

Model Checking with Automata An Overview

Vanessa D. Carson Control and Dynamical Systems, Caltech

Contents

- Motivation
- Overview Software Verification Techniques
- Model Checking
 - System Modeling
 - Specification Modeling
 - Verification
- Next Lecture

Motivation

Software bugs are hard to find

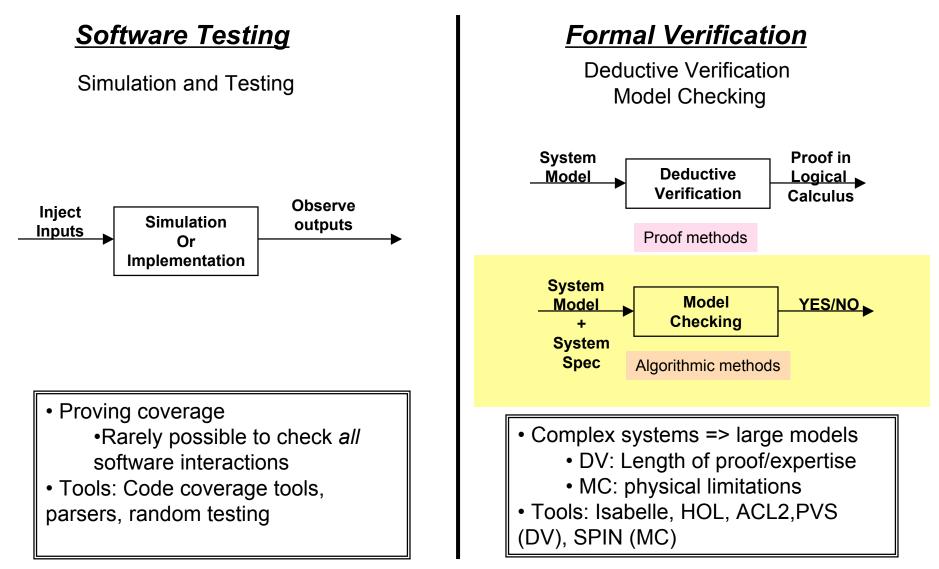
- Example: Mars Polar Lander 1999
 - Study Martian weather, climate, water and C0₂ levels
 - Last telemetry sent prior to atmospheric entry
 - Potential software/hardware error
 - Logic for engine cutoff that engaged when lander legs were deployed ~40 m above ground
 - Some vibration caused sensors to trip engine cut-off
- Input and its effects on state not considered appropriately

Software systems are complex

- Multiple processes running concurrently
 - sensors, planners, actuators
 - complexity of process interleavings
 - reasoning about distributed systems
- Interested in systems that do not halt

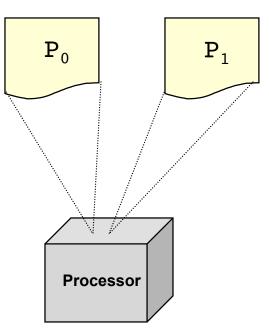
Assure that system behaves as intended

Techniques in Software Verification

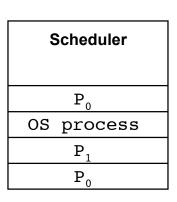


Concurrency and Shared Variables

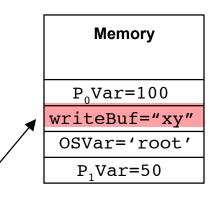
Two processes P₀ and P₁ executing on a single core CPU



 P_0 and P_1 are loaded into the processor and executed one at a time according to a schedule

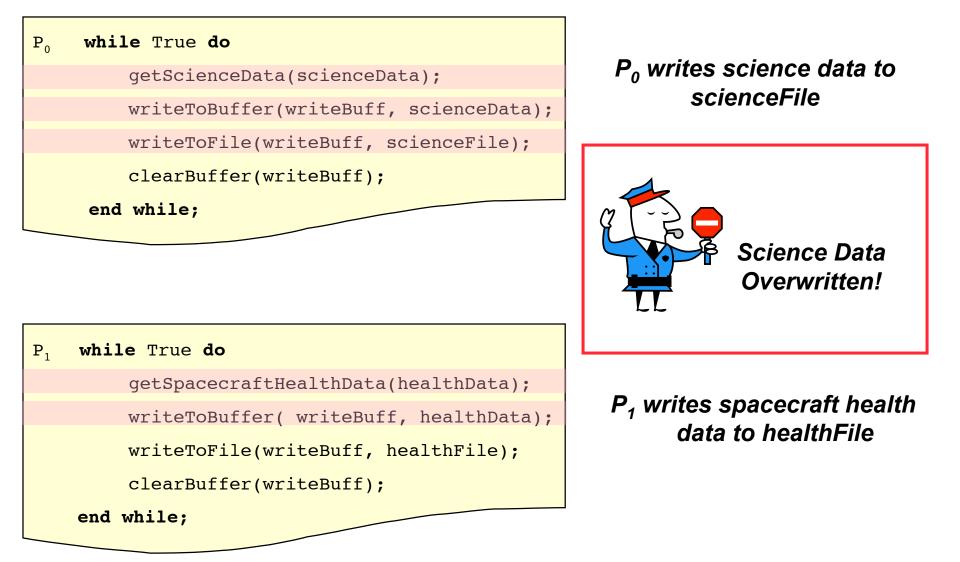


Determines what process to put into context based on some scheduling algorithm *P*₀ and *P*₁ may share some memory and may read and write to it



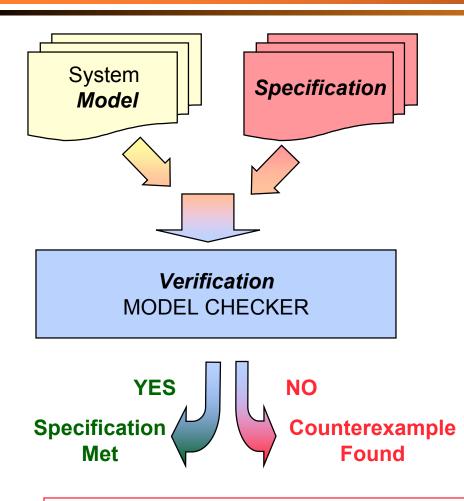
Shared variable between process P0 and P1

Concurrency Issues



Doyle Group Presentation, 05/02/2008

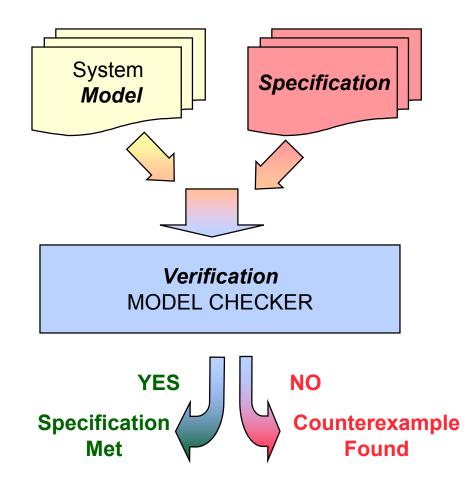
Model Checking Process

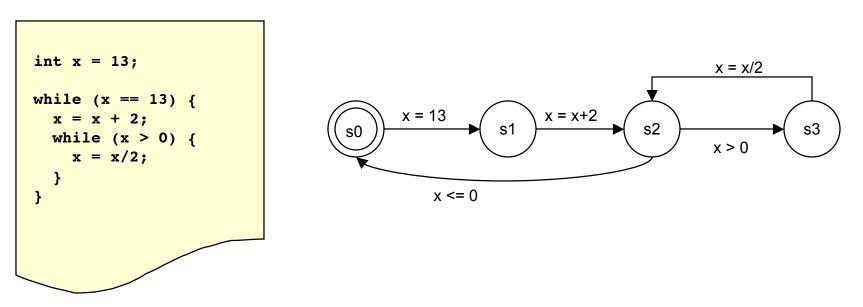


- *Modeling:* Convert a design to a formalism accepted by a model checker.
- *Specification:* State the properties that the design must satisfy.
- **Verification**: Verify correctness of specification with respect to the model.

Verification is performed automatically by an exhaustive search of the state space of the system.

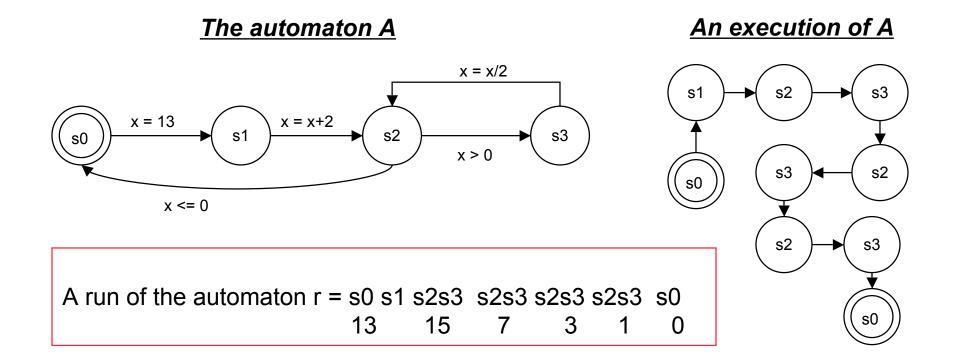
System Modeling





A finite state automaton is a tuple $(\Sigma, S, S_0, \Delta, F)$ where

- Σ is a finite alphabet
- S is a finite set of *states*
- $S_0 \subseteq S$ is the set of initial states
- $\Delta \subseteq (S \times \Sigma \times S)$ is a set of transition relations
- $F\subseteq S$ is a set of final states



A run of a finite state automaton A is a sequence of transitions $\rho = s_0 s_1 \dots s_n$ of states $s_i \in S$ such that $s_0 \in S_0$ and $(s_i, l_i, s_{i+1}) \in \Delta, \forall i \in \mathbb{N}$.

A finite run ρ is accepting \iff the final state $s_f \in F$.

Modeling with Büchi Automata

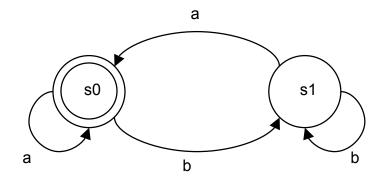
- Most concurrent systems do not to halt during normal execution
- Decide on acceptance of ongoing, potentially infinite executions
 OS schedulers, control software
- Require Finite State Automata over infinite words

A ω -run of a finite state automaton A is an infinite sequence $\rho = s_0 s_1 \dots s_n \dots$ of states $s_i \in S$ such that $s_0 \in S_0$ and $(s_i, l_i, s_{i+1}) \in \Delta, \forall i \in \mathbb{N}$.

The run ρ is accepting $\iff \exists s \in F, \exists s_i = s$ for infinitely many $i \in \mathbb{N}$. In other words, there exists $s \in F$ that appears infinitely often.

A **Büchi** automaton is a finite state automaton that accepts infinite runs.

Büchi Automaton Language

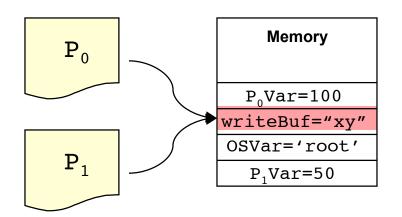


- Two state Büchi automaton A
- Initial and accepting state s₀
- Accepts infinite number of symbol a
- L(A) ={set of w-words over {a,b} with infinitely many a's}

•
$$L(A) = \{(b^*a)^w\}$$

The *language* of an automaton $A, L(A) \subseteq \Sigma^{\omega}$ is the set of ω -words for which there exists a run ρ of A and that run is accepting.

Mutual Exclusion



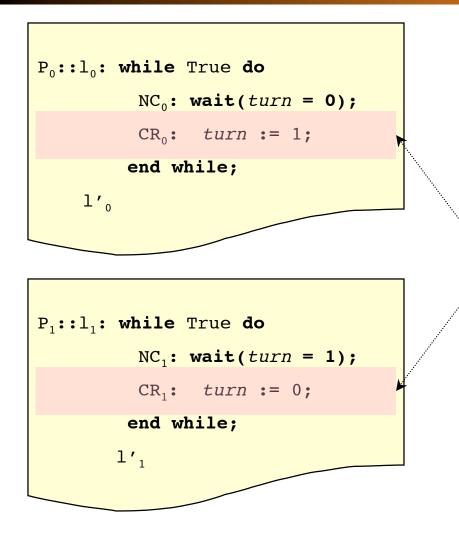
Problem

- P₀ alters the variable *writeBuf* over some execution steps
- P₁ gets triggered while P₀ is in the process of overwriting variable *writeBuf*
- *writeBuf* is in an inconsistent and unpredictable state

Solution

- Avoid simultaneous use of a common resource
- Divide code into *critical sections* to protect shared data
- *Mutual exclusion* algorithms exist
 - -Lamport's Bakery, Peterson's, ...

Mutual Exclusion Example



Problem Description

- Two asynchronous processes P_{0} and P_{1}
- P_0 and P_1 share a variable *turn*
- P₀ and P₁can not be in their critical section at the same time
- P₀ shall eventually enter into its critical region
- Model variables of interest
 - Shared variable state
 - Location of execution with program counter

Program Translation

- Manna, Pnueli (1995) Program translation formula
 - takes a sequential program and transforms to a first order formula that represents the set of transitions of the program

The initial states of each process *P*₁ are described by the formula

$$S_0(V, PC) \equiv pc = m \land pc_o = \bot \land pc_1 = \bot$$

where \perp indicates the process has been activated.

Apply translation procedure C, then for each process P_i

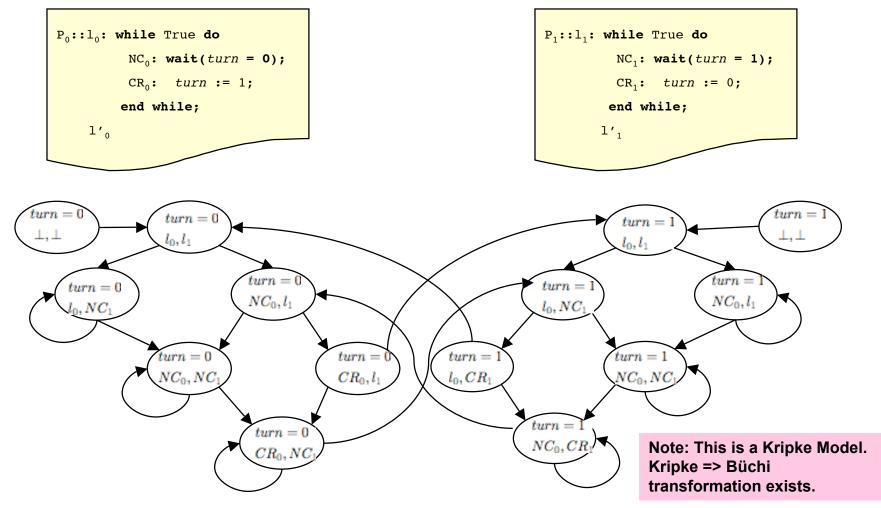
$$pc_i = l_i \wedge pc'_i = NC_i \wedge True \wedge turn' = turn$$

 $pc_i = NC_i \wedge pc'_i = CR_i \wedge turn = i \wedge turn' = turn$
 $pc_i = CR_i \wedge pc'_i = l_i \wedge turn' = (i+1)mod(2)$
 $pc_i = NC_i \wedge pc'_i = NC_i \wedge turn \neq i \wedge turn' = turn$
 $pc_i = l_i \wedge pc'_i = l'_i \wedge False \wedge turn' = turn$

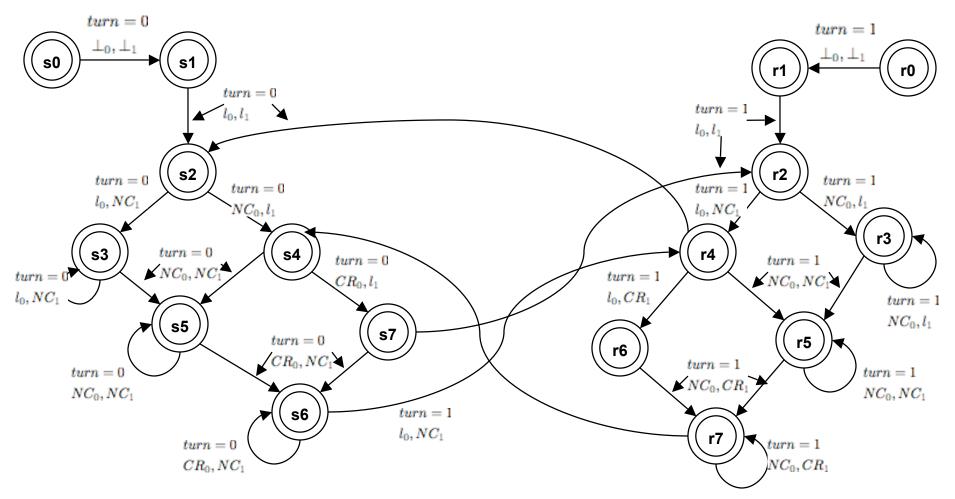
Mutex Model

P₀ has lock

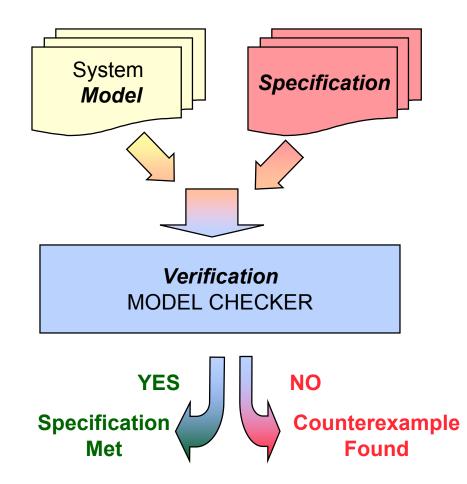
P₁ has lock



Mutex Büchi Model



Specification



Modeling Specifications

Goal: Model desirable properties of a system as correctness claims.

- Proving essential *logical correctness* properties *independent* of
 - Execution speeds
 - · relative speeds of of processes, instruction execution time
 - Probability of occurrence of events
 - packet loss, failure of external device
- Two types of *correctness claims* [Lamport 1983, Pnueli 1995]
 - **Safety** set of properties the system may not violate
 - State properties: Claims about reachable/unreachable states
 - System invariant: holds in every reachable state
 - Process assertion: holds in specific reachable states
 - Liveness set of properties the system must satisfy
 - Path properties: Claims about feasible/unfeasible executions
- Several techniques available
 - LTL, Propositional Logic, Büchi Automata

LTL Specification

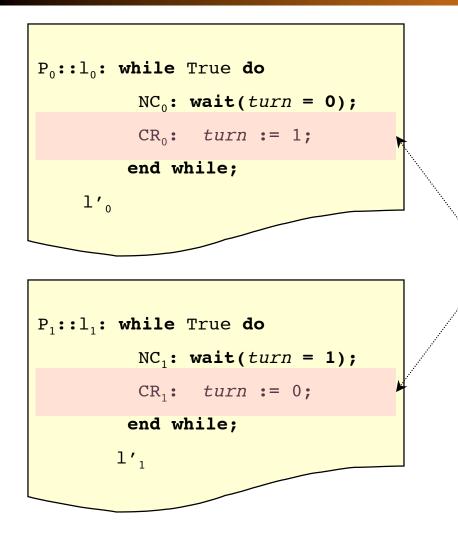
Commonly used LTL formulas

FORMULA	DESCRIPTION	TYPE
$\Box p$	Always p	Invariance
$\Diamond p$	Eventually p	Guarantee
$p \to \Diamond q$	p implies eventually q	Response
$p \to q \cup r$	p implies q until r	Precedence
$\Box\Diamond p$	Always eventually p	Recurrence
$\Diamond \Box p$	Eventually always p	Stability
$\Diamond p \rightarrow \Diamond q$	Eventually p implies eventually q	Correlation

Let E be the complete set of ω -runs and let ϕ be a correctness property formalized as an LTL property.

The system satisfies the property ϕ if and only if all the ω -runs in E do.

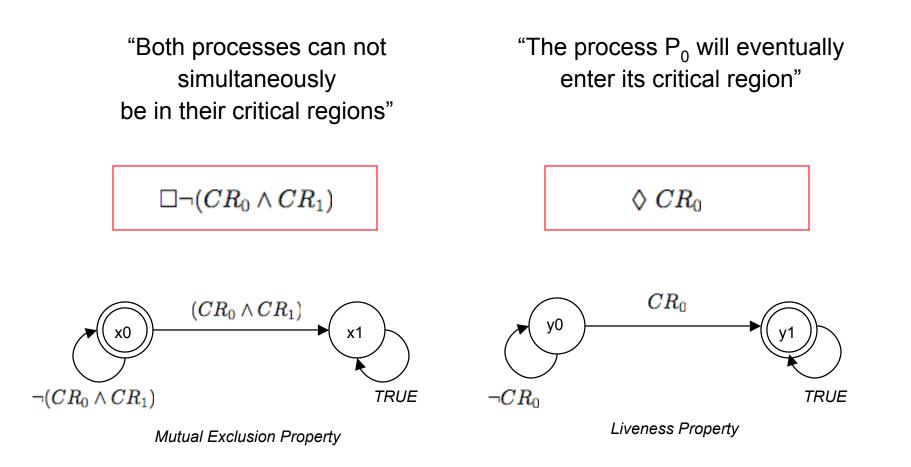
Mutual Exclusion Example



Problem Description

- Two asynchronous processes P_{0} and P_{1}
- P_0 and P_1 share a variable *turn*
- P₀ and P₁can not be in their critical section at the same time
- P₀ shall eventually enter into its critical region
- Model variables of interest
 - Shared variable state
 - Location of execution with program counter

Mutex Specification

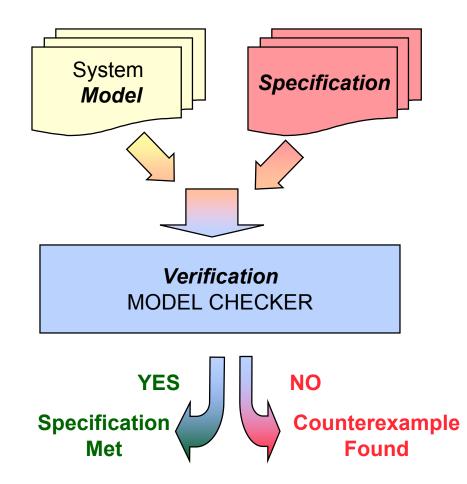


For every temporal logic formula there exists a Büchi automaton that accepts precisely those runs that satisfy the formula.

- Closed under intersection and complementation.
 - There exists an automaton that accepts exactly the intersection of the languages of a set of automata
 - There exists an automaton that recognizes the complement of the language of the given automaton
- Language emptiness is decidable
 - Whether the set of accepting runs is empty

The verification problem is equivalent to an emptiness test for an intersection product of Büchi automata.

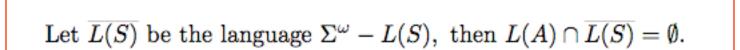
Verification



Verification Condition

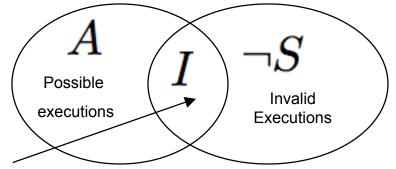
Goal: Verify that all possible behaviors of the model of the system A satisfy the specification S.

The system A satisfies the specification S when $L(A) \subseteq L(S)$.



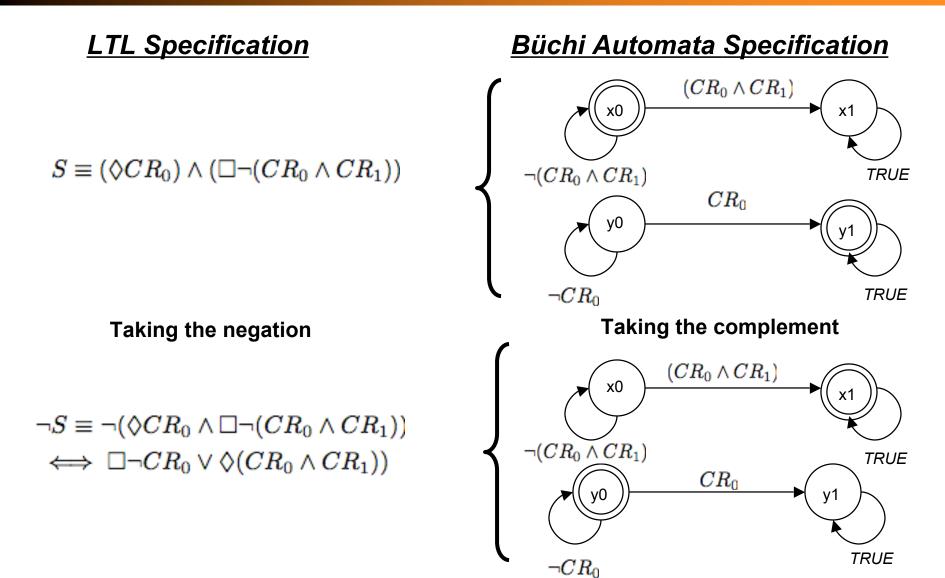
ĺĺ

If I is empty, then A satisfies S. If I is not empty, then A can violate S, and I contains at least one complete counterexample that proves it.

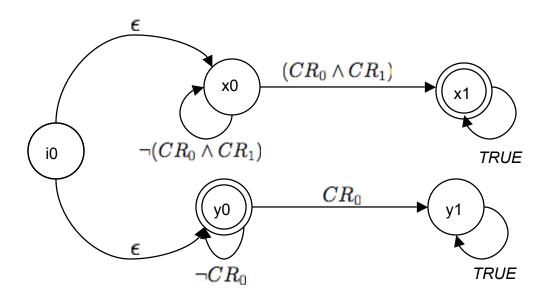


Executions that are possible and invalid

Complementing the Specification

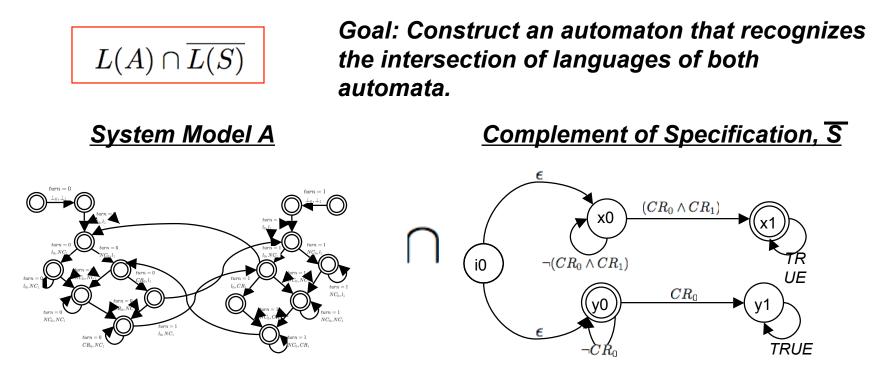


Goal: Construct an automaton that recognizes the union of languages of both automata.



$$\overline{L(S)} = \{ \epsilon(\neg CR_0 \wedge CR_1)^* (CR_0 \wedge CR_1)(\omega)^*, \epsilon(\neg CR_0)^* \}$$

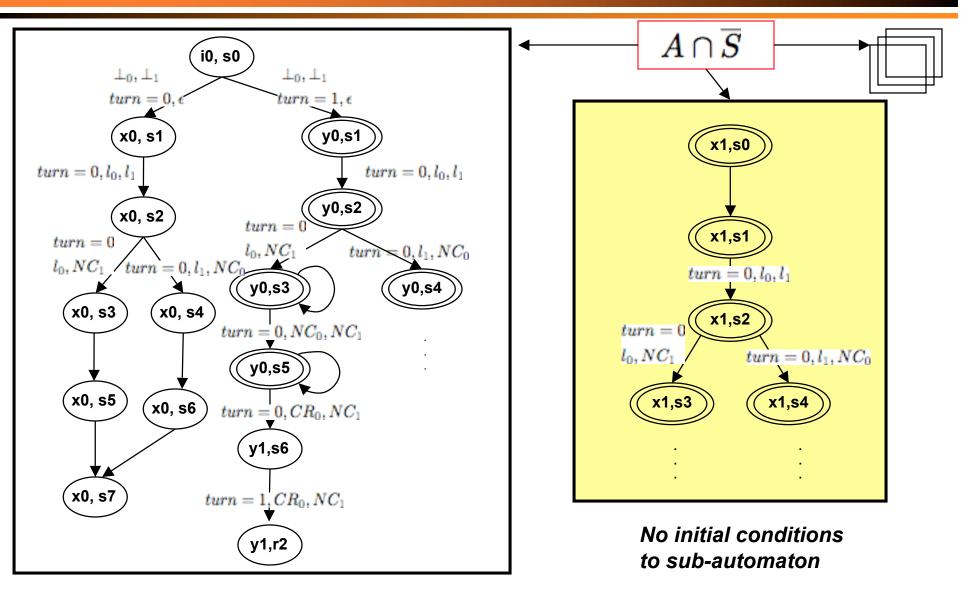
Intersection Of Automata



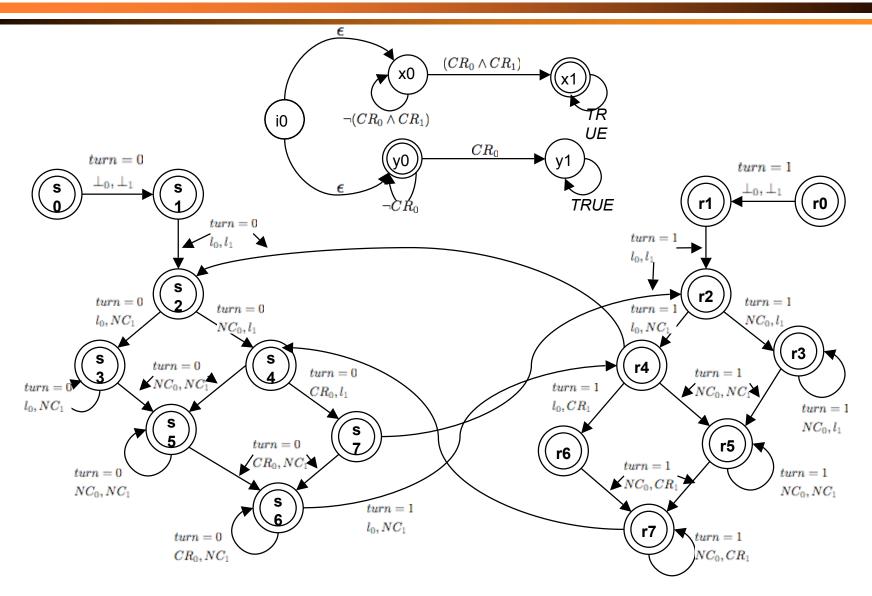
$$A \cap \overline{S} = \{\Sigma, Q_A \times Q_{\overline{S}}, \Delta', Q_A^0 \times Q_{\overline{S}}^0, S_A \times F_{\overline{S}}\}$$

where Q_A are the states of the model A and $Q_{\overline{S}}$ are the states of the specification \overline{S} .
Also, $(\langle s_i, x_j \rangle, a, \langle s_m, x_n \rangle) \in \Delta' \iff (s_i, a, s_m,) \in \Delta_A$ and $(x_j, a, x_n) \in \Delta_{\overline{S}}$

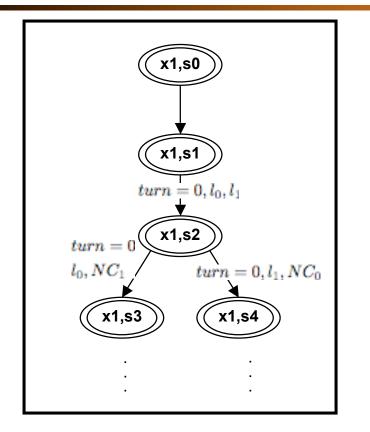
Partial Representations of Intersection Automaton



Mutex Büchi Model/Spec



Verification of Mutual Exclusion

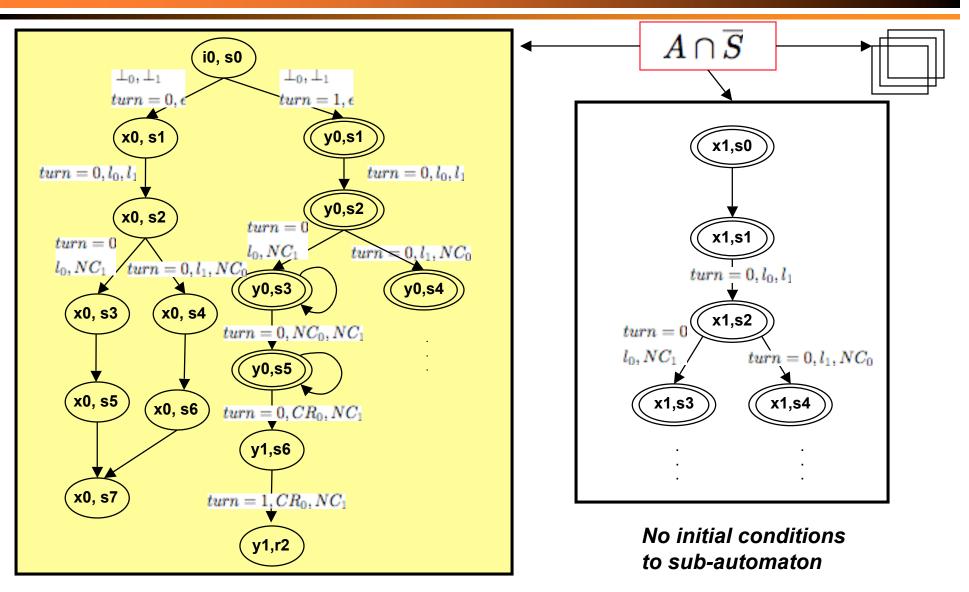


- Any state of the form (x1,sk) is not reachable from any initial state
- The transition to x1 implies both critical regions have been entered simultaneously

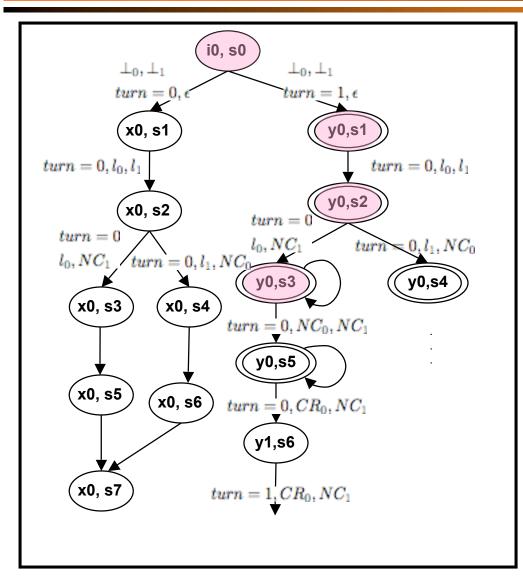
The system satisfies the *mutual exclusion* property.

Checking non-emptiness of Büchi automaton B is equivalent to finding a strongly connected component that is reachable from an initial state and contains an accepting state.

Partial Representations of Intersection Automaton



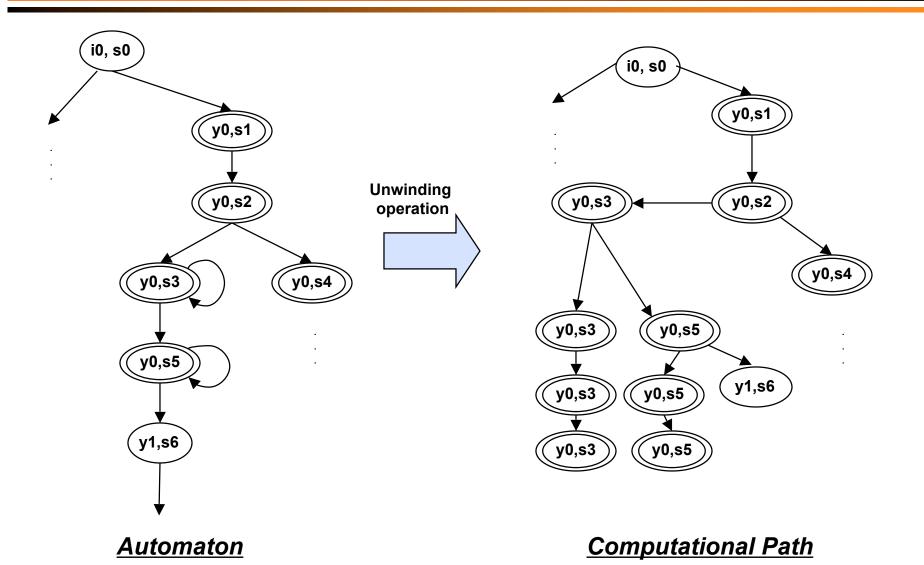
Verification of Liveness Property



- Tarjan's DFS algorithm for finding strongly connected components
 - O(num states + num transitions)
 - Double DFS
- Found accepting run that has an accepting state with cycle back to itself
- Counterexample found
 - <i0,s0><y0,s1><y0,s2><y0,s3>*

The system does not satisfy the absence of starvation property.

Note on Automaton Unwinding



Next Time

- State space reduction
 - Abstractions
 - Partial Order Reduction
 - Compositional Reasoning
 - Symbolic Model Checking

References

- Clarke, E.M. Model Checking, 1999.
- Holzman, G. The SPIN Model Checker, 2003.
- Sipser, M., Introduction to the Theory of Computation, 2005.