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Abstract

This paper is aimed at designing a congestion control system that scales gracefully with
network capacity, providing high utilization, low queueing delay, dynamic stability, and fairness
among users. The focus is on developing decentralized control laws at end-systems and routers
at the level of fluid-flow models, that can provably satisfy such properties in arbitrary networks,
and subsequently approximate these features through practical packet-level implementations.

Two families of control laws are developed. The first “dual” control law is able to achieve the
first three objectives for arbitrary networks and delays, but is forced to constrain the resource
allocation policy. We subsequently develop a “primal-dual” law that overcomes this limitation
and allows sources to match their steady-state preferences at a slower time-scale, provided a
bound on round-trip-times is known.

We develop two packet-level implementations of this protocol, using (i) ECN marking, and
(ii) queueing delay, as means of communicating the congestion measure from links to sources.
We demonstrate using ns-2 simulations the stability of the protocol and its equilibrium features
in terms of utilization, queueing and fairness, under a variety of scaling parameters.

1 Introduction

The congestion control mechanisms in the Internet consist of the congestion window algorithms of
TCP [14], running at end-systems, and active queue management (AQM) algorithms (e.g. [10])
at routers, seeking to obtain high network utilization, small amounts of queueing delay, and some
degree of fairness among users. These implementations are the result of an evolutionary cycle
involving heuristics, small-scale simulation and experimentation, and deployment; given that this
process occurred at the time of an explosive growth of the network, the achieved performance of
these systems must be considered a resounding success. However, there are reasons to wonder
whether this evolutionary path may be reaching its limits: deficiencies of the current loss-based
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protocol in wireless environments; difficulties in providing quality of service guarantees (delay,
resource allocation); and the growing evidence (see e.g. [22, 11, 17]) that the additive-increase-
multiplicative- decrease (AIMD) structure in TCP does not scale well to high capacity networks.

The role of mathematical models in this design process has been modest: perhaps the most cited
early reference is [15], which gives a quasi-static analysis of fairness properties of a highly idealized
version of AIMD. Mathematical explanations of the dynamics of TCP/AQM have only recently been
pursued (e.g., [9, 8, 22, 13]), and they typically only have predictive value in very simple scenarios
such as single bottlenecks with homogeneous delays. Indeed, the complexity of the nonlinear delay-
differential equations that arise should quickly convince anyone of the intractability of making
predictions at the global scale. Superficially, this seems to confirm that mathematical models have
limited value so the empirical route was the only alternative. However, to some degree this is a
self-fulfilling prophecy: as in other complex systems, seeking mathematical verification a posteriori
to a heuristic design is rarely tractable; but sometimes a rigorous foundation can be attained
if one “designs for provability”. Strikingly, it has recently become clear that such foundation is
available for the congestion control problem, within the same design principles that have guided the
Internet (end-to-end control, no per-flow state in the network, see [5]), and only requiring minor
modifications to the details of the algorithms. This formulation originates in the work of Kelly
and coworkers [18, 12, 19], and is based on fluid-flow models and the explicit consideration of a
congestion measure fed back to sources from congested links. Interpreting such signals as prices has
allowed for economic interpretations that make explicit the equilibrium resource allocation policy
specified by the control algorithms, in terms of a suitable optimization problem [18, 21]. In terms
of dynamics, these models also reveal a special structure that can be exploited for control design,
as pursued recently in [16, 24, 25, 28, 20]. The present paper gives a comprehensive treatment of
one such approach; preliminary versions of this work are reported in the conference papers [25, 26].

We pose the objective of finding a protocol that can be implemented in a decentralized way
by sources and routers, and controls the system to a stable equilibrium point which satisfies some
basic requirements: high utilization of network resources, small queues, and a degree of control
over resource allocation. All of these are required to be scalable, i.e. hold for an arbitrary network,
with possibly high capacity and delay. This fact, and the decentralized information structure,
significantly narrow down the search for a control law. In Section 3 we present a first candidate
solution that is able to achieve the first two equilibrium objectives, and stability, in a completely
scalable way, but constrains the resource allocation policy. In Section 4 we extend the theory to
include dynamics at TCP sources, preserving the earlier features at fast time-scales, but permitting
sources also to match their steady-state preferences; the only limitation to scalability is that a
bound on round-trip-times is assumed to be known. This two-time-scale approach is dual to the
one considered in [20].

In the latter sections of the paper we describe how to go beyond fluid-flow models and pursue a
packet-level protocol with these features, within the constraints of mechanisms currently available
in the Internet. Two strategies are pursued: one, described in Section 5, is based on the Explicit
Congestion Notification (ECN) bit available in the packet header to code the congestion information
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between links and sources; this version has the advantage of allowing operation with essentially zero
delay, at the cost of some added complexity in network routers. We present some ns-2 simulation
tests to demonstrate the performance, in highly stressed congestion scenarios and high capacity
links. The second implementation, described in Section 6, is based on queueing delay as a congestion
measure, similar to what is done in TCP Vegas [3]. This allows some degradation of performance
in terms of queueing delay and fairness, but has the advantage of requiring no explicit participation
from routers.

Conclusions are given in Section 7, and some proofs are given in the Appendix.

2 Preliminaries

2.1 Fluid-flow models for congestion control

We are concerned with a system of communication links, indexed by l, shared by a set of source-
destination pairs, indexed by i. The routing matrix R is defined by

Rli =
{

1 if source i uses link l
0 otherwise

,

and assumed fixed. The theory will be based on a fluid-flow abstraction of the TCP/AQM conges-
tion control problem. Each source i has an associated transmission rate xi(t); the set of transmission
rates determines the aggregate flow yl(t) at each link, by the equation

yl(t) =
∑

i

Rlixi(t− τ f
li), (1)

in which the forward delays τ f
li between sources and links are accounted for. Each link has a

capacity cl in packets per second.
In practice, routing varies as sources arrive or leave the network, or based on routing changes, but

we assume this happens at a slower time-scale than our analysis. We remark that we are modeling
only persistent sources which can be controlled. From the point of view of these “elephants”, what
matters is settling on a set of rates which fully utilizes the network bandwidth and distributes it
appropriately among them. The network is also shared by short “mice”, which don’t last long
enough to be controlled, but are affected by the elephant dynamics, mainly through the queuing
delay they experience. We will not model them explicitly here (they could be treated as noise in
link rates), but will bear their objectives in mind for design.

The feedback mechanism is modeled as follows [18, 21]: each link has an associated congestion
measure or price pl(t), and sources are assumed to have access to the aggregate price of all links in
their route,

qi(t) =
∑

l

Rlipl(t− τ b
li). (2)
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Here again we allow for backward delays τ b
li in the feedback path from links to sources. As discussed

in [21, 23], this feedback model includes, to a good approximation, the mechanism present in existing
protocols, with a different interpretation for price in different protocols (e.g. loss probability in TCP
Reno, queueing delay in TCP Vegas). The vectors x, y, p, q collect the above quantities across
sources and links.

The total RTT for the source thus satisfies

τi = τ f
li + τ b

li (3)

for every link in the source’s path. These delays contain a fixed component of propagation and
packet processing, but could also include queueing delays, which vary dynamically in time. When
necessary, we will denote by di the fixed portion of the round-trip-time.

In this framework, a congestion control system is specified by choosing (i) how the links fix their
prices based on link utilization; (ii) how the sources fix their rates based on their aggregate price.
These operations will determine both the equilibrium and dynamic characteristics of the overall
system.

2.2 Equilibrium objectives and utility-based interpretation

We first specify the design objectives for the equilibrium point to be achieved by our system:

1. Network utilization. Link equilibrium rates y0l should of course not exceed the capacity cl,
but also should attempt to track it.

2. Equilibrium queues should be empty (or small) to avoid queueing delays.

3. Resource allocation. We will assume sources have a demand curve

x0i = fi(q0i) (4)

that specifies their desired equilibrium rate as a decreasing function of price. This is equivalent
to assigning them a concave utility function Ui(xi), in the language of [18], and postulating
that sources choose their equilibrium rate from their local maximization of “profit”,

max
x0i

[Ui(x0i)− q0ix0i].

This gives the relationship (4) with fi = (U ′
i)
−1. We would like the control system to reach

an equilibrium that accommodates these demands. The choice of utility function provides a
“soft” way of imposing fairness (weaker than, e.g.“max-min” fairness [2]), or alternatively ser-
vice differentiation; this market-based approach is consistent with the end-to-end philosophy
[19].
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Although the control design will be described in detail in the following sections, it is useful to
introduce right away the type of algorithm to be used at the links. Consider the mechanism

ṗl =
{

γl(yl − c0l), if pl > 0 or yl > c0l;
0 otherwise,

(5)

to set prices at each link. Here c0l is a target capacity, and γl a positive constant to be chosen.
Clearly, at any equilibrium point we will have y0l ≤ c0l, and the price will be nonzero only at

bottleneck links where y0l = c0l. If we choose c0l = cl, the capacity would be matched at certain
bottlenecks, and every source would see a bottleneck (assuming its demand function is able to fill
it). So the above algorithm, if it reaches equilibrium, would satisfy our utilization objective.

This kind of link algorithm was studied in [21] and related to the optimization of total utility
subject to network capacity constraints:

max
x≥0

∑

i

Ui(xi), subject to Rx ≤ c . (6)

An equilibrium point of (5) together with a source algorithm that satisfies (4) is a solution to the
above convex program; furthermore, the equilibrium prices are the Lagrange multipliers for the
corresponding dual.

The main drawback of choosing c0l = cl is that it leads to nonzero equilibrium queues. Indeed,
a simple fluid-flow model for a backlog or queue bl at a link is the equation

ḃl =
{

yl − cl, if bl > 0 or yl > cl;
0 otherwise.

(7)

Namely, the queue or backlog bl in packets integrates the excess rate over capacity, and is always
non-negative1. Comparing to (5), we see that prices would be proportional to queues and thus
bottleneck links would have a backlog. This leaves two options: one can either work with other
design parameters to make sure this backlog is small, or instead, make c0l a “virtual” capacity
slightly below cl. In this way equilibrium queues can be empty with bottleneck links at essentially
full utilization2.

2.3 Dynamic objectives and a linearized model

Equilibrium considerations are meaningful if the system can operate at or near this point; for this
reason we pose as a basic requirement the stability of the equilibrium point. Ideally, we would seek

1Other models [18], inspired in steady-state stochastic queueing theory, treat queues as static functions of the rate
which grow as it approaches capacity. The above integrator model seems more appropriate for dynamic studies when
queues spend a significant proportion of time in the non-empty state.

2Another approach used in [1] is to add another “integrator” to the price dynamics; this, however, poses limitations
on scalable stability so it will not be pursued here.
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global stability from any initial condition, but at the very least we should require local stability
from a neighborhood.

This objective is sometimes debated, since instability in the form of oscillations could perhaps
be tolerated in the network context, and might be a small price to pay for an aggressive control.
We emphasize, however, that going beyond the limit of stability one sacrifices any predictability
of system behavior, and any evidence that oscillations are benign would inevitably be anecdotal.
Examples where they are quite severe can be found in [8, 22]. Instead, making a system stable but
close to the stability boundary, as will be pursued below, provides the maximum speed of response
compatible with a predictable steady state operation.

In this paper we will only pursue local stability results, based on small perturbations x = x0 + δx,
y = y0 + δy, p = p0 + δp, q = q0 + δq around equilibrium, and studied via linearization. We assume
that links are running the control law (5), and for most of the theory we will assume c0l < cl. This
has the following implications:

• Around equilibrium, there is no queueing delay. This means the delays τ f
i,l, τ

b
i,l only have their

fixed component, therefore (1) and (2) are linear time invariant relationships, amenable to
study via the Laplace transform.

• No links are “truly” saturated. This means an increase δxi in a certain source’s rate will be
seen by all the bottlenecks in its path, rather than just the first one.

• Non-bottleneck links have zero price, a fact not affected by a small perturbation. Thus δpl

will only be nonzero for bottlenecks, and we can reduce the analysis to such links.

With these considerations, we can linearize (1-2) and express the result in the Laplace domain,
as follows:

δȳ(s) = R̄f (s)δx(s), (8)

δq(s) = R̄b(s)T δp̄(s). (9)

Here we use the notation δp̄, δȳ to indicate the reduced vectors obtained by eliminating non-
bottleneck links. Also, the matrices R̄f (s) and R̄b(s) are obtained by eliminating non-bottleneck

rows from R, and also replacing the “1” elements respectively by the delay terms e−τf
i,ls, e−τb

i,ls.
The superscript T denotes transpose.

We will assume that the matrix R̄ = R̄f (0) = R̄b(0) is of full row rank. This means that there
are no algebraic constraints between bottleneck link flows, ruling out, for instance, the situation
where all flows through one link also go through another. Typically, however, in that situation only
one of the links would be a bottleneck; so our assumption is quite generic.

With these conventions, we can represent the linearized feedback system in the block diagram
of Figure 1. Here, the network portion is represented by the matrices R̄f (s), R̄b(s)T , which encode
the routing and delay information. These are given and fixed, but not known to the sources and
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Figure 1: General congestion control structure.

links. Moreover, the latter operate in a decentralized manner based only on local information, as
represented in the figure by the block-diagonal structure. These tight information constraints make
this a challenging control design problem.

Following [18], it has become customary to denote by “primal” control laws those that contain
dynamics at sources, but static functions at links, and “dual” laws those where the opposite holds.
In this vein, we will name “primal-dual” the case where both control laws are dynamic.

3 A “Dual” Control with scalable stability

We first describe a control strategy that is based on (5) at the links, plus a static control law

xi = fi(qi) (10)

at the sources; this means the source follows instantaneously its demand function (4). As such,
this is a dual control law of the type studied in [21]. Our aim here is to find a control that would
scale itself to achieve local stability for arbitrary networks and arbitrary values of the RTT. This
requires a careful choice of the parameter γl in (5), and of the function fi, as is now described.

3.1 Linearized design and stability theorem

Consider the linearization of (10) around a certain equilibrium point,

δxi = −κiδqi; (11)
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the negative sign is used since the demand function is decreasing. Also consider the linearization
of the link law (5) around a nonzero equilibrium price, in the Laplace domain:

δp̄l =
γl

s
δȳl. (12)

We will employ matrix notation to describe the overall feedback system; throughout, the notation
diag(·) denotes a diagonal matrix with the corresponding entries on the diagonal.

We first introduce C = diag(γl), K = diag(κi) and express (11-12) as

δx = −Kδq, δp̄ = C I

s
δȳ.

Here the matrix of integrators I
s has the dimension of the number of bottleneck links. Combining

these laws with the network equations (8-9) as in Figure 1, we can represent the feedback loop as
the standard unity feedback configuration of Figure 2, with loop transfer function matrix

L(s) = R̄f (s)KR̄T
b (s)C I

s
. (13)

The negative feedback sign has been pulled out of (11) as is the standard convention; the external

L(s)
–

Figure 2: Overall feedback loop

input is not relevant to the stability analysis, but it could represent here noise traffic from uncon-
trolled sources added at the links. The design question is how to choose the gains γl and κi so that
the feedback loop remains stable for arbitrary network topologies, parameters, and delays.

To guide our search, focus first on a single link and source. Here the feedback loop is scalar,
with loop transfer function

L(s) = κγ
e−τs

s
,

and the stability of the closed loop can be studied with methods of classical control, such as the
Nyquist criterion. It is easily seen that this loop would be unstable for large τ , unless the gain κγ
compensates for it. Fortunately, sources can measure their RTT so we can set κ = α

τ , which gives
a loop transfer function

L(s) = αγ
e−τs

τs
. (14)

We call the above transfer function, in which the variable s is always multiplied by τ , scale-invariant:
this means that Nyquist plots (of the function L(jω) parameterized by ω) for all values of τ would
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Figure 3: Nyquist plot Γ of e−jθ/jθ.

fall on a single curve Γ, depicted in Figure 3 for αγ = 1. In the time domain, closed loop responses
for different τ ’s would be the same except for time-scale. Γ first touches the negative real axis at
the point −2/π, to the right of the critical point −1, so the Nyquist criterion implies that our loop
achieves scalable stability for all τ provided that the gain αγ < π/2.

For a single link/source, the preceding gain condition could be imposed a priori. Suppose now
that we have N identical sources sharing a bottleneck link. It is not difficult to see that the effective
loop gain is scaled up by N ; this must be compensated for if we want stability, but in these networks
neither sources nor links know what N is: how can they do the right “gain-scheduling”?

The key idea in our solution is to exploit the conservation law c0l =
∑

i Rlix0i implicit in the
network equilibrium point, by choosing γl = 1

c0l
at each link, and making κi proportional to x0i

τi

at each source. In the case of a single link, but now many sources with heterogeneous delays, this
gives a loop transfer function (still scalar, seen from the link as in Figure 2) of

L(jω) =
∑

i

x0i

c0l

e−jτiω

τiω
,

which gives, at any frequency a convex combination of points in Γ. It follows from Figure 3 that
this convex combination will remain on the correct side of the critical point and thus the loop is
stable.

Will this strategy work if there are multiple bottleneck links contributing to the feedback?
Intuitively, there could be an analogous increase in gain that must be compensated for. Therefore
we introduce a gain 1

Mi
at each source, Mi being a bound on the number of bottleneck links in the

source’s path, which we assume is available to sources (see Section 5). This leads to a local source
controller

δxi = −κiδqi = −αix0i

Miτi
δqi, (15)
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where αi < π/2 is a constant gain parameter. We have the following result.

Theorem 1. Suppose the matrix R̄ := R̄f (0) = R̄b(0) is of full row rank, and that αi < π
2 . Then

the system with source controllers (15) and link controllers (12) is linearly stable for arbitrary delays
and link capacities.

Details of the proof will be deferred to the Appendix, but we outline here the main ideas
involved, which are based on a multivariable version of the above Nyquist argument, tailored to
this situation of integral control. We state a proposition that addresses these requirements.

Proposition 2. Consider a standard unity feedback loop, with L(s) = F (s)I
s . Suppose:

(i) F (s) is analytic in Re(s) > 0 and bounded in Re(s) ≥ 0.

(ii) F (0) has strictly positive eigenvalues.

(iii) For all µ ∈ (0, 1] and ω 6= 0, the point −1 is not an eigenvalue of µL(jω).

Then the closed loop is stable.

In essence, the first two conditions imply that tuning down the loop gain by a small µ, there
is negative feedback of enough rank to stabilize all the integrators; condition (iii) says that we can
then increase µ up to unity without bifurcating into instability.

Following our expression (13), we take F (s) = R̄f (s)KR̄T
b (s)C, which is easily seen to satisfy

(i), and (ii) follows from the rank assumption on R̄. To establish (iii), the key observation is the
relationship

R̄b(s) = R̄f (−s)diag(e−τis)

that follows from (3). This leads to the representation

L(jω) = R̄f (jω)diag(
αix0i

Mi
)diag(

e−τijω

τijω
)R̄f (jω)∗C, (16)

where ∗ denotes conjugate transpose. Isolating the factor

Λ(jω) := diag(λi(jω)) = diag
(

e−τijω

τijω

)
,

we see that it has eigenvalues on the curve Γ. The remainder of the proof involves showing that
all the remaining factors produce nothing more than a convex combination and a scaling in these
eigenvalues, and therefore can be prevented from reaching the critical point −1. This is done in
the Appendix.
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3.2 Nonlinear dual control and equilibrium structure

We have presented a linearized control law with some desirable stability properties. We now discuss
how to embed such linear control laws in a global, nonlinear control scheme whose equilibrium would
linearize as required.

The link control is simply (5) with our particular choice of γl, namely

ṗl =
{ yl−c0l

c0l
, if pl > 0 or yl > c0l;

0 otherwise.
(17)

This gives our price units of time; indeed, for c0l = cl this would correspond, by (7), to the queueing
delay at the link (queue divided by capacity). Since we are working with a virtual capacity c0l < cl,
we can interpret our price as the virtual queueing delay that the link would experience if its capacity
were slightly lower.

For the sources, so far we have only characterized their linearization (15). For static source
control laws as in (10), however, specifying its linearization at every equilibrium point essentially
determines its nonlinear structure. Indeed, the linearization requirement (15) imposes that

∂fi

∂qi
= − αifi

Miτi
,

for some 0 < αi < π/2. Let us assume initially that αi is constant. Then the above differential
equation can be solved analytically, and gives the static source control law

xi = fi(qi, τi,Mi) = xmax,i e
− αiqi

Miτi . (18)

Here xmax,i is a maximum rate parameter, which can vary for each source, and can also depend on
Mi, τi (but not on qi). This exponential backoff of source rates as a function of aggregate price can
provide the desired control law, together with the link control in (17).
Remark: The RTT used in (18) could be the real-time measurement, or instead, it could be
replaced by the fixed portion di of the delay. Both will coincide locally around an equilibrium with
empty queues, but the latter option is generally preferable because it avoids a more complex time-
varying dynamics during a transient where there are queueing delays. Later, we discuss practical
ways for the source to estimate di.

The corresponding utility function (for which fi = (U ′
i)
−1) is

Ui(x) =
Miτi

αi
x

[
1− log

(
x

xmax,i

)]
, x ≤ xmax,i.

We can achieve more freedom in the control law by letting the parameter αi be a function of the
operating point: in general, we would allow any mapping xi = fi(qi) that satisfies the differential
inequality

0 ≥ ∂fi

∂qi
≥ −π

2
fi

Miτi
. (19)
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The essential requirement is that the slope of the source rate function (the “elasticity” in source
demand) decreases with delay τi, and with the bound Mi on the number of bottlenecks.

So we find that in order to obtain this very general scalable stability theorem, some restrictions
apply to the sources’ demand curves (or their utility functions). This is undesirable from the point
of view of our objective 3 in Section 2.2; we would prefer to leave the utility functions completely
up to the sources; in particular, to have the ability to allocate equilibrium rates independently of
the RTT. We remark that parallel work in [28] has derived solutions with scalable stability and
arbitrary utility functions, but where the link utilization requirement is relaxed. Indeed, it appears
that one must choose between the equilibrium conditions on either the source or on the link side,
if one desires a scalable stability theorem. Below we show how this difficulty is overcome if we
slightly relax our scalability requirement.

Finally, we emphasize that while the above implementations will behave as required around
equilibrium, we have not proved global convergence to equilibrium in the nonlinear case. This
problem is substantially more difficult; for some partial results in the single link case see [30].

4 A “primal-dual” law with resource allocation control

The reason we are getting restrictions on the equilibrium structure is that for static laws, the
elasticity of the demand curve (the control gain at DC) coincides with the high frequency gain,
and is thus constrained by stability. To avoid this difficulty and thus allow for more flexibility in
the rate assignment at equilibrium, we must decouple these two gains. This can only be done by
adding dynamics at the sources, while still keeping the link dynamics, which guarantee network
utilization. Thus we will have a “primal-dual” solution.

The simplest source control that has different gains at low and high frequencies is the first-order
“lead-lag” compensator, given in the Laplace domain by

δxi = −κi(s + z)
s + zκi

νi

δqi. (20)

Here the high frequency gain κi is the same as in (15), “socially acceptable” from a dynamic
perspective. The DC gain νi = −f ′i(qi0) is the elasticity of source demand based on its own “selfish”
demand curve xi0 = fi(qi0), that need no longer be of the form (18).

The remaining degree of freedom in the design is the choice of the zero z, which determines
where the transition between “low” and “high” frequencies occurs. For reasons that will become
clear in the stability theorem below, it will be essential to fix this zero across all sources.

4.1 Local stability result

With the new local source control, we will proceed to study the linearized stability of the closed
loop, generalizing the method of Theorem 1. We first write down the overall loop transfer function
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L(s) = R̄f (s)K(s)R̄T
b (s)C I

s
, (21)

which is analogous to (13) except that now

K(s) = diag
(
κiVi(s)

)
, with Vi(s) =

s + z

s + zκi
νi

,

κi as in (15). The stability argument is based again on Proposition 2, the key step being once more
the study of the eigenvalues of µL(jω). We write

L(jω) = R̄f (jω)diag(
αix0i

Mi
)Λ(jω)R̄f (jω)∗C (22)

as in (16), except that now we have

Λ(jω) = diag(λi(jω)) = diag
(

e−τijω

τijω
Vi(jω)

)
, (23)

in other words we have added the lead-lag term Vi(s) to the diagonal elements of Λ(s). Since the
remaining matrices are unchanged it will still be true (see the Appendix) that the eigenvalues of
L(jω) are convex combinations and scaling of these λi(jω). So it remains to give conditions so that
the convex combinations of the λi(jω), which now include an extra lead-lag term, do not reach the
critical point −1. Figure 4 contains various Nyquist plots of λi(jω), for τi ranging between 1ms
and 1sec, and ratios νi/κi ranging between 0.1 and 1000. The value of z is fixed at 0.2.
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Figure 4: Nyquist plots of λi(jω), z = 0.2, various τi and νi/κi.

A first comment is that here the plots do not coincide, as they did in the “scale-invariant” case
of Section 3; here only the high frequency portions coincide. Secondly, we note that there is not an
obvious separation between the convex hull of these points and the critical point −1. One could

13



think of obtaining convex separation through a slanted line; this however, would imply a lower
limit −π + θ, θ > 0 on the phase of λi(jω) at low frequencies, which in turn implies a limit on
the lag-lead gain ratio νi/κi. This may be acceptable, but would not allow us to accommodate
arbitrary utilities.

The alternative is to treat the low-frequency portion of the above curve separately, ensuring
for instance that it doesn’t reach phase −π. This, however, implies a common notion of what
“low-frequency” means, so that we are not operating in different portions of the curve for sources
with different RTTs. This can be obtained through a fixed bound τ̄ on the RTT, as follows.

Theorem 3. Assume that for every source i, τi ≤ τ̄ . In the assumptions of Theorem 1 replace the
source control by (20), with αi ≤ α < π

2 and z = η
τ̄ . Then for a small enough η ∈ (0, 1) depending

only on α, the closed loop is linearly stable.

The proof is given in the Appendix.

4.2 Global nonlinear control

We now discuss how to embed our new linearized source control law in global nonlinear laws. The
requirements are:

• The equilibrium matches the desired utility function, U ′
i(x0i) = q0i, or equivalently the de-

mand curve (4) for fi = (Ui)−1.

• The linearization is (20), with the zero z being fixed, independently of the operating point
and the RTT.

We now present a nonlinear implementation that satisfies these conditions, which combines the
structure of (18) with elements similar to laws in the “primal” approach [18, 16, 28].

τiξ̇i = βi(U ′
i(xi)− qi), (24)

xi = xm,ie
(ξi− αiqi

Miτi
)
. (25)

Note that (25) corresponds exactly to the rate control law in (18), with the change that the
parameter xmax is now varied exponentially as

xmax,i = xm,ie
ξi ,

with ξi as in (24). If βi is small, the intuition is that the sources use (18) at fast time-scales,
but slowly adapt their xmaxi to achieve an equilibrium rate that matches their utility function, as
follows clearly from equation (24).
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Remark: Here again, as in (18), it is often convenient to interpret τi as referring exclusively to
the fixed portion di of the RTT.

We now find the linearization around equilibrium; the source subscript i is omitted for brevity.
For increments ξ = ξ0 + δξ, x = x0 + δx, q = q0 + δq, we obtain the linearized equations:

τδξ̇ = β
(
U ′′(x0)δx− δq

)
= β

(− δx

ν
− δq

)
, (26)

δx = x0(δξ − α

Mτ
δq) = x0δξ − κδq. (27)

Here we have used the fact that U ′′(x0) = 1
f ′(q0) = − 1

ν , and the expression (15) for κ . Some
algebra in the Laplace domain leads to the transfer function

δx = −κ

(
s + βx0

κτ

s + βx0

ντ

)
δq,

that is exactly of the form in (20) if we take

z =
βx0

κτ
=

βM

α
.

By choosing β, the zero of our lead-lag can be made independent of the operating point, or the
delay, as desired.

We recapitulate the main result as follows.

Theorem 4. Consider the source control (24-25) where Ui(xi) is the source utility function, and the
link control (17). At equilibrium, this system will satisfy the desired demand curve xi0 = fi(qi0),
and the bottleneck links will satisfy y0l = c0l, with empty queues. Furthermore, under the rank
assumption in Theorem 1, αi < π

2 , and z = βiMi

αi
chosen as in Theorem 3, the equilibrium point

will be locally stable.

We have thus satisfied all the equilibrium objectives set forth in Section 2.2, and local stability.
This was done for arbitrary networks, with the only restriction that an overall bound on the RTT
had to be imposed.
Remark: Source laws (24-25) are not the only ones that satisfy our equilibrium and linearization
objectives; we are aware of at least one alternative. Our preference for this version is based mainly
on empirical observations of its global properties, and on its close relationship with the static law
(18), for which there are some partial global stability results [30].

We conclude the section with a few remarks on the dynamic performance of the system, in
particular its speed of convergence to equilibrium. Locally, the speed of response is dictated by
the closed-loop poles, and it will be faster as one approaches the boundary of stability. How
close to this boundary do we operate when using the parameter settings of Theorem 4? From
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the Nyquist argument one can easily see that the conditions are non-conservative in the case of a
single bottleneck network shared by homogeneous sources. In other situations, one might be able
to push beyond these limits and still remain stable. But given our desire for network-independent
parameter settings, and that this worst-case scenario is not unrealistic, these conditions appear to
be reasonable.

A more important validation of performance is the global one, starting from a possibly far away
initial condition, as would happen for instance after a change in routing or if a new source starts.
This issue will inevitably depend on the utility function being used in (24), and (as with global
stability) will be difficult to address other than by simulation.

Still, we can do the following approximate analysis to gain insight on the behavior of the control
law as a new source starts up from a very small rate. In particular the speed at which this rate
grows will have a large impact on the time in takes to reach equilibrium. To analyze this, calculate
from (24-25) the derivative of the rate,

ẋ =
x

τ

(
βU ′(x)− βq − α

M
q̇
)

. (28)

If the source were starting on an uncongested path the terms in q, q̇ would disappear. This is also a
good approximation on a steady-state, congested path if the new source’s rate is very small. Indeed,
in this case the marginal utility U ′(x) would be much larger than the price q, and also q̇ would be
small since the existing larger flows are in equilibrium. Therefore we can write the approximation

ẋ ≈ β

τ
xU ′(x) (29)

for small x. We can use this to assess the performance of certain utility functions; for instance, the
choice

U(x) = K log(x) (30)

which induces so-called proportional fairness in the equilibrium [18], makes

ẋ ≈ βK

τ
(31)

and therefore linear growth of the rates starting from zero. Instead, a utility function such that
U ′(x) has a finite limit for x → 0, will give initially an exponential increase of the rate.

5 A packet-level implementation using ECN marking

So far we have worked with the abstraction of the congestion control problem laid out in Section
2.1. In this section we indicate how these ideas can transition to an actual packet-level protocol,
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as could be implemented in a real world network. For more details on the implementation aspect
we refer to [26].

A first comment is that while we have assumed that source can control rates, in practice they
adapt their congestion window wi; its effect over the rate can be approximately described, over
time-scales longer than the RTT, by the relationship

xi ≈ wi

τi
. (32)

Sources should set wi so that the rate targets the desired “equation-based” value from (24-25), with
a suitable time discretization interval Ts. To make the discussion more concrete, in this section we
use the utility function Ui(xi) = Ki log(xi) from (30). A straightforward discretization of (24-25)
could be

ξi(k) = ξi(k − 1) + βi

(
Ki

wi(k − 1)
− qi(k)

di

)
Ts, (33)

wi(k) = wm,ie

�
ξi(k)−αiqi(k)

Midi

�
. (34)

An alternative discretization, that exploits (28) to avoid the complexity of computing the exponen-
tial, will be discussed in the following section.

To execute the above algorithm, sources must have access to their aggregate price (see below),
their (minimum) RTT which can be measured through packet time-stamps, and the parameter
Mi which must be assumed a priori (it can be argued that Mi = 2 accommodates most practical
scenarios).

Similarly, links can approximate (17) by a time discretization with interval T̃s,

p(k) =
[
p(k − 1) +

yl(k)− c0l

c0l
T̃s

]+

. (35)

Here [·]+ denotes max{·, 0}. Note that yl(k)T̃s can be taken to be number of arrivals at the
queue during the interval. Therefore the above operation can be performed with relatively small
computational burden on the routers.

5.1 Marking and Estimation

The key remaining issue for the implementation of the above protocols is the communication of
price signals from links back to sources, in an additive way across the source’s route. In this section
we explore the use of an Explicit Congestion Notification (ECN) bit to implement this feature. A
natural way to obtain the additivity property is by Random Exponential Marking (REM, [1]), in
which an ECN bit would be marked at each link l with probability

1− φ−pl
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where φ > 1 is a global constant. Assuming independence between links, the overall probability
that a packet from source i gets marked is (see [1])

Pi = 1− φ−qi , (36)

and therefore qi can be estimated from marking statistics. For example, a shift-register of the last
N received marks can be maintained, the fraction of positive marks providing an estimate P̂i of
the marking probability, from which an estimate q̂i can be derived, and used in place of qi in the
source equations (33-34).

While simple in principle, two related issues are important to make this scheme practical:

1. The choice of a universal φ across the network means choosing a range of prices for which
our estimation will be most accurate (i.e., where the marking probability is not too close to
0 or 1). For instance, choosing φ = 100 implies the range of prices (in seconds) [0.011, 0.65]
corresponds to marking probabilities between 5% and 95%. In essence, φ selects a scale of
prices, and source demand functions (4) should be tailored to operate with this “currency”.
In the simulations below, this will be taken into account the choice of the constant Ki of our
utility function.

2. An estimation based on a moving average of size N introduces an additional delay in the
feedback loop, of approximately

τest ≈ N

2w
τ, (37)

which is the time it takes to receive N
2 packets. This delay could compromise stability, a

factor that can partly be addressed by choosing α away from the stability limit. Still, it
is clear from (37) that one should avoid high estimation windows, so there is compromise
between stability and accurate price estimation. Noise in price estimation will feed through
to the congestion window by (34); this will not affect average rates, but it may nevertheless
be undesirable. In the simulations below, we mitigate this noise by imposing caps on the
window change at every sample time.

5.2 Simulation results

We implemented the preceding algorithms in the standard simulator ns-2 to validate their per-
formance. The source estimates the price on each ACK arrival using the last N marks, and the
round trip propagation delay from a minimum RTT; these are used to define an expected congestion
window every Ts seconds based on (33-34). The actual congestion window is set to the expected
window every ACK, but with a cap on the magnitude of the change. For more details, see [26].
The links run (35) to update price every T̃s seconds, and exponentially marks the ECN bit with
base φ.

We used the following parameters in the simulation:
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• φ = 106, N = 31 for marking and estimation.

• Ts = 10ms, βi = 1.18, Ki = 50, Mi = 1, αi = 0.37 at the sources.

• T̃s = 5ms, c0l = 0.95cl at the links. To focus on the control performance, we used large
buffers to avoid packet drops.

The scenario of Figure 5 tests the dynamics of our protocol when sudden changes in traffic
demands take place. One-way long-lived traffic goes through a single bottleneck link with capacity
of 2Gbps (250pkts/ms with mean packet size 1000bytes). It is shared at most by 512 ftp flows.
The number of flows is doubled every 40 seconds, from 32, to 64, 128, 256, and finally to 512 flows.
These groups of flows have round trip propagation delays of 40ms, 80ms, 120ms, 160ms and 200ms
respectively. This scenario is designed to stress a high-capacity link with heterogeneous flows.
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Figure 5: Dynamic Performance of the ECN-based Protocol

In reference to the results of Figure 5, we note:
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1. The source rates and the link prices (marking probability) track the expected equilibria when
new sources activate. While there is noise in the price estimation, its impact is only significant
in the very uncongested case, when prices are very low.

2. Fairness is achieved: at each equilibrium stage, the bandwidth is shared equally among sources
despite their heterogeneous delays.

3. The queue is small (around 100 packets, less than 0.5 ms of queueing delay) almost all the
time, both in transient and in equilibrium. The only (mild) queue overshoot is caused by the
activation of 256 new flows in a short time.

4. After the startup transient of the first sources, link utilization remains always around the
95% target even when the traffic demand changes suddenly.

Note that we are not using any “slow-start” phase in this protocol, we are running exclusively
the algorithm described before. In fact, at the beginning of the simulation, when the price is small,
the sources’ rate grows approximately linearly, which can be explained by looking at equation (31).
The slope of increase is approximately βiKi/τi, so the utility function’s parameter can be used to
tune how aggressively the sources start-up, trading off speed with the risk of queue overshoots. If
we wished an exponential increase in this initial stage, it may be advantageous to retain a slow-start
phase, or use a different utility function, a factor we will explore in future work.

We have also performed extensive simulations of two-way traffic (when both data packets and
ACKs share a congested link), and for situations where, instead of long-lived flows, we employ a
“mice-elephant” mix of traffic. In particular, we included flow lengths drawn from a heavy-tailed
distribution, which matches observed statistics in the Internet [29, 6]. Some of these simulation
results are reported in [26]. We find that the protocol still keeps high utilization and small queues,
and the elephants share the bandwidth fairly.

6 A source-only implementation based on queueing delay

The protocol described above achieves close to full utilization of link capacity, while at the same
time operating under essentially empty queues. These two properties can only be simultaneously
achieved by some form of explicit congestion notification. In the absence of it, congestion can only
be detected through some of its undesirable effects, such as the appearance of queueing delays.
However, if one could guarantee that these delays are moderate, it would perhaps be preferable to
avoid the burden of ECN signaling on the routers.

In this regard, the fact that the prices in our protocol are virtual queueing delays, suggests
the possibility of using real queuing delays as a price signal; this amounts to choosing c0l = cl in
the link equation (17). The advantage is that the sum of such delays over congested links can be
estimated by sources by subtracting the minimum observed RTT (taken to be propagation delay)
from the current RTT, avoiding any explicit signaling between links and sources. This is precisely
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the type of congestion feedback used in TCP-Vegas [3]. The question before us is to find a source
protocol that can achieve (i) small equilibrium prices (delays), (ii) freedom of choice in resource
allocation, and (iii) stability, working with queueing delay as a price signal.

Clearly, if we can assign arbitrary utility functions, we can use a constant factor in them to set
the scale of equilibrium prices, similar to what we discussed in the context of marking. If, instead,
we are “stuck” with a certainly family of utility functions, as in Section 3, it may not be possible
to control the equilibrium delay. For this reason we concentrate on extending the ideas of Section
4 to the situation where queueing delays are allowed to appear in the network.

We first note that we must modify the source laws (24-25) if we wish to preserve dynamic
structure under the current circumstances. In fact, before we had assumed that around equilibrium,
the RTT τi was the same as the fixed (propagation/processing) delay di, and thus appeared only
as a parameter in our linearization. That analysis is no longer valid here, because τi will be the
variable quantity

τi = di + qi, (38)

where qi is the queueing delay observed by the source, and is also the price, nonzero in equilibrium.
This leads us to propose the following alternative source laws:

ξ̇i =
βi

(di + qi)
(U ′

i(xi)− qi), (39)

xi = xm,ie
ξi

(
di

di + qi

) αi
Mi

. (40)

Here, (39) is unchanged from (24), we have only made explicit the relationship (38) for the RTT. The
change in (40) as compared to (25), is required to obtain the same input-output relationship between
qi and xi, under the current circumstances. Indeed, taking derivatives in (40) and substituting with
(39) we obtain (subindex dropped)

ẋ = xmeξ ξ̇

(
d

d + q

) α
M

− xmeξ α

M

d
α
M

(d + q)
α
M

+1
q̇

= xξ̇ − x
α

M(d + q)
q̇

=
x

d + q

(
βU ′(x)− βq − α

M
q̇
)

. (41)

The last equation is exactly the same as (28), again noting that d + q = τ ; in particular its
linearization around equilibrium will still be (20), as desired.

Does this mean that our local stability theorem would hold for this protocol? Unfortunately
there is another difficulty that arises from queueing delays; namely, that the network equations (1)
and (2) become time-varying. In fact, an expression such as

xi(t− τ f
li)
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is difficult to handle, and even to interpret, if τ f
li depends on time, and further if it does so through

other state variables pl(t). In particular, given the time-varying nature of this system we cannot
rigorously employ Laplace transforms, which were the basis of our linear theory. At most, this
analysis can be considered as an approximation to the linearized dynamics, where we consider only
variations τi(t) in the dependent variables (as in the preceding analysis), but not in the independent
variable. This kind of approximation has been used successfully [8, 22] to analyze TCP-Reno
dynamics (for more discussion see [23]) but has not been rigorously justified.

If we adopt this approximation, we could write the expressions (8-9), where now the matrices
R̄f (s) and R̄b(s) are defined in terms of the equilibrium forward and backward delays, including
queueing. The resulting overall system obtained from the source laws (39-40) and simple queues
(7) at the links, is indeed locally stable under similar assumptions on the parameters. Thus there
is hope that this protocol would behave satisfactorily, but we must rely (more so than before) on
empirical simulations to validate this fact.

6.1 Packet implementation and simulation results

In this case, links would be passive and produce queueing delays in the natural way. The only
consideration here is that we assume the buffering is enough to allow operation without saturation.
This, again, relates to the choice of utility function parameters.

As for the source window dynamics, (39-40) could be discretized directly, analogously to (33-34),
however we present here an alternative discretization based on (41), which has lower complexity3.
For the utility function under consideration, rewrite (41) as

ẋ =
βK

τ
− x

(
βq

τ
+

α

Mτ
q̇

)
, (42)

that is approximated by the following window update performed every Ts seconds:

w(k + 1) = βKTs + w(k)
[
1−

(
βTs +

α

M

) q(k)
τ(k)

+
α

M

q(k − 1)
τ(k)

]
. (43)

Thus we have a protocol which resembles TCP Vegas [3], but whose window dynamics is chosen to
provide the stability guarantees. For other work on stabilizing Vegas, see [4].

Figure 6 uses the same scenario and required parameter values as in Section 5.2. The simulation
shows fast response to the traffic demand and stability. Furthermore, the windows are extremely
smooth as well as the queues due to the accurate estimation of the price, i.e., the queueing delay.
This, and the lack of complexity at routers, are interesting advantages of this protocol with respect
to the ECN version. There are, however, drawbacks: one, that a certain amount of queueing delay
must be tolerated here. While parameters (e.g. Ki in the utility function) can be tuned to make

3This version could also be applied to the ECN case via (28), however we have found that in a noisy environment
it can lead to bias, inducing unfairness.
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it small, there is a tradeoff with the speed of response of the system. Another issue that appears
in the simulation is some unfairness, caused by sources joining the network later that overestimate
the propagation delay, and thus underestimate price, taking up a larger share of the bandwidth.
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Figure 6: Dynamics of protocol based on queueing delay

7 Conclusion

A congestion avoidance method that can achieve high utilization, small queueing delay, freedom
from oscillations and fairness in bandwidth allocation has been a major objective of networking
research in recent years. A fundamental question in this regard is how far we can go in achieving
these objectives within the existing end-to-end philosophy of the Internet.

Our results show that if the fairness aspect is expressed in terms of utility functions [19],
local regulation around these desirable equilibrium points can be achieved through a very minimal
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feedback mechanism: a scalar price signal that reflects the aggregate congestion level of the traversed
links for each source. Furthermore, convergence results can be made independent of network
topology, routing, parameters, and delay except for a commonly agreed bound. We are currently
working [30] on a better understanding of the nonlinear dynamics, which has significant impact on
the speed of the control away from equilibrium.

We have further demonstrated a practical version of the protocol based on ECN marking,
that appears to successfully approximate these objectives in high capacity networks where current
protocols exhibit limitations. Compared to other proposed solutions (e.g. [17]), this ECN version
represents a minor change in the protocol implementations at routers and end-systems. Still, it
would be clearly preferable to have to upgrade only one end of things; this motivated us to consider
the implementation based on queueing delay, similar to TCP Vegas, which appears capable of
delivering most of the benefits with no active participation of network routers. Based on our
preliminary success in simulations, we are currently pursuing experimental deployment of these
kinds of protocols [7]. Part of this effort involves testing the coexistence of this protocol with
deployed versions of TCP.

Appendix

Proof of Theorem 1

What remains is to establish that the loop transfer function in (13) satisfies condition (iii) in
Proposition 2. Referring back to (16), we write the new expression

L(jω) = R̄f (jω)X0AMΛ(jω)R̄f (jω)∗C, (44)

where we recall that

Λ(jω) := diag(λi(jω)) = diag
(

e−τijω

τijω

)
,

and we have introduced the new notation

X0 = diag(x0i), A = diag(αi), M = diag(
1

Mi
).

We now use the fact that nonzero eigenvalues are invariant under commutation, and that many of
the factors in (44) are diagonal, to conclude that

−1 ∈ eig
(
µL(jω)

)
⇐⇒− 1 ∈ eig

(
P (jω)Λ(jω)

)
, (45)

where P (jω) := µM 1
2A 1

2 X
1
2
0 R̄f (jω)∗ C R̄f (jω)X

1
2
0 A

1
2M 1

2 ≥ 0. (46)

Claim: The spectral radius ρ(P ) < π
2 . To establish this, write (note µ ≤ 1)

ρ(P ) = ρ
(
µMR̄f (jω)∗ C R̄f (jω)X0A

)
≤ ‖MR̄f (jω)∗‖ · ‖C R̄f (jω)X0‖ · ‖A‖.
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Any induced norm will do, but if we use the l∞-induced (max-row-sum) norm, we find that

‖CR̄f (jω)X0‖∞−ind = max
l

1
c0l

∑

i uses l

|e−τf
i,ljωx0i|

= max
l

1
c0l

∑

i uses l

x0i = 1;

note we are dealing with bottlenecks. Also ‖MR̄∗
f‖ ≤ 1, because each row of this matrix contains

at most Mi nonzero elements of magnitude 1/Mi. Finally, ‖A‖ < π
2 by hypothesis.

So ρ(P ) < π
2 as claimed. This claim can be used as in [25] to show directly by contradiction

that −1 is not an eigenvalue of µL(jω). It is more concise however to invoke the following Lemma
from [27] that elegantly characterizes the eigenvalues of the product of a positive and a diagonal
matrix as in (45).

Lemma 5 (Vinnicombe). Let P ≥ 0 and Λ = diag(λi) be n × n matrices, then the eigenvalues
of PΛ belong to the convex hull of {0, λ1, . . . , λn}, scaled by the spectral radius ρ(P ).

Here, the points {0, λ1, . . . , λn} all belong to the curve Γ on Figure 3; its convex hull intersects
the negative real axis in the segment [− 2

π , 0]. Our above claim implies that scaling by ρ(P ) one
cannot reach the critical point −1. Thus we establish condition (iii) in Proposition 2, and through
it we conclude the proof of Theorem 1.

Proof of Theorem 3

As discussed in Section 4.1, we parallel the argument for Theorem 1, based on Proposition 2. Once
again, the problem reduces to establishing that −1 6∈ eig(P (jω)Λ(jω)), where P (jω) is unchanged
from (46), but now the diagonal elements of Λ are of the form

λi(jω) =
e−τijω

τijω
Vi(jω), Vi(s) =

s + z

s + zκi
νi

.

Invoking Lemma 5, we must study the convex combinations of these new λi’s; this we do by breaking
the analysis in two frequency regions, and using the hypothesis z = η

τ̄ .

• For frequencies ω ≥ 1
τ̄ , we quantify the extra gain and phase introduced by Vi(jω):

|Vi(jω)| ≤
∣∣∣∣
jω + z

jω

∣∣∣∣ =

√
1 +

z2

ω2
≤

√
1 + η2, (47)

phase (Vi(jω)) ≥ phase
(

jω + z

jω

)
= − arctan(

z

ω
) ≥ − arctan(η). (48)
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Since the first factor in λi(jω) belongs to our familiar curve Γ (solid line in Figure 7), we find
that λi(jω) will always lie below the perturbed curve

Γη :=
√

1 + η2e−j arctan(η)Γ

(a slight clockwise rotation and expansion of Γ), depicted by dashed lines in Figure 7. Let

−6 −5 −4 −3 −2 −1 0 1
−6

−5

−4

−3

−2

−1

0

1

Figure 7: Plots of Γ (solid) and Γη (dashed)

−g(η) denoted the first point where Γη intersects the negative real axis. Since g(0) = 2/π,
we can choose η small enough so that g(η)α < 1 (recall that α < π/2; how small η needs
to be depends only on the “robustness margin” between α and π/2). With this assumption,
we see that convex combinations of points below the curve Γη, scaled up to α, cannot reach
the critical point −1. But, analogously to the previous theorem, we have that ρ(P ) ≤ α; so
Lemma 5 implies the critical point will not be reached in this frequency region.

• For frequencies ω ∈ (0, 1
τ̄ ), we will argue that λi(jω) is always in the lower half-plane (negative

imaginary part), and hence again one cannot obtain the critical point by convex combination
and scaling. To see this, compute

phase(λi(jω)) = −π

2
− τiω + phase(Vi(jω))

> −π − τiω + arctan(
ω

z
)

≥ −π − τ̄ω + arctan(
τ̄ω

η
).

Thus it suffices to show that for ω ∈ (0, 1
τ̄ ),

arctan(
τ̄ω

η
) > τ̄ω,

or equivalently η < τ̄ω
tan(τ̄ω) . The right hand-side is decreasing in τ̄ω < 1, so it suffices to

choose η < 1
tan(1) ≈ 0.64.
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