(56)

Once we realize that p; are the unstable poles of P we may
also conclude that (56) implies achieving equality in (52).

VI. CONCLUSION, UNSOLVED PROBLEMS, AND OPPORTUNITIES
FOR FUTURE RESEARCH

In this paper, we have derived disturbance attenuation bounds
for a networked control scheme, where a finite horizon pre-
view of the disturbance is remotely available. In our results,
the capacity of the preview communication system is an essen-
tial quantity. Under asymptotic stationary assumptions, we have
shown, for a given finite capacity, that Bode’s integral formula
can be extended. For the general case, we have derived an en-
tropy rate inequality, which shows that the maximum entropy
reduction, from the disturbance to the error signal, is bounded
by the unstable poles of the open loop system minus the capacity
of the preview communication system. By means of examples,
we have illustrated that these bounds might be achieved.

Extension of the Framework: We have studied limitations of
attenuation, from the disturbance to the error signal, and that
leaves open opportunities in investigating extensions of our re-
sults to more general topologies. For instance, we expect that
extensions of the bounds derived in Section IV might be pos-
sible and that, for more general schemes, they will also include
the zeroes of the plant.

Incorporating the m-Delay: The m-delay depicted in Fig.
1 represents the travel time of the disturbance, counted from
the instant it is generated until it reaches the plant. Our results
provide bounds for performance, which are valid regardless of
the m-delay, i.e., our results represent the worst case in terms of
the m-delay. In order to reduce conservativeness and explicitly
account for the m-delay, one needs to impose delay constrains
at the remote preview scheme. Working with this constraint is
very difficult and the extension of our results to such a setting
is still an interesting topic of current research. The surprising
structural results in [17], [33] may lead to efficient approaches
to dealing with this problem.

Tightness of the Bound: In Section V, we provide an example
where our bounds are tight for every . This is a useful fact,
because it implies that the remote preview system proposed in
Section V achieves the lower bound, provided that the channel is
additive, white and Gaussian and that P is stabilizable by means
of a stable, linear and time-invariant H. If the remote preview
system comprises an encoder and a non-Gaussian channel, then
we expect that tight bounds, especially for small m-delays, will
have to be obtained numerically.
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