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Introduction

Abstract: High-level, mathematically precise descriptions of the global organisation of complex
metabolic networks are necessary for understanding the global structure of metabolic networks,
the interpretation and integration of large amounts of biologic data (sequences, various -omics)
and ultimately for rational design of therapies for disease processes. Metabolic networks are
highly organised to execute their function efficiently while tolerating wide variation in their
environment. These networks are constrained by physical requirements (e.g. conservation of
energy, redox and small moieties) but are also remarkably robust and evolvable. The authors
use well-known features of the stoichiometry of bacterial metabolic networks to demonstrate
how network architecture facilitates such capabilities, and to develop a minimal abstract meta-
bolism which incorporates the known features of the stoichiometry and respects the constraints
on enzymes and reactions. This model shows that the essential functionality and constraints
drive the tradeoffs between robustness and fragility, as well as the large-scale structure and organ-
isation of the whole network, particularly high variability. The authors emphasise how domain-
specific constraints and tradeoffs imposed by the environment are important factors in shaping
stoichiometry. Importantly, the consequence of these highly organised tradeoffs and tolerances
is an architecture that has a highly structured modularity that is self-dissimilar and scale-rich.

Metabolic networks, which have been extensively studied
for decades, are emblematic of how evolution has sculpted
biologic systems for optimal function. In addition to unam-
biguous functional descriptions of core metabolism, this
conserved network has been recently described in detail in
terms of its stoichiometry (mass and energy balance). A
higher level, mathematically defined description of the
global organisation of complex metabolic networks is
critical for a deep understanding of metabolism, from the
interpretation of huge amounts of biologic data (sequences,
various -omics) to design of therapies for disease processes.
The stakes are high for obtaining the big picture right:
biologic data plugged into a distorted model or interpreted
in the context of a flawed universal law propagates
misinterpretations.

In flux analyses [1], stoichiometry is considered as a
constraint, and fluxes are optimised to satisfy a global
objective, typically growth. Previous studies, however,
have not directly addressed whether the stoichiometry
itself is highly optimal or organised in any sense and
contributes to the origins and purpose of complexity in
biological networks. Yet biochemistry textbooks describe
metabolism as having evolved to be ‘highly integrated’
with the appearance of a ‘coherent design’ [2]. Here we
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explore both important ‘design’ (with no implication of a
‘designer’) features of metabolism and the sense in which
stoichiometry itself has highly organised and optimised
tolerances and tradeoffs (HOT) [3] for functional
requirements such as flexibility, efficiency, robustness and
evolvability, constrained by conservation of energy, redox
and small moieties.

This paper illustrates these features using the well-
understood stoichiometry of metabolic networks in bacteria
and reviews, compares and extends the results in [4, 5]. We
then propose a simple HOT model of an abstract meta-
bolism to clarify the essential elements of its architecture.
These features are not apparent from analyses that ignore
organisation and constraints but rather use ‘generic’
ensemble properties, such as the popular ‘scale-free’ (SF)
approaches [6]. Here we show that domain-specific con-
straints and tradeoffs imposed by the environment are
important factors in stoichiometry. One consequence of
this HOT architecture is a highly structured modularity
that is self-dissimilar and scale-rich (SR).

2 Basic features of metabolic networks

Metabolism is essentially a linked series of chemical
reactions, which function to synthesise building blocks for
usable cellular components and to extract energy and redu-
cing power from the cellular environment, in the context of
total organism homeostasis. Constraints on the network are
imposed by highly unpredictable intracellular and extra-
cellular environments as well as the details of enzyme
molecular structure, the cost of making enzymes and the
conservation of atoms, energy and small moieties. The
simplest model of metabolic networks is a stoichiometry
matrix (s-matrix for short) of chemical reactions with the
metabolites in rows and reactions in columns and is
defined unambiguously except for permutations of rows
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and columns. The simplest dynamic model of metabolism
using an s-matrix § is given by dx/df = Sv(x), where x is
the concentrations of all the metabolites and v(x) is the
fluxes of all the reactions. We are temporarily deferring
detailed consideration of v(x) and focussing on just the
properties of S, although questions such as how the fluxes
are distributed in the metabolic network and how these flux
balances are regulated are of interest for deep understanding
of metabolism. In this regard, flux balance analysis [1] has
been successful in showing the flux balances that optimise
growth rate at steady state given a fixed stoichiometry. We
are, however, interested in how the structure and organisation
of § facilitates control which is implemented via v and in
what sense the stoichiometry itself is optimal.

The appropriate arrangement of columns and rows based
on biochemically meaningful categorisation clarifies the
global structure of the s-matrix. Fig. 1 shows an s-matrix
for Helicobacter pylori metabolism with the ‘vertical’
decomposition of reactions (columns) into standard func-
tional modules, such as catabolism and biosynthesis,
which are further split into amino acid, nucleotide,
fatty acid/lipid/cell or cofactor biosynthesis, and the
‘horizontal’ decomposition of metabolites (rows) into
carrier and non-carrier metabolites, which are further cate-
gorised into precursor and other (than precursor and
carrier) metabolites (data from http://gcrg.ucsd.edu/
downloads). Catabolism transforms fuels into cellular
energy and biosynthesis uses the energy for synthesis of
amino acids, nucleotides, fatty acids/lipids/cell structures
and cofactors. Carrier metabolites correspond to conserved
quantities that are activated in catabolism and transfer
energy by phosphate groups (ATP/ADP/AMP), hydrogen/
electrons (NADH/NAD), amino groups (AKG/GLU),
acetyl groups (ACCOA/COA) and one carbon units (THF/
METHF) throughout all modules. As a result, carriers
appear in many reactions. The standard 12 precursor metab-
olites (glucose 6-phosphate, fructose 6-phosphate, glyceralde-
hyde 3-phosphate, glycerone phosphate, 3-phosphoglycerate,
phosphoenolpyruvate, pyruvate, ribose 5-phosphate,
erythrose 4-phosphate, a-ketoglutarate, oxaloacetate, and
succinyl-CoA) are outputs of catabolism and are the starting
points for biosynthesis.

By convention, carrier metabolites are in the bottom rows
and enzyme intermediates are eliminated in the s-matrix.
Categorisation of metabolites and reactions as in Fig. 1
clearly demonstrates the ubiquity of carriers and precursor
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Fig.1 S-matrix for H. Pylori metabolism with modular
decompositions
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metabolites. The localised use of other metabolites in
each reaction module consisting of long chains of reactions
is shown by sparse diagonal elements in Fig. 1. This combi-
nation of extensive appearance of carriers and
precursor metabolites in all reaction modules forming a
‘knot’, and the organisation of the remaining metabolites
and reactions into long chains either feeding into or emanat-
ing from the knot, illustrates the ‘bowtie’ structure of
metabolism (Fig. 3). Although s-matrices completely
describe stoichiometry and this highly organised structure
in principle, some features are still difficult to visualise.
Graphs are popular and convenient ways to help visualise
biological networks, but have also been a source of
confusion when used improperly. Properly used, however,
they can help visualise in more detail the implications of
this bowtie architecture.

The information conveyed in the s-matrix can be faith-
fully represented and visualised in a colour-coded bipartite
graph’, called an s-graph [5], which is a minor variant of
diagrams standard in biochemistry textbooks. Fig. 2
shows the s-graph for part of H. pylori metabolism, that
is, part of glycolysis and the amino acid biosynthesis
module of the s-matrix in Fig. 1. Both reactions and metab-
olites are represented as distinct nodes, and membership
relationships of metabolites to reactions are represented
by links. The metabolite nodes are further differentiated
into those for carrier (blue) and non-carrier metabolites.
Some carrier metabolites are always involved in reactions
as a pair (ATP/ADP, NAD/NADH, etc.) and thus can be
combined to simplify the s-graph. An s-graph thus consists
of reaction nodes (black diamonds), carrier metabolite
nodes (light blue squares) and non-carrier metabolite
nodes (non-blue squares). Red and blue edges correspond
to positive and negative elements in the s-matrix, respect-
ively, for irreversible reactions, and pink and green ones
correspond to positive and negative elements, respectively,
for reversible reactions. With the colour-coding of links
indicating the reversibility of reactions and the sign of
elements in the s-matrix, all the biochemical information
contained in the s-matrix is accurately reflected in the
s-graph. Fig. 2 illustrates that long biosynthetic pathways
build complex building blocks (in yellow on the right)
from precursors (in orange on the left) in a series of
simple reactions (in the middle), using shared common
carriers (at the bottom). Each biosynthetic module has a
qualitatively similar structure.

Fig.2 An s-graph for part of glycolysis and the amino acid
biosynthesis module for H.Pylori
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Combination of Figs. 1 and 2 is a good illustration of the
‘bowtie’ structure of metabolism [4], where a large ‘fan-in’
of nutrient inputs is catabolised to produce a small handful
of activated carriers and precursor metabolites, which then
‘fan-out’ to the biosynthesis of a large number of primary
building blocks (Fig. 3) through long chains of reactions.
The bowtie structure of metabolism was independently
derived from computational analyses [7]. The biologically
natural modular decomposition of components is organised
by the global structure into a ‘knot’ (of carriers and
precursors) and non-‘knot’ parts of the ‘bowtie’. The
metabolism bowtie architecture and associated protocols
allow highly optimised tradeoffs among multiple require-
ments. These include reaction complexity (number of
metabolites in reaction), genome size and -efficiency
(energy required for each reaction). Of particular import-
ance is the adaptability that is facilitated through tolerance
of various perturbations, and flexibility and evolvability on
longer time scales. This all occurs in the face of a large
number of domain-specific constraints on conserved
quantities [4]. In contrast, if every nutrient—product
combination had independent pathways without shared
precursors and carriers, the total genome would be vastly
larger and/or enzymes would be vastly more complex. In
either case, adaptation to fluctuating environments on any
time scale would be difficult. Only an organisation like
the bowtie facilitates the kind of extreme heterogeneity
that allows for robust regulation, manageable genome
sizes and biochemically plausible enzymes. Though not
modelled explicitly in stoichiometry, this architecture
facilitates the use of nested feedback interactions
(protocols) to tightly regulate flux through the system, and
these protocols are the source of both robustness and
complexity of the network.

Although metabolism tolerates large fluctuations in nutri-
ents and products, relatively small fluctuations in ATP are
lethal. But the very architecture that creates this fragility
also helps alleviate it, since ATP concentrations are
tightly regulated and not easily changed. Another major
source of fragility is that universal ‘knot’ responsible for
robustness is essential, such that if it is hijacked or dis-
rupted, then the entire network fails. Together, the effi-
ciency and adaptability of metabolism along with its
fragilities and power law degree distributions shown in
the next section illustrate highly/heterogeneous opti-
mised/organised tradeoffs/tolerance (HOT) [3] features.
Quantitative evaluation of this HOT ‘bowtie’ architecture
by biochemically realistic modular decomposition of
metabolites and reactions reveals an SR topology of the
network [5].
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Fig. 3 Bowtie structure of core metabolism
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3 SR topology

The topology of a network is a reflection of its architecture,
which we define as a collection of protocols and their organ-
isation. When topology is viewed in isolation, however, it
can create misleading views of the system architecture.
An example arises when considering certain network
representations of stoichiometry where the distribution of
metabolite ‘node’ degrees (number of reactions in which a
metabolite is involved) satisfies a power law, and then
this is taken as evidence that ‘SF’ networks underlie struc-
ture in biology [6]. In this regard, however, our analysis
revealing SR organisation is supported by recent analysis
[8] of protein—protein interaction networks that do not
exhibit power law node degree distribution, and thus are
not SF networks.

Although most of the graph-theoretical treatments of
metabolic networks focus largely on the metabolite node
degrees, it is important to note that degrees for both types
of nodes, reaction and metabolite nodes, are biologically
important (and equivalent to degrees of columns and
rows, i.e. the number of non-zero elements in a column
and in a row, of the s-matrix). In order to highlight the
features of bacterial metabolism, the metabolite and reac-
tion node degrees (the latter is the number of metabolites
involved in a reaction) in H. pylori are shown in Fig. 4
(+) and Fig. 5. It is plausible that the node degree for all
metabolites follows an approximate power law. However,
node degree sequence for reactions is not clearly described
by a power law. It is thus important to understand the essen-
tial architectures responsible for generating these (very
different) node degrees.

High variability (also called skewed or high dispersion of
the data) is an even more fundamental characteristic of
biologic networks than power laws. A standard measure
of variability is the coefficient of variation (CV = a/pu,
where o and p are sample standard deviation and
mean). Exponential distributions have low variability and
CV =1, and power law distributions have divergent CV
for large data sets (number of data — 00), thus high variabil-
ity. For low variability processes, Gaussians arise naturally
because of the well-known central limit theorem (CLT), and
thus require no additional ‘special’ explanations. Even more
important is that relaxing finite variance condition in the
CLT yields power laws, which are further invariant under
marginalisation, mixtures and maximisation [9]. Given the
abundance of high variability phenomena and these strong
invariants, power laws are an obvious null hypothesis and
should properly be viewed as ‘more normal than normal’
[10]. Thus mechanisms responsible for high variability in
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Fig. 4 Node degrees for carrier (0), precursor (<), other (%),

and all (+) metabolites in H.Pylori metabolism
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total metabolite degrees are more fundamental in capturing
the nature of biologic organisation than are power laws. We
will argue here that high variability in metabolite degree
and low variability in reaction degree are a necessary
feature for any metabolic network to be efficient and
robust to uncertain environments and cellular demands,
although constrained by the physical limitations imposed
on their chemical components.

Table 1 shows the CV and mean u for the horizontal and
vertical decompositions of the s-matrix in Fig. 1. Table 1
shows that the only place high variability appears is for
all metabolites in the full network. It is obvious from the
decomposition of metabolites into carrier, precursor and
other metabolites that the high variability in the whole
network is mainly created by high o from carrier metab-
olites mixed with low wu from others. This can also be
seen in Fig. 4. The high o of all carrier metabolites comes
from summing shared carrier metabolites across all the
different reaction modules. Other metabolites appear
almost uniquely in each reaction module and thus have
both low u and o. Their sum across different modules has
little effect on their degrees, and thus results in low
degrees in aggregate. Decomposition of all metabolites in
the full network into reaction modules also shows that
total metabolites in each of the reaction modules have
relatively low variability.

Table 1: CV and means of carrier, precursor, other, and
all metabolite node degree distributions in catabolism
(C) and amino acid (A), nucleotide (N), lipid (L), and
vitamin (V) biosynthetic modules

C A N L \ All

reactions
Ccv
Others 0.38 0.49 0.56 0.67 0.42 0.61
Precursors 0.47 105 O 0.35 0.61 0.60
Carriers 050 081 123 064 092 1.13

All metabolites 0.63 088 1.20 090 1.04 1.72

Mean u
Others 191 189 223 231 174 249
Precursors 338 156 1.00 1.25 2.00 5.564
Carriers 441 419 5.17 631 532 1394

All metabolites 297 239 289 291 256 3.81
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Therefore the metabolic network is highly ‘self-
dissimilar’ in the sense that the metabolite node degree
distributions are very different at the full systems level
(power law) and at all the module levels (exponentials),
exactly opposite from the self-similarity described in SF
networks. Metabolism consists of widely different scales in
modules, and thus would more appropriately be called SR.
Medium-degree precursors act as cores and high-degree
carriers are directly related to many distinct uses of meta-
bolic byproducts. Another important feature of metabolism
derived from bowtie structure is that deletion of high-degree
carriers does not fragment the network as is assumed for
‘hubs’ in the SF models, as carriers play an essential
biochemical role in most reactions yet are not responsible
for the long chains of reactions that connect the other
metabolites and precursors. Removing the carriers from bio-
logically meaningful s-graph in Fig. 2 still yields a fully
connected network with long pathways between the remain-
ing metabolites. In contrast, deleting precursor metabolites
of only medium degree does (lethally) break up the path-
ways. Thus the true fragility of the network is obfuscated
by focussing only on graph-theoretical properties of the
network. It is possible to partially ‘fix’ this problem by a
priori eliminating the carriers from graphs, but then the
resulting graphs have low variability in metabolite node
degree sequence and thus no longer have power laws, the
defining feature of SF networks. Recent experimental
results in [11] further shows that the degree of the metab-
olite nodes is not necessarily correlated with its lethality.

As shown above, the high variability comes from the
bowtie structure of metabolism with a small knot of high
degree common currencies (carriers and precursors). Its
robustness facilitates control, accommodating perturbations
and fluctuations on many time and spatial scales. That is, the
s-matrix by itself does not explicitly represent the regulat-
ory mechanisms which directly affect the fluxes, but the
structure and organisation of the s-matrix is such that it
greatly facilitates that regulation, and the high variability
is its necessary side product. This analysis of the s-matrix
suggests that the statistical features of metabolism, and par-
ticularly the presence of high variability and power laws,
depend on its highly organised (HOT) structure for effi-
ciency, robustness, and so on.

Very low variability in reaction node degrees as in Fig. 5
can be explained by standard biochemistry, as the enzymes
of core metabolism are highly efficient and specialised for
high fluxes of small metabolites and thus necessarily have
few metabolites; they execute simple reactions resulting
in long assembly chains. Thus, low variability in reaction
node degrees results from the highly efficient, specialised
enzymes in core metabolism. Note that the number of car-
riers involved in a reaction is also an important statistic as
shown in Fig. 5, and a typical reaction has four metabolites
of which two are carriers.

4 HOT models

The next analysis focusses on identifying the minimal fea-
tures of metabolism responsible for the various structural
features discussed above, including both high and low
variability in metabolite and reaction node degrees, respect-
ively, and long assembly chains. To this end, we will
explore a highly simplified model that nevertheless realisti-
cally captures these particular features of metabolism. The
aim is to go beyond simply characterising the structure of
metabolic networks and determine the essential necessary
functional requirements and component constraints
leading to that structure. Very simple models of metabolism
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can reveal the essential constraints that drive HOT
networks, and generating the simplest possible models to
illustrate basic features of real metabolism is a natural
starting point to which additional data and complexity can
be added. These models must abstract both the biological
function of metabolism and the constraints on its
components.

We previously proposed a simple abstract model for
metabolism [5] that is minimal, in both the biological
sense that no simpler reactions are possible and the mathe-
matical sense that it has minimal assumptions and can
easily be solved analytically, yet reproduces the important
characteristics of metabolic networks. This simplest model
shows that the existence of universal carriers is by itself
necessary and sufficient to have high and low variability in
metabolite and reaction node degrees. Although the model
explains what is minimally needed to produce the high CV
in metabolite degree, it fails to capture other significant struc-
tural features of metabolism, in particular the long tree-like
pathways of biosynthesis. We thus propose a slightly more
complex HOT stoichiometry model, which we call the
HOTword model, that contains long chains of pathways to
synthesise building blocks, in addition to the high and low
variability in metabolite and reaction node degrees.

The constraint on our abstract toy metabolites in
HOTword model is the assumption that each ‘metabolite’
is described by a word such as ‘ABCC’ with each letter cor-
responding to a conserved quantity and its carrier (such as
methyl or amino groups, phosphate, etc.). The constraints
on reactions are that they can simply delete or add the last
letter of the word, such as ABCC <—— ABC + C, and are
all fully reversible. There are no separate precursors, as
the single letter ‘carriers’ play both roles. These assump-
tions are very simplified abstractions of observations that
most reactions in metabolism involve transfer of groups
(such as phosphate or methyl groups or hydrogen) and
that most reactions involve two non-carrier metabolites
and one or a pair of carriers as shown in Fig. 5. We
assume that a set of complex (word) metabolites requires
no distinction between inputs and outputs since all reactions
are reversible. Then we can define a minimal notion of
robustness for a network in the sense that, with appropriate
fluxes, it can realise any arbitrary stoichiometrically
balanced set of reactions involving these I/O (input/
output) metabolites. Note that this extent of reversibility
and identical inputs and outputs are not realistic assump-
tions but simplify the model and are easily removed.

Although it may not be immediately apparent, HOTword
model is so simple that it is actually trivial to construct by
hand a network which is ‘optimal’ or nearly so, and this
was an additional objective, beyond its biologically motiv-
ated features. Specifically, an ‘optimal’ network here is a
minimal tree network that is maximally robust and efficient
in the sense of having the fewest possible number of reactions
and intermediate metabolites while achieving perfect robust-
ness to any arbitrary but stoichiometrically meaningful 1/0
metabolites and reactions. Although it is possible to define
a formal algorithm to convert any list of I/O metabolites
into an optimal network, a sketch of how this can be done
using a simple example should, we hope, suffice to illustrate
how such a process would work. Fig. 6 shows an s-graph
visualisation of a network with four I/O metabolites consist-
ing of two carriers ‘A’ and ‘B’: one of length four ‘BAAA’;
two of length three, ‘BAB’ and ‘BBA’ and one of length two
letters, ‘BB’. Note that since each reaction node uses only
one carrier, the s-graph can be simplified without loss of
information by labelling the reaction (enzyme) node with
its carrier and suppressing the carrier nodes.

IEE Proc.-Syst. Biol., Vol. 152, No. 4, December 2005
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Fig.6 An example of a HOTword model network. Rectangles
and diamonds denote metabolite nodes and reaction nodes,
respectively

A reaction node is labelled with its used carrier

a A list of long chains of reactions with a letter on the left end and an
1/0 metabolite on the right end

b A functionally equivalent but minimal tree-structural graph
obtained by merging common reactions in the chains

A simple s-graph tree is easily constructed by inspection,
and the process can be illustrated using the model in Fig. 6.
First, each I/O metabolite, such as ‘BAAA’, is reduced to
its leftmost letter, here ‘B’ via the intermediates ‘BA” and
‘BAA’. This yields a list of long chains with a letter on
one end and an I/O metabolite on the other as shown in
Fig. 6a. This collection of simple reactions is obviously
capable of collectively producing any stoichiometrically
balanced reaction, but is not minimal as reactions may be
repeated in different chains. These can be collapsed and
trimmed into a tree of reactions as shown in Fig. 6b by
removing redundant reactions between chains. The result-
ing tree-like s-graph of reactions is minimal in having the
fewest number of reactions that can still realise any
complex, stoichiometrically balanced reaction. A rigorous
proof, though straightforward, requires additional defi-
nitions and intermediate results, and is deferred here, in
favour of exploring the biologically relevant consequences
of the resulting structure.

Since all reactions are reversible, Fig. 6b can be thought
of as half of the canonical metabolism bowtie structure. The
other half corresponding to the reconstruction of all I/O
metabolites from their components is given by exactly the
same model run in reverse. (Clearly, the above construction
can be extended to different inputs and outputs and irrevers-
ible reactions.) Thus this extremely simplified HOTword
model fails to distinguish between catabolism and biosyn-
thesis, but does capture many other features of real metab-
olism: (i) the constraint in conservation of small moieties,
(i1) the typical low reaction degrees and the number of
carriers involved and (iii) the functional requirements of
conversion of nutrients to products by long tree-like
pathways. An easy calculation shows that it always has a
high variability metabolite node degree sequence created
by a mixture of a heavy-tail consisting of carriers with
low degree non-carriers. Accordingly, this HOTword
model captures the minimal features of metabolism
responsible for the high and low variability in metabolite
and reaction node degree sequences, respectively, together
with long assembly chains, that is, the features of bowtie
structures.
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5 Conclusions

The HOT ‘bowtie’ structure is an important aspect of the
highly optimised organisation and ‘design’ features of
metabolism. It facilitates both great robustness and effi-
ciency but is also a source of fragility [4]. A side-effect of
this architecture is high variability in total metabolite
node degree despite low variability in all metabolite and
reaction modules. Approximate power laws are, statisti-
cally, almost inevitable given this high variability. We have
shown that SR and highly dissimilar topology at every
level of organisation, even when studied at just the level
of stoichiometry, is a consequence of this HOT ‘bowtie’
structure of metabolism and is characterised by high and
low variability in metabolite and reaction node degrees
and long assembly chains of reactions. The regulation of
enzyme levels by transcription, translation and degradation
and enzyme activity by allostery and competitive inhibition
adds additional richness to metabolic networks.

Following [5], in this paper, we proposed a simple HOT
model of metabolism by abstracting the biological function-
ality of stoichiometry and the constraints on the enzymes
and reactions of metabolism. It reveals what we claim are
the essential functionality and constraints that drive the tra-
deoffs and hence the large-scale structure and organisation,
particularly SR topologies. In contrast to approaches that
treat metabolic networks as generic or random graphs,
including those with power law degree distributions, this
analysis of metabolic stoichiometry reveals a network that
is highly organised and rather specific to metabolism or
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manufacturing. It arises out of the requirements for func-
tionality of the network and for robustness and evolvability
under realistic constraints.
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nodes and reaction nodes, respectively. A reaction node is labeled with its used carrier. (a) A list of
long chains of reactions with a letter on the left end and an I/O metabolite on the right end, and (b) a
functionally equivalent but minimal tree-structural graph obtained by merging common reactions in

the chains
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