
Doyle Group Presentation, 05/02/2008 1VC

Vanessa D. Carson
Control and Dynamical Systems,

Caltech

Model Checking with Automata
An Overview



Doyle Group Presentation, 05/02/2008 2VC

Contents

• Motivation

• Overview Software Verification Techniques

• Model Checking
– System Modeling

– Specification Modeling

– Verification

• Next Lecture



Doyle Group Presentation, 05/02/2008 3VC

Motivation

• Example: Mars Polar Lander 1999
– Study Martian weather, climate, water and C02 levels
– Last telemetry sent prior to atmospheric entry
– Potential software/hardware error

• Logic for engine cutoff that engaged when lander
legs were deployed ~40 m above ground

• Some vibration caused sensors to trip engine cut-off
• Input and its effects on state not considered appropriately

Software bugs are hard to find

• Multiple processes running concurrently
• sensors, planners, actuators
• complexity of process interleavings
• reasoning about distributed systems

• Interested in systems that do not halt

Software systems are complex

Assure that system behaves as intended



Doyle Group Presentation, 05/02/2008 4VC

Techniques in Software Verification

Software Testing

Simulation and Testing

• Proving coverage
•Rarely possible to check all
software interactions

• Tools: Code coverage tools,
parsers, random testing

Formal Verification
Deductive Verification 

Model Checking

Simulation
Or

Implementation

Inject
Inputs

Observe
outputs

Proof methods

Deductive
Verification

System
Model

Proof in
Logical 
Calculus

Algorithmic methods

Model
Checking

System
Model YES/NO

+
System

Spec

• Complex systems => large models
• DV: Length of proof/expertise
• MC: physical limitations

• Tools: Isabelle, HOL, ACL2,PVS
(DV), SPIN (MC)



Doyle Group Presentation, 05/02/2008 5VC

Concurrency and Shared Variables

P0 P1

Processor

Determines what process 
to put into context based
on some scheduling algorithm

Scheduler

P0

P1
P0

OS process

Two processes P0 and P1
executing on a single core

CPU
P0 and P1 are loaded into the

processor and executed one at
a time according to a schedule

P0 and P1 may share some
memory and may read and

write to it

Memory

P0Var=100

P1Var=50

writeBuf=“xy”
OSVar=‘root’

Shared variable between process P0 and P1



Doyle Group Presentation, 05/02/2008 6VC

Concurrency Issues

P1    while True do

getSpacecraftHealthData(healthData);

writeToBuffer( writeBuff, healthData);

writeToFile(writeBuff, healthFile);

clearBuffer(writeBuff);

    end while;

P0   while True do

getScienceData(scienceData);

writeToBuffer(writeBuff, scienceData);

writeToFile(writeBuff, scienceFile);

clearBuffer(writeBuff);

     end while;

P1 writes spacecraft health
data to healthFile

P0 writes science data to
scienceFile

Science Data
Overwritten!



Doyle Group Presentation, 05/02/2008 7VC

Model Checking Process

• Modeling:  Convert a design to
a formalism accepted by a
model checker.

• Specification:  State the
properties that the design must
satisfy.

• Verification:  Verify correctness
of specification with respect to
the model.

System
 Model

Verification
MODEL CHECKER

YES NO

Specification
Met

Verification is performed automatically by an exhaustive search of
the state space of the system.

Specification

Counterexample
Found



Doyle Group Presentation, 05/02/2008 8VC

System Modeling

System
 Model

Verification
MODEL CHECKER

YES NO

Specification
Met

Specification

Counterexample
Found



Doyle Group Presentation, 05/02/2008 9VC

Modeling with Finite State Automata

int x = 13;

while (x == 13) {
  x = x + 2;
  while (x > 0) {
    x = x/2;
  }
} x <= 0

s1 s2 s3
x = 13 x = x+2

x = x/2

x > 0
s0



Doyle Group Presentation, 05/02/2008 10VC

Reasoning about Program Execution

A run of the automaton r = s0 s1 s2s3  s2s3 s2s3 s2s3  s0
       13       15       7        3      1      0

x <= 0

s1 s2 s3
x = 13 x = x+2

x = x/2

x > 0
s0

s1

s0

s0

s2 s3

s3 s2

s2 s3

The automaton A An execution of A



Doyle Group Presentation, 05/02/2008 11VC

Modeling with Büchi Automata

• Most concurrent systems do not to halt during normal execution
• Decide on acceptance of ongoing, potentially infinite executions

– OS schedulers, control software
• Require Finite State Automata over infinite words

A Büchi automaton is a finite state automaton that accepts 
infinite runs. 



Doyle Group Presentation, 05/02/2008 12VC

Büchi Automaton Language

• Two state Büchi automaton A
• Initial and accepting state s0

• Accepts infinite number of symbol a
• L(A) ={set of w-words over {a,b}

with infinitely many a’s}
• L(A) = {(b*a)w } 

b

s1s0

a

a

b



Doyle Group Presentation, 05/02/2008 13VC

Mutual Exclusion

Problem
– P0 alters the variable writeBuf

over some execution steps
– P1 gets triggered while P0 is in

the process of overwriting
variable writeBuf

– writeBuf is in an inconsistent
and unpredictable state

Memory

P0Var=100

P1Var=50

writeBuf=“xy”
OSVar=‘root’

P0

P1

Solution
– Avoid simultaneous use of a common resource
– Divide code into critical sections to protect shared data
– Mutual exclusion algorithms exist

–Lamport’s Bakery, Peterson’s, …



Doyle Group Presentation, 05/02/2008 14VC

P1::l1: while True do

         NC1: wait(turn = 1);

         CR1:  turn := 0;

        end while;

       l’1

Mutual Exclusion Example

P0::l0: while True do

         NC0: wait(turn = 0);

         CR0:  turn := 1;

        end while;

    l’0

Problem Description

• Two asynchronous processes P0
and P1

• P0 and P1 share a variable turn
• P0 and P1can not be in their

critical section at the same time
• P0 shall eventually enter into its

critical region
• Model variables of interest

– Shared variable state
– Location of execution with

program counter



Doyle Group Presentation, 05/02/2008 15VC

Program Translation

• Manna, Pnueli (1995) Program translation formula
– takes a sequential program and transforms to a first order formula

that represents the set of transitions of the program

The initial states of each process PI are described by the formula

Apply translation procedure C, then for each process Pi 



Doyle Group Presentation, 05/02/2008 16VC

Mutex Model

P1::l1: while True do

         NC1: wait(turn = 1);

         CR1:  turn := 0;

        end while;

       l’1

P0::l0: while True do

         NC0: wait(turn = 0);

         CR0:  turn := 1;

        end while;

    l’0

P0 has lock P1 has lock

Note: This is a Kripke Model.
Kripke => Büchi
transformation exists.



Doyle Group Presentation, 05/02/2008 17VC

Mutex Büchi Model

s1

s2

s3

s5

s6

s4

s7

r2

r1

r4
r3

r5

r7

r6

s0 r0

P0 has lock P1 has lock



Doyle Group Presentation, 05/02/2008 18VC

Specification

System
 Model

Verification
MODEL CHECKER

YES NO

Specification
Met

Specification

Counterexample
Found



Doyle Group Presentation, 05/02/2008 19VC

Modeling Specifications

• Proving essential logical correctness properties independent of
– Execution speeds

• relative speeds of of processes, instruction execution time
– Probability of occurrence of events

• packet loss, failure of external device
• Two types of correctness claims [Lamport 1983, Pnueli 1995]

– Safety   set of properties the system may not violate
• State properties: Claims about reachable/unreachable states

– System invariant: holds in every reachable state
– Process assertion: holds in specific reachable states

– Liveness   set of properties the system must satisfy
• Path properties: Claims about feasible/unfeasible executions

• Several techniques available
– LTL, Propositional Logic, Büchi Automata

Goal:  Model desirable properties of a system as correctness claims.



Doyle Group Presentation, 05/02/2008 20VC

LTL Specification

Commonly used LTL formulas

Safety

Liveness



Doyle Group Presentation, 05/02/2008 21VC

P1::l1: while True do

         NC1: wait(turn = 1);

         CR1:  turn := 0;

        end while;

       l’1

Mutual Exclusion Example

P0::l0: while True do

         NC0: wait(turn = 0);

         CR0:  turn := 1;

        end while;

    l’0

Problem Description

• Two asynchronous processes P0
and P1

• P0 and P1 share a variable turn
• P0 and P1can not be in their

critical section at the same time
• P0 shall eventually enter into its

critical region
• Model variables of interest

– Shared variable state
– Location of execution with

program counter



Doyle Group Presentation, 05/02/2008 22VC

Mutex Specification

TRUE

Mutual Exclusion Property

x0 x1

Liveness Property

TRUE

y0 y1

“Both processes can not
simultaneously

be in their critical regions”

“The process P0 will eventually
enter its critical region”

For every temporal logic formula there exists a Büchi automaton that accepts 
precisely those runs that satisfy the formula.



Doyle Group Presentation, 05/02/2008 23VC

Properties of Büchi Automata

• Closed under intersection and complementation.
– There exists an automaton that accepts exactly the intersection of

the languages of a set of automata
– There exists an automaton that recognizes the complement of the

language of the given automaton

• Language emptiness is decidable
– Whether the set of accepting runs is empty

The verification problem is equivalent to an emptiness test for an
intersection product of Büchi automata.



Doyle Group Presentation, 05/02/2008 24VC

Verification

System
 Model

Verification
MODEL CHECKER

YES NO

Specification
Met

Specification

Counterexample
Found



Doyle Group Presentation, 05/02/2008 25VC

Verification Condition

Goal:  Verify that all possible behaviors of the model of the
system A satisfy the specification S.

Possible 

executions
Invalid

Executions

Executions that are possible and invalid 

If I is empty, then A satisfies S.
If I is not empty, then A can violate S,
and I contains at least one complete
counterexample that proves it.



Doyle Group Presentation, 05/02/2008 26VC

Complementing the Specification

TRUE

y0 y1

TRUE

x0 x1

Taking the negation Taking the complement

LTL Specification Büchi Automata Specification

TRUE

x0 x1

TRUE

y0 y1



Doyle Group Presentation, 05/02/2008 27VC

Union of Complement Specification

TRUE

y0 y1

TRUE

x0 x1

i0

Goal: Construct an automaton that recognizes the union
of languages of both automata.



Doyle Group Presentation, 05/02/2008 28VC

Intersection Of Automata

Goal: Construct an automaton that recognizes
the intersection of languages of both
automata.

System Model A Complement of Specification, S

TRUE

y0 y1

TR
UE

x0 x1

i0



Doyle Group Presentation, 05/02/2008 29VC

Partial Representations of
Intersection Automaton

y1,r2

y0,s4

i0, s0

y0,s1x0, s1

x0, s2

x0, s3 x0, s4

y0,s2

y0,s3

y0,s5

y1,s6

x0, s5

x0, s7

.

.

.

x0, s6

No initial conditions 
to sub-automaton 

x1,s0

x1,s1

x1,s2

x1,s3 x1,s4

.

.

.

.

.

.



Doyle Group Presentation, 05/02/2008 30VC

Mutex Büchi Model/Spec

s
1

s
2

s
3

s
5

s
6

s
4

s
7

r2

r1

r4
r3

r5

r7

r6

s
0 r0TRUE

y0 y1

TR
UE

x0 x1

i0



Doyle Group Presentation, 05/02/2008 31VC

Verification of Mutual Exclusion

Checking non-emptiness of Büchi automaton B is equivalent to finding a strongly
connected component that is reachable from an initial state and contains an

accepting state.

x1,s0

x1,s1

x1,s2

x1,s3 x1,s4

.

.

.

.

.

.

• Any state of the form (x1,sk) is not
reachable from any initial state

• The transition to x1 implies both
critical regions have been entered
simultaneously

The system satisfies the
mutual exclusion

property.



Doyle Group Presentation, 05/02/2008 32VC

Partial Representations of
Intersection Automaton

y1,r2

y0,s4

i0, s0

y0,s1x0, s1

x0, s2

x0, s3 x0, s4

y0,s2

y0,s3

y0,s5

y1,s6

x0, s5

x0, s7

.

.

.

x0, s6

No initial conditions 
to sub-automaton 

x1,s0

x1,s1

x1,s2

x1,s3 x1,s4

.

.

.

.

.

.



Doyle Group Presentation, 05/02/2008 33VC

Verification of Liveness Property

The system does not satisfy the
absence of starvation

property.

y0,s4

i0, s0

y0,s1x0, s1

x0, s2

x0, s3 x0, s4

y0,s2

y0,s3

y0,s5

y1,s6

x0, s5

x0, s7

.

.

.

x0, s6

• Tarjan’s DFS algorithm for
finding strongly connected
components

– O(num states + num transitions)
– Double DFS

• Found accepting run that has an
accepting state with cycle back to
itself

• Counterexample found
– <i0,s0><y0,s1><y0,s2><y0,s3>*



Doyle Group Presentation, 05/02/2008 34VC

Note on Automaton Unwinding

i0, s0

y0,s4

y0,s1

y0,s2

y0,s3

y0,s5

y1,s6

.

.

.

.

.

.

i0, s0

y0,s4

y0,s1

y0,s2y0,s3

y0,s5

y1,s6

.

.

.

y0,s3

y0,s3

y0,s3

y0,s5

y0,s5

.

.

.

Computational PathAutomaton

Unwinding 
operation



Doyle Group Presentation, 05/02/2008 35VC

Next Time

• State space reduction
– Abstractions
– Partial Order Reduction
– Compositional Reasoning
– Symbolic Model Checking



Doyle Group Presentation, 05/02/2008 36VC

References

• Clarke, E.M. Model Checking, 1999.
• Holzman, G. The SPIN Model Checker, 2003.
• Sipser, M., Introduction to the Theory of Computation,

2005.


