Model Checking with Automata
An Overview

Vanessa D. Carson
Control and Dynamical Systems,
Caltech

Doyle Group Presentation, 05/02/2008 VC 1

Contents

« Motivation
» Overview Software Verification Techniques

* Model Checking
— System Modeling
— Specification Modeling

— Verification

 Next Lecture

Doyle Group Presentation, 05/02/2008 VC 2

Motivation

Software bugs are hard to find

« Example: Mars Polar Lander 1999
— Study Martian weather, climate, water and CO, levels
— Last telemetry sent prior to atmospheric entry
— Potential software/hardware error

 Logic for engine cutoff that engaged when lander
legs were deployed ~40 m above ground

» Some vibration caused sensors to trip engine cut-off
» Input and its effects on state not considered appropriately

Software systems are complex

* Multiple processes running concurrently
 sensors, planners, actuators
» complexity of process interleavings
* reasoning about distributed systems
* Interested in systems that do not halt

Assure that system behaves as intended

Doyle Group Presentation, 05/02/2008 VC 3

Software Testing

Simulation and Testing

Inject : : Observe
Inbuts Simulation outputs

Or

Implementation

* Proving coverage
*Rarely possible to check all
software interactions
 Tools: Code coverage tools,
parsers, random testing

Formal Verification

Deductive Verification
Model Checking

System Proof in
_Model Deductive i
Verification Calculus
Proof methods
System
Model Model | YES/INO,,
+ Checking
System
Spec

Algorithmic methods

Doyle Group Presentation, 05/02/2008

» Complex systems => large models

» DV: Length of proof/expertise
* MC: physical limitations
* Tools: Isabelle, HOL, ACL2,PVS
(DV), SPIN (MC)

VC 4

Concurrency and Shared Variables

Two processes P, and P,
executing on a single core

CPU
P, and P, are loaded into the

processor and executed one at
a time according to a schedule

P, and P, may share some
Scheduler
memory and may read and
write to it
P0
OS process Memory
Pl
PO
Processor P,Var=100
Determines what process writeBuf="xy"
to put into context based OSvVar=‘root’
on some scheduling algorithm P Var=50

Shared variable between process PO and P1

Doyle Group Presentation, 05/02/2008 VC 5

Y

O7oNHY>

ﬁﬂ UTE G\
2,

P while True do
getScienceData(scienceData);
writeToBuffer (writeBuff, scienceData);
writeToFile(writeBuff, scienceFile);

clearBuffer (writeBuff);

; Concurrency Issues

P, writes science data to
scienceFile

P while True do

1
getSpacecraftHealthData(healthData);
writeToBuffer(writeBuff, healthData);
writeToFile(writeBuff, healthFile);

clearBuffer(writeBuff);

Doyle Group Presentation, 05/02/2008

Science Data
Overwritten!

P, writes spacecraft health
data to healthFile

VC 6

Specification

S @

v

|

Verification
MODEL CHECKER

Specification Counterexample
Met Found

Model Checking Process

* Modeling: Convert a design to
a formalism accepted by a
model checker.

« Specification: State the
properties that the design must
satisfy.

» Verification: Verify correctness
of specification with respect to
the model.

Verification is performed automatically by an exhaustive search of
the state space of the system.

Doyle Group Presentation, 05/02/2008

vC 7

Specification

S @

v

Verification
MODEL CHECKER

Specification Counterexample
Met Found

Doyle Group Presentation, 05/02/2008 VC 8

int x = 13;

while (x == 13) {
X =x + 2;
while (x > 0) {
x = x/2;
}
}

\/,

Modeling with Finite State Automata

X =Xx/2

A finite state autornaton is a tuple (X, S, Sy, A, F') where
Y is a finite alphabet

S is a finite set of states

So C S is the set of initial states

A C (8 x X x S)is a set of transition relations
F C S is a set of final states

Doyle Group Presentation, 05/02/2008

VvC 9

X =Xx/2

A run of the automaton r = sO s1 s2s3 s2s3 s2s3 s2s3 s0
13 15 7 3 1 0

A run of a finite state automaton A is a sequence of transitions p = $38;...5,
of states s; € S such that sy € Sy and (s;,1;,8;41) € A, Vi e N.

A finite run p is accepting <=> the final state sy € F.

Doyle Group Presentation, 05/02/2008 VC 10

Modeling with Buchi Automata

* Most concurrent systems do not to halt during normal execution

« Decide on acceptance of ongoing, potentially infinite executions
— OS schedulers, control software
« Require Finite State Automata over infinite words

A w-run of a finite state automaton A is an infinite sequence
p = 8081...8,... of states s; € § such that sy € Sy and (s;,0;,8;.1) € A, Vi € N,

The run p is accepting <= ds € F,3 s; = s for infinitely many ¢ € N,

In other words, there exists s € F' that appears infinitely often.

A Biichi automaton is a finite state automaton that accepts
infinite runs.

Doyle Group Presentation, 05/02/2008 VC 11

Buchi Automaton Language

g Two state Buchi automaton A
Initial and accepting state s,
Accepts infinite number of symbol a

L(A) ={set of w-words over {a,b}
b with infinitely many a’s}

L(A) ={(b"a)"}

)
&

The language of an automaton A, L(A) C £* is the set of w-words

for which there exists a run p of A and that run is accepting.

Doyle Group Presentation, 05/02/2008 VC 12

Mutual Exclusion

. Memory Problem
° — P, alters the variable writeBuf
— P Var=100 over some execution steps
writeBuf=“xy"”) . ..
0SVar='root’ — P, gets triggered while P, is in
Py P Var=50 the process of overwriting
L variable writeBuf
— writeBuf is in an inconsistent
and unpredictable state
Solution

— Avoid simultaneous use of a common resource
— Divide code into critical sections to protect shared data
— Mutual exclusion algorithms exist

—Lamport’s Bakery, Peterson’s, ...

Doyle Group Presentation, 05/02/2008 VC 13

Mutual Exclusion Example

P,::1,: while True do
NC,: wait(turn = 0); Problem Description
CR,: turn := 1; "
end while; « Two asynchronous processes P,
g and |:>1

\o_/, * P,and P, share a variable turn

*» Pyand P,can not be in their

.~ critical section at the same time
P,::1,: while True do o PO shall eventua”y enter into its
NC,: wait(turn = 1); critical region
CR,: turn i= 0; ' « Model variables of interest
end while; — Shared variable state
1 — Location of execution with

1
\/ program counter

Doyle Group Presentation, 05/02/2008 VC 14

Program Translation

« Manna, Pnueli (1995) Program translation formula

— takes a sequential program and transforms to a first order formula
that represents the set of transitions of the program

The initial states of each process P,are described by the formula

So(V,PC)=pc=mApc, =1L Apc, =1

where 1 indicates the process has been activated.

Apply translation procedure C, then for each process P;

pei = i Apc; = NC; A True A turn’ = turn

pei = NC;i A pc; = CR; Aturn = i A turn’ = turn
pe; = CR; Apc; = I; Aturn’ = (i 4 1)mod(2)

pe; = NC; Apc;, = NC; Aturn # i Aturn’ = turn
pe; = U Apc: = I A False A turn’ = turn

Doyle Group Presentation, 05/02/2008 VC 15

Y

O7oNHY>

fnfrf('j’\
S Mutex Model

P, has lock P, has lock
P,::1,: while True do P,::1;: while True do
NC,: wait(turn = 0); NC,: wait(turn = 1);
CR,: turn := 1; CR,: turn := 0;
end while; end while;

_/__—

@g\ gaig

furn = (0

furn = 1
CRy,NC

NCy, CR, Note: This is a Kripke Model.
Kripke => Blichi

transformation exists.
Doyle Group Presentation, 05/02/2008

VC 16

Y

Or0NKY>

fnfrf('j’\
S Mutex Biichi Model

P, has lock P, has lock

furn = (

furn = ()

A Ll
furn = () @ furn = 0
!l‘“ .\' (:" .\'(j'_‘ N !A
@ fturn = 0
turn = (K.\'C;. .\'(f."‘
LW NC l
turn = 0 ‘

NGy, NC,

fturn =1

I, NC,
furn = (0
CRy,NC,

Doyle Group Presentation, 05/02/2008

vC 17

Specification

Specification

S @

v

Verification
MODEL CHECKER

Specification Counterexample
Met Found

Doyle Group Presentation, 05/02/2008 VC 18

Modeling Specifications

Goal: Model desirable properties of a system as correctness claims.

* Proving essential logical correctness properties independent of
— Execution speeds
+ relative speeds of of processes, instruction execution time
— Probability of occurrence of events
» packet loss, failure of external device
« Two types of correctness claims [Lamport 1983, Pnueli 1995]

— Safety set of properties the system may not violate

» State properties: Claims about reachable/unreachable states
— System invariant: holds in every reachable state
— Process assertion: holds in specific reachable states

— Liveness set of properties the system must satisfy
» Path properties: Claims about feasible/unfeasible executions

« Several techniques available
— LTL, Propositional Logic, Buchi Automata

Doyle Group Presentation, 05/02/2008 VC 19

LTL Specification

Commonly used LTL formulas

FORMULA DESCRIPTION TYPE

p Always p Invariance
Safe ty O-¢ Op Eventually p Guarantee

p— Qg p implies eventually q Response
Liveness 00 p—qUr p implies q until r Precedence

J0p Always eventually p Recurrence

QUp Eventually always p Stability

Op — Qq Eventually p implies eventually q Correlation

Let E be the complete set of w-runs and let ¢ be a correctness property
formalized as an LTL property.

The system satisfies the property ¢ if and only if all the w-runs in £ do.

Doyle Group Presentation, 05/02/2008 VC 20

Mutual Exclusion Example

P,::1,: while True do
NC,: wait(turn = 0); Problem Description
CR,: turn := 1; "
end while; « Two asynchronous processes P,
g and |:>1

\o_/, * P,and P, share a variable turn

*» Pyand P,can not be in their

~~critical section at the same time
P,::1,: while True do o PO shall eventua”y enter into its
NC,: wait(turn = 1); critical region
CR,: turn := 0; o Model variables of interest
end while; — Shared variable state
1 — Location of execution with

1
\/ program counter

Doyle Group Presentation, 05/02/2008 VC 21

& %
Or0n13Y

: Mutex Specification

“Both processes can not

“The process P, will eventually
simultaneously

enter its critical region”
be in their critical regions”
O=(CRy A CR;) ¢ CRy
; : CRO A CRI) @ ; : CR(J ‘
-(CRy ACR,) TRUE -CRy TRUE

Mutual Exclusion Property Liveness Property

For every temporal logic formula there exists a Blchi automaton that accepts
precisely those runs that satisfy the formula.

Doyle Group Presentation, 05/02/2008

VC 22

Properties of Buchi Automata

* Closed under intersection and complementation.

— There exists an automaton that accepts exactly the intersection of
the languages of a set of automata

— There exists an automaton that recognizes the complement of the
language of the given automaton

« Language emptiness is decidable
— Whether the set of accepting runs is empty

The verification problem is equivalent to an emptiness test for an
intersection product of Buchi automata.

Doyle Group Presentation, 05/02/2008 VC 23

Verification

Specification

S @

v

Verification
MODEL CHECKER

Specification Counterexample
Met Found

Doyle Group Presentation, 05/02/2008 VC 24

Verification Condition

Goal: Verify that all possible behaviors of the model of the
system A satisfy the specification S.

The system A satisfies the specification S when L(A) C L(S).

U

Let L(S) be the language £“ — L(S), then L(A) N L(S) = 0.

If | is empty, then A satisfies S.

If | is not empty, then A can violate S,
and | contains at least one complete
counterexample that proves it.

A

Possible

executions I

-5

Invalid
Executions

Executions that are possible and invalid

Doyle Group Presentation, 05/02/2008 VC 25

LTL Specification

= (OCRy) A (O-(CRy ACR,))

Taking the negation

=S = ~(0CRy AO-(CRy A CRy))
<> :]ﬁCR() A O(CRU A CRI))

Doyle Group Presentation, 05/02/2008

Complementing the Specification

Biichi Automata Specification

;: CRU A CRI) @

-(CRy A CR;) TRUE
@ —©
-C Ry TRUE

Taking the complement

‘:- : CR[) A CRI}

~(CRo ACRy) TRUE

e

~CR, TRUE
VC 26

Union of Complement Specification

Goal: Construct an automaton that recognizes the union
of languages of both automata.

TRUE

L(S) = { e(~CRy ACR;)"(CRy A CRy)(w)*, e(-CRy)* }

Doyle Group Presentation, 05/02/2008 VC 27

Intersection Of Automata

Goal: Construct an automaton that recognizes
L(A)NL(S) the intersection of languages of both
automata.
System Model A Complement of Specification, S

ANS = {2 QA X Q§a A’: qu X ng: SA X F§}
where ()4 are the states of the model A and @5 are the states of the specification S.

Also, (< 84,2 >,a,< Sy T, >) € A" = (84,0,8,,) € Ay and (z;,a,2,) € Ag

Doyle Group Presentation, 05/02/2008 VC 28

Partial Representations of
Intersection Automaton

ur) v
No initial conditions
to sub-automaton

Doyle Group Presentation, 05/02/2008 VC 29

(CRy ACRy)

UE
furn = () CRq
furn = 1
e 0 =1
@))
'Jrn =0
~|.u~. X turn = l

turn = t —
'"““' N 0 @ furn = (turn = 1 ' urn =1
I, NC, NC 1
@ turn =0
turn = (‘\(\(A

LW NC, turn =1
turn = (] ‘ turn = 1
NC,.NC

fturn =1
NCy,CR,

furn =1
furn =0 ‘

CRy, NC

Doyle Group Presentation, 05/02/2008 VC 30

-
) \«
O7oNHY>

Verification of Mutual Exclusion

» Any state of the form (x1,sk) is not
reachable from any initial state

« The transition to x1 implies both
s U critical regions have been entered

simultaneously

turn = 0,1

The system satisfies the
-

mutual exclusion
property.

Checking non-emptiness of Blchi automaton B is equivalent to finding a strongly
connected component that is reachable from an initial state and contains an
accepting state.

Doyle Group Presentation, 05/02/2008 VC 31

Partial Representations of
Intersection Automaton

No initial conditions
to sub-automaton

Doyle Group Presentation, 05/02/2008 VC 32

. >
&) \4
O7oNHY>

turn = 1,CRy, NC,
v

Doyle Group Presentation, 05/02/2008

Verification of Liveness Property

» Tarjan’s DFS algorithm for
finding strongly connected
components

— O(num states + num transitions)
— Double DFS

» Found accepting run that has an
accepting state with cycle back to
itself

» Counterexample found

— <i0,s0><y0,s1><y0,s2><y0,83>*

The system does not satisfy the
absence of starvation
property.

VC 33

Unwinding
operation

==

Automaton Computational Path

Doyle Group Presentation, 05/02/2008 VC 34

Next Time

» State space reduction
— Abstractions
— Partial Order Reduction
— Compositional Reasoning
— Symbolic Model Checking

Doyle Group Presentation, 05/02/2008 VC 35

References

« Clarke, E.M. Model Checking, 1999.
* Holzman, G. The SPIN Model Checker, 2003.

» Sipser, M., Introduction to the Theory of Computation,
2005.

Doyle Group Presentation, 05/02/2008 VC 36

