
Can Shortest-path Routing and TCP Maximize Utility ∗

Jiantao Wang Lun Li Steven H. Low John C. Doyle
California Institute of Technology, Pasadena, USA

{jiantao@cds., lun@cds., slow@, doyle@cds.}caltech.edu

December 30, 2002

Abstract

TCP-AQM protocols can be interpreted as distributed primal-dual algorithms over the Inter-
net to maximize aggregate utility over source rates. In this paper we study whether TCP–AQM
together with shortest-path routing can maximize utility over both rates and routes. We show that
this is generally impossible because the addition of route maximization makes the problem NP-
hard. We exhibit an inevitable tradeoff between routing stability and utility maximization. For
the special case of ring network, we prove rigorously that shortest-path routing based purely on
congestion prices is unstable. Adding a sufficiently large static component to link cost stabilizes
it, but the maximum utility achievable by shortest-path routing decreases with the weight on the
static component. We present simulation results to illustrate that these conclusions extend to gen-
eral network topology, and that rouging instability can reduce utility to less than that achievable
by the necessarily stable static routing.

1 Introduction

Recent studies have shown that any TCP congestion control algorithm can be interpreted as carrying
out a distributed primal-dual algorithm over the Internet to maximize aggregate utility, and a user’s
utility function is (often implicitly) defined by its TCP algorithm, see e.g. [8, 12, 15, 16, 13, 11, 9]
for unicast and [7, 3] for multicast. All of these papers assume that routing is given and fixed at the
time scale of interest, and TCP, together with active queue management (AQM), attempt to maximize
aggregate utility over source rates. In this paper, we study utility maximization at the time scale of
route changes.

One approach to joint routing and congestion control is to allow multi-path routing, i.e., a source
can transmit its data on multiple paths to its destination in the unicast setting. In this formulation, a
source’s decision is decomposed into two – how much traffic to send (congestion control) and how

∗Preliminary results have appeared in [17]. We acknowledge the support of US Army Research Office through grant
DAAD19-02-1-0283.
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to distributed it over the available paths (multi-path routing) – in order to maximize aggregate utility.
This has been analyzed in, e.g., [4, 8, 6], assuming that both decisions operate on the same time
scale. The general intuition is that, for each source-destination pair, only paths with the minimum,
and hence equal, ‘congestion price’ will be used and this minimum price determines the total source
rate as in the single-path case.

Routing (within Autonomous Systems) in the current Internet, however, does not utilize multiple
paths. IP uses shortest-path routing1 to select a single path for each source-destination pair and
generally operates on a slower time scale than TCP–AQM. Within this context, we ask:

1. Can TCP–AQM/IP, with shortest path routing, jointly solve the utility maximization over both
source rates and their routes?

The dual problem of utility maximization over both source rates and routing has an appealing structure
that makes it solvable by shortest-path routing using congestion prices as link costs, together with
TCP–AQM; see Section 2. This raises the tantalizing possibility that TCP–AQM/IP may indeed
turn out to maximize utility with proper choice of link costs. We will show however that the primal
problem is NP-hard, and hence cannot be solved by shortest-path routing unless P=NP.

This prompts the question:

2. How well can IP solve the utility maximization approximately? In particular, what is the effect
of the choice of link cost on maximum utility and on routing stability?

We answer these questions rigorously in the special case of a ring network with a common destination
(Section 3). For this special case, we show that the duality gap is trivial, due to integer constraint on
routing, and is closed in the abstract convexified version of the model. This suggests that shortest-path
routing based on prices may indeed maximize utility in this special case. We show however that there
is an inevitable tradeoff between utility maximization and routing stability. Specifically, link costs
and shortest-path routing form a feedback system. This system is unstable when link costs are pure
prices. It can be stabilized by adding a static component to the link cost. The loss in utility however
increases with the weight on the static component. Hence, while stability requires a small weight on
prices, utility maximization favors a large weight.

This is not surprising as it is well-known that routing stability generally requires that the relative
weight on the dynamic (traffic-sensitive) component of the link cost be small. Indeed, our conclusions
are similar to those reached in [2, 10] that study the same ring network for routing stability using
different link costs. Here, since the dynamic component is the dual-optimal price for the utility
maximization problem computed by TCP–AQM, this implies a tradeoff between routing stability and
utility maximization.

We present simulation results that suggest that these conclusions generalize qualitatively to gen-
eral network topology (Section 4). Moreover these results indicate that routing instability can reduce

1By “shortest-path routing” we mean minimum-cost routing with some given link costs.
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aggregate utility to less than that achievable by (the necessarily stable) purely static routing. Finally,
we conclude in Section 5 with limitation of this work.

2 Model

A network is modeled as a set of L uni-directional links with finite capacities c = (cl, l = 1, . . . , L),
shared by a set of N source-destination pairs, indexed by i (we will also refer to the pair simply as
‘source i’). Let R be a given finite set of possible paths connecting all source-destination pairs. A
routing is an element of R and can be expressed as an L × N 0-1 matrix R defined by:

Rli =

{

1 if l is in path of i

0 otherwise

All routes in R are single-path in that if source i transmits at rate xi packets/sec, then the destination
as well as all links in the path of source i receive at the same rate of xi in equilibrium. Shortest-path
routing has the further restriction that flows that diverge after a link cannot meet again at a downstream
link, unless the divergent paths hat equal cost.

2.1 Duality model of TCP–AQM

Each source i has a utility function Ui(xi), as a function of its rate xi. One can think of TCP–AQM
as a distributed primal-dual algorithm to maximizing aggregate utility, given a routing matrix R, i.e.,
it solves the following constrained convex program (see e.g. [8, 12, 15, 16, 13, 11, 9]):

max
xi

∑

i

Ui(xi) (1)

subject to Rx ≤ c (2)

and the associated dual problem [12, 13, 11]:

min
pl≥0

∑

i

max
xi≥0

(

Ui(xi) − xi

∑

l

Rlipl

)

+
∑

l

plcl (3)

TCP algorithms adapt the primal variables x = (xi, i = 1, . . . , N), and AQM algorithms adapt
the dual variables p = (pl, l = 1, . . . , L). These dual variables are measures of network congestion
and we will call them ‘prices’. To see the relation between the pair of problems, define the Lagrangian
[1, 14]

L(x, p) =
∑

i

Ui(xi) +
∑

l

pl

(

cl −
∑

i

Rlixi

)

The primal problem (1)–(2) is maxx minp L(x, p) and the dual problem (3) is minp maxx L(x, p).
The fact that there is no duality gap, i.e., maxx minp L(x, p) = minp maxx L(x, p), means that TCP
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and AQM can carry out their individual optimization asynchronously, over x and p respectively, and
the equilibrium (x∗, p∗) will be primal-dual optimal, i.e., solve both (1)–(2) and (3).

Conversely, given any TCP algorithm, the equilibrium rates x∗ solve (1)–(2) with appropriate
utility functions that are defined by the given TCP algorithm. For example, the utility function of
TCP Reno (or its variants) is

√
2

Di
tan−1(xiDi/

√
2) where Di is source i’s round trip time, and the

utility function of Vegas is αidi log xi where αi is protocol parameter and di is round trip propagation
delay of source i; see [11, 13] and references therein for details and other variations. These utility
functions are strictly concave increasing, and hence the problem (1)–(6) can be efficiently solved.

Note that we can go between utility maximization and the design of TCP-AQM algorithms in
both directions. One can design utility functions that are tailored to one’s applications and then
derive TCP and/or AQM algorithms to maximize the chosen utility. Conversely, and historically,
we designed TCP-AQM algorithms without explicit consideration of any utility functions. It turns
out that these algorithms can be interpreted as solving a certain utility maximization problem. This
simple convex program allows us to understand, and predict, the equilibrium properties of large-scale
networks under TCP-AQM control (e.g., [11, 13]).

We now study whether the same methodology can be applied to the understanding of TCP-AQM
and shortest-path routing.

2.2 TCP–AQM/IP

Consider the problem of maximizing utility over routes as well as rates

max
R∈R

max
xi≥0

∑

i

Ui(xi) (4)

subject to Rx ≤ c (5)

where R is the given finite set of available paths between all source-destination pairs. Clearly, an
optimal routing R∗ for (4)–(5) exists since the set R is finite, and, given R, the objective function is
continuous and the feasible set is compact. Define the Lagrangian as

L(R, x, p) =
∑

i

U(xi) +
∑

l

pl

(

cl −
∑

l

Rlixi

)

and the dual problem as

min
p≥0

max
R∈R,x≥0

L(R, x, p) = min
p≥0

∑

i

max
xi≥0

(

U(xi) − xi min
Ri∈Ri

∑

l

Rlipl

)

+
∑

l

plcl (6)

where Ri denotes the set of available routes for source-destination pair i and Ri (column of routing
matrix R) is an element of Ri. The striking feature of the dual problem is that the maximization over
R takes the form of shortest-path routing with prices p as link costs. This suggests that TCP–AQM/IP
might turn out to be a distributed primal-dual algorithm that maximizes utility, with proper choice of
link costs.
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We show, however, that the primal problem is NP-hard and hence cannot be solved by shortest-
path routing in general.

Theorem 1. The problem (4)–(5) is NP-hard.

Proof. We describe a polynomial time procedure that reduces an instance of integer partition problem
[5, pp. 47] to a special case of the primal problem. Given a set of integers c1, . . . , cN , the integer
partition problem is to find a subset A ⊂ {1, . . . , N} such that

∑

i∈A

ci =
∑

i6∈A

ci

Given an instance of the integer partition problem, consider the tree-like network in Figure 1, with N

�
i
c

2

1 �
i
c

2

1

1
c

2
c

N
c

N
c 1

c

2
c

Figure 1: Network to which integer partition problem can be reduced.

sources at the root, two relay nodes, and N receivers, one at each of the N leaves. The two links from
the root to the relay nodes have a capacity of

∑

i ci/2 each, and the two links from each relay node
to receiver i have a capacity of ci. All receivers have the same utility function that is increasing. The
routing decision for each source is to decide which relay node to traverse. Clearly, maximum utility
of
∑

i Ui(ci) is attained when each receiver i receives at rate ci, from exactly one of the relay nodes,
and the links from the root to the two relay nodes are both saturated. Such a routing exists if and only
if there is a solution to the integer partition problem.
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How well does shortest-path routing solve it approximately? Specifically, suppose routing changes
at a slower time-scale than TCP–AQM, so that in each discrete period t with routing R(t), TCP–AQM
converges instantly and source rates x(t) = x(R(t)) and prices p(t) = p(R(t)) are the primal and
dual solutions of (1)–(3) with fixed routing R = R(t). Clearly, if link costs are static, e.g., hop counts
or fixed propagation delays, then routes remain unchanged at the time scale of interest, R(t) = R(0)

for all t. More generally, we will consider link cost dl(t) that has both a static and a dynamic compo-
nent:

dl(t) = βτl + αpl(t) (7)

where τl are the fixed propagation (and processing) delays and pl(t) = pl(R(t)) are the dual-optimal
prices on links l in period t. The motivation of including prices in link cost is that they are precise
measure of congestion. Indeed, these prices represent packet loss probability in TCP Reno and its
variants and queueing delay in TCP Vegas [11, 13].

The protocol parameters α and β determine the responsiveness of routing to network traffic:
α = 0 corresponds to static routing, β = 0 corresponds to purely dynamic routing, and the larger the
ratio of α/β, the more responsive routing is to network traffic. We are interested in the condition on
α, β under which routing R(t) is stable, i.e., R(t) converges to some matrix R, and when it is stable,
the maximum utility in equilibrium.

We next answer these questions in the special case of ring network with a common destination.

3 Ring network

Consider a ring network with N + 1 nodes, indexed by i = 0, 1, . . . , N . Nodes i ≥ 1 are sources and
their common destination is node 0; see Figure 2. For notational convenience we will also refer to

r

2

0

N 1

Figure 2: A ring network

node 0 as node N + 1. Each pair of nodes is connected by two links, one in each direction. We will
refer to the two unidirectional links between node i − 1 and i as link i; the direction should be clear
from the context. The fixed delay on link i is denoted as τi > 0, i = 1, . . . , N + 1, in each direction.
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As mentioned above, the cost on link i in period t is di(t) = βτi + αpi(t) where pi(t) is the price
on link i (see below). At time t, source i routes all its traffic in the direction, counterclockwise or
clockwise, with the smaller cost. The ring network is particularly simple because the routing of the
whole network can be represented by a single number r. Note that under shortest path routing, if node
i sends in the counterclockwise direction, so must node i − 1, and if node i sends in the clockwise
direction, so must node i+1. Hence, we can represent routing on the network by r ∈ {0, . . . , N} with
the interpretation that nodes 1, . . . , r send in the counterclockwise direction and nodes r + 1, . . . , N

send in the clockwise direction.

For this special case, we now show that the duality gap is trivial, that shortest-path routing based
just on prices (β = 0) indeed solves the primal and dual problems, but is unstable. Using a continuous
model, we then show that routing can be stabilized if the weight β on the fixed delay is nonzero and
the weight α on price is small enough. The maximum achievable utility however decreases with small
α. There is thus an inevitable tradeoff between utility maximization and routing stability.

3.1 Utility maximization and shortest-path routing

Suppose all sources i have the same utility function U(xi), and all links have the same capacity of
c = 1 unit. We assume that U is strictly concave increasing and differentiable. Then at any time, only
link 1, in the counterclockwise direction, and link N + 1, in the clockwise direction, can be saturated
and have strictly positive price. The utility maximization problem (4)–(5) reduces to the following
simple form:

max
r∈{0,...,N}

max
xi

∑

i

U(xi) (8)

subject to
r
∑

i=1

xi ≤ 1 and
N
∑

i=r+1

xi ≤ 1 (9)

When routing is r, nodes i = 1, . . . , r see price p1(r) on their paths while nodes i = r+1, . . . , N

see price pN+1(r) on their paths. Since these rates xi(r) and prices pi(r) are primal and dual optimal,
they satisfy [12]

U ′(xi(r)) = p1(r) for i = 1, . . . , r (10)

U ′(xi(r)) = pN+1(r) for i = r + 1, . . . , N (11)

This implies that x1(r) = · · · = xr(r) and xr+1(r) = · · · = xN (r). It is easy to see that the optimal
routing r∗ 6= 0 or N . Hence both constraints are active at optimality, implying that (from (9))

x1(r) = · · · = xr(r) =
1

r
and xr+1(r) = · · · = xN (r) =

1

N − r
(12)

The problem (8)–(9) thus becomes

max
r∈{1,...,N−1}

r U

(

1

r

)

+ (N − r) U

(

1

N − r

)
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Dividing the objective function by N and using the strict concavity of U , we have

r

N
U

(

1

r

)

+
N − r

N
U

(

1

N − r

)

≤ U

(

2

N

)

with equality if and only if r = N/2. This implies that the optimal routing is

r∗ := bN/2c (13)

and the maximum utility is

V ∗ :=

⌊

N

2

⌋

U

(

1

bN/2c

)

+

⌈

N

2

⌉

U

(

1

dN/2e

)

(14)

where byc is the largest integer less or equal to y and dye is the smallest integer greater or equal to y.

It can be shown that there is no duality gap for the ring network considered here when N is even,
by verifying that routing r∗ in (13), rates xi(r

∗) in (12), and prices p1(r
∗), pN+1(r

∗) in (10)–(11)
are indeed primal-dual optimal. When N is odd, there is generally a duality gap due to integral
constraint on r; see Appendix 6.1 for a proof. This duality gap disappears in the convexified problem
when routing is allowed to take real value in [0, N ], a model we consider in the next subsection.
This suggests that TCP together with shortest-path routing based on prices can potentially maximize
utility for this ring network. We next show, however, that shortest-path routing based only on prices
is unstable.

Given routing r, we can combine (10)–(11) and (12) to obtain the prices p1(r) and pN+1(r) on
links 1 and N + 1:

p1(r) = U ′
(

1

r

)

and pN+1(r) = U ′
(

1

N − r

)

(15)

The path cost for node i in the counterclockwise direction is

D−(i; r) =

i
∑

j=1

βτj + αp1(r) = β

i
∑

j=1

τj + αU ′
(

1

r

)

(16)

and the path cost in the clockwise direction is

D+(i; r) =

N+1
∑

j=i+1

βτj + αpN+1(r) = β

N+1
∑

j=i+1

τj + αU ′
(

1

N − r

)

(17)

In the next period, each node i will choose counterclockwise or clockwise direction according as
D−(i; r) or D+(i; r) is smaller. Define f(r) as

f(r) := max {i | D−(i; r) ≤ D+(i; r)} (18)

Then the resulting routing satisfies the recursive relation

r(t + 1) =











0 if D−(1; r(t)) > D+(1; r(t));

N if D−(N ; r(t)) < D+(N ; r(t));

f(r(t)) otherwise

(19)
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Theorem 2. If β = 0 and α > 0, then starting from any routing r(0), except possibly the equilibrium
N/2 when N is even, the subsequent routing oscillates between 0 and N .

Proof. For any r(0) ∈ {0, . . . , N},

D−(1; r(0)) − D+(1; r(0)) = D−(N ; r(0)) − D+(N ; r(0))

= α

(

U ′
(

1

r(0)

)

− U ′
(

1

N − r(0)

))

If N is even, then N/2 is the unique equilibrium routing that solves D−(i;N/2) = D+(i;N/2).
Suppose r(0) 6= N/2. If r(0) > N/2, then 1/r(0) < 2/N < 1/(N − r(0)). Since U ′ is strictly
decreasing, U ′(1/r(0)) > U ′(1/(N − r(0)) and hence D−(1; r(0)) > D+(1; r(0)) and r(1) = 0.
Similarly, if r(0) < N/2, then D−(N ; r(0)) < D+(N ; r(0)) and r(1) = N . Hence r oscillates
between 0 and N henceforth.

Theorem 2 says that purely dynamic routing based on prices is unstable and hence we will not
consider this strategy any further. For the rest of the paper, we will, without loss of generality, set
β = 1 and consider the effect of α on utility maximization and stability.

3.2 Maximum utility of shortest-path routing

As mentioned above, the duality gap is of a trivial kind that disappears when integer constraint on
routing is relaxed. For the rest of this section, we consider a continuous model where every point on
the ring is a source. A point on the ring is labeled by s ∈ [0, 1] and the common destination is the
point 0 (or equivalently 1). The utility maximization problem becomes

max
r∈[0,1]

max
x(·)

∫ 1

0
U(x(u))du (20)

subject to
∫ r

0
x(u)du ≤ 1 (21)

∫ 1

r

x(u)du ≤ 1 (22)

As in the discrete case, both constraints are active at optimality, and hence the problem reduces to

max
r∈(0,1)

rU

(

1

r

)

+ (1 − r)U

(

1

1 − r

)

which, by concavity, yields the optimal routing r∗ and maximum utility V ∗:

r∗ =
1

2
and V ∗ = U(2) (23)

To see that there is no duality gap, note that the problem (20)–(22) is equivalent to:

max
r∈[0,1]

max
x−,x+≥0

rU(x−) + (1 − r)U(x+)

subject to rx− ≤ 1, (1 − r)x+ ≤ 1
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Define the Lagrangian as

L(r, x−, x+, p−, p+) = rU(x−) + (1 − r)U(x+) + p−(1 − rx−) + p+(1 − (1 − r)x+)

It is easy to verify that

r∗ =
1

2
, x−∗ = x+∗ = 2, p−∗ = p+∗ = U ′(2) (24)

are primal-dual optimal and there is no duality gap; see Appendix 6.2.

We now look at the maximum utility achievable by the equilibrium of shortest-path routing.

Let the delay from s to the destination in the counterclockwise direction be

T (s) :=

∫ s

0
τ(u)du

and the delay in the clockwise direction be

T (1) − T (s) =

∫ 1

s

τ(u)du

where τ(u), u ∈ [0, 1], is given. Here, τ(u) corresponds to link cost in the discrete model. Given
routing r ∈ [0, 1], the price in the counterclockwise direction is U ′(1/r) and the price in the clockwise
direction is U ′(1/(1 − r)). Then the cost of source s in the counterclockwise direction is

D−(s; r) = T (s) + αU ′
(

1

r

)

(25)

and the cost in the clockwise direction is

D+(s; r) = T (1) − T (s) + αU ′
(

1

1 − r

)

(26)

A routing r is in equilibrium if the costs of source r in both directions are the same.

Definition 3. A routing r is called an equilibrium routing if D−(r; r) = D+(r; r). It is denoted by
rα or r(α).

By definition, rα is the solution of

g(r) := 2T (r) − T (1) + α

(

U ′
(

1

r

)

− U ′
(

1

1 − r

))

= 0 (27)

Since g(0) < 0, g(1) > 0 and g′(r) > 0, the equilibrium rα is in (0, 1) and is unique.

Given a routing r, its utility is

V (r) := rU

(

1

r

)

+ (1 − r)U

(

1

1 − r

)

The maximum utility achieved by shortest-path routing, with parameter α, is then V (rα) ≤ V (r∗) =

V ∗. The next result implies that rα varies between r0 and r∗ and converges monotonically to r∗ as
α → ∞. As a result, the loss V ∗ − V (rα) ≥ 0 in utility also approaches 0 as α → ∞. Denote the
interval in which 1/rα and 1/(1 − rα) vary as I := [2, 1/min{r0, 1 − r0}].
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Theorem 4. Suppose U ′′ exists and is bounded on I . For all α ≥ 0, |rα − r∗| is a strictly decreasing
function of α. Moreover, as α → ∞, |rα − r∗| and V ∗ − V (rα) approach 0.

Proof. The equation (27) defines the equilibrium routing r(α) := rα as an implicit function of α. By
the implicit function theorem, r′(α) satisfies

r′(α)

[

2τ(rα) − α

r2
α

U ′′
(

1

rα

)

− α

(1 − rα)2
U ′′
(

1

1 − rα

)]

= U ′
(

1

1 − rα

)

− U ′
(

1

rα

)

The term in the square bracket is positive since U is strictly concave. Hence r ′(α) has the same sign
as the right-hand side, i.e., since U ′ is decreasing,

r′(α) =











> 0 if rα < r∗

< 0 if rα > r∗

= 0 if rα = r∗
(28)

This implies that |rα − r∗| is a strictly decreasing function of α; see Figure 3.

Hence |rα − r∗| converges to a limit as α → ∞. Since U ′′ is bounded on the closed interval I , so
is U ′. Hence, from (27), we must have U ′(1/rα) − U ′(1/(1 − rα)) → 0, or

U ′(1/ lim
α→∞

rα) = U ′(1/(1 − lim
α→∞

rα))

Since U ′ is strictly decreasing, this implies that limα→∞ rα = 1 − limα→∞ rα = r∗.

To show that V ∗ − V (rα) ≥ 0 also converges to 0, note that V ′(r∗) = 0 and hence we have, by
Taylor expansion,

V (rα) − V ∗ =
1

2
V ′′(u)(rα − r∗)2

for some u between rα and r∗. Here

V ′′(u) =
1

u3
U ′′
(

1

u

)

+
1

(1 − u)3
U ′′
(

1

1 − u

)

≥ − 2µ

(min{r0, 1 − r0})3

where µ is the upper bound of U ′′ on I . Hence

0 ≤ V ∗ − V (rα) ≤ µ(rα − r∗)2

(min{r0, 1 − r0})3

Since |rα − r∗| → 0, the proof is complete.

The shape of r′(α) in (28) implies that, if r(0) > r∗ then r(α) ≥ r∗ for all α but r(α) decreases
to r∗ as α → ∞, and if r(0) < r∗ then r(α) ≤ r∗ for all α but r(α) increases to r∗ monotonically, as
illustrated in Figure 3. This is a consequence of the continuity of r(α).
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r(0)

r*

r(0)

�

Figure 3: r(α)

3.3 Stability of shortest-path routing

We now turn to the stability of rα. For simplicity, we will take U(x) = log x, the utility function
of TCP Vegas [13]. With log utility function, V ′(rα) = log(1 − r)/r and hence Theorem 4 can be
strengthened to show that V ∗ − V (rα) is a strictly decreasing function of α, and hence converges
monotonically to 0 as α → ∞.

Given r, let f(r) denote the solution of

D−(s; r) = D+(s; r)

It is in the range [0, 1] if and only if 0 ≤ T (s) ≤ T (1), or if and only if

r∗ − T (1)

2α
≤ r ≤ r∗ +

T (1)

2α

We will assume that minu∈[0,1] τ(u) > 0. Then T−1 exists and

f(r) = T−1

(

1

2
(T (1) + α) − αr

)

(29)

The routing iteration is

r(t + 1) = [f(r(t))]10 (30)

where [r]10 = max{0,min{1, r}}.

Definition 5. The equilibrium routing rα is (globally) stable if starting from any routing r(0), r(t)

defined by (29)–(30) converges to rα as t → ∞.

Example 6. Suppose delay is uniform on the ring, τ(u) = τ for all u ∈ [0, 1], so that T (r) = rτ .
From (27), the equilibrium routing is

rα =
1

2
= r∗, ∀α ≥ 0

12



coinciding with the utility-maximizing routing r∗. Suppose α < τ . Then the routing iteration becomes

r(t + 1) =
1

2τ
(τ + α) − α

τ
r(t) = f(r(t))

Since |f(s)−f(r)| = (α/τ)|s−r| < |s−r|, f(r) is a contraction mapping and hence rα is globally
stable for all 0 ≤ α < τ .

Hence for the uniform delay case, adding a static component to link cost stabilizes routing pro-
vided the weight on prices is smaller than link delay. Moreover, the static component does not lead
to any loss in utility (rα = r∗). The stability condition generalizes to the general delay case. The
following theorem says that if α is smaller than the minimum ‘link delay’, then rα is globally stable;
if α is bigger than the maximum ‘link delay’, then it is globally unstable (diverge from any initial
routing except rα); otherwise, it may converge or diverge depending on initial routing.

Theorem 7. 1. If α < minu∈[0,1] τ(u) then rα is globally stable.

2. Suppose α ≥ T (1). Then there exists r < rα < r such that

(a) If r(0) = r or r(0) = r then subsequent routings oscillate between r and r.

(b) If r(0) < r or r(0) > r then subsequent routings after a finite number of iterations
oscillate between 0 and 1.

(c) If r < r(0) < r then r(t) converges to rα provided α < minu∈(r,r) τ(u).

3. If α > maxu∈[0,1] τ(u) then starting from any initial routing r(0) 6= rα, subsequent routings
after a finite number of iterations oscillate between 0 and 1.

Proof. 1. We show that the routing iteration (30) is a contraction mapping if α < minu∈[0,1] τ(u).
Now

∣

∣[f(s)]10 − [f(r)]10
∣

∣ ≤ |f(s) − f(r)|

=

∣

∣

∣

∣

T−1

(

1

2
(T (1) + α) − αs

)

− T−1

(

1

2
(T (1) + α) − αr

)
∣

∣

∣

∣

=

∣

∣

∣

∣

1

T ′(u)
(αs − αr)

∣

∣

∣

∣

≤ α

minu∈[0,1] τ(u)
|s − r|

for some u between r and s, by the mean value theorem. Hence h(r) is a contraction mapping and
starting from any r(0) ∈ [0, 1], r(t) converges exponentially to rα.

2. Define

h(r) =
1

2
(T (1) + α) − αr

Then the routing iteration can be written as

T (r(t + 1)) = [h(r(t))]10 (31)

13



Define the following sequences:

a0 = 0, b0 = T (0)

an+1 = h−1(bn), bn+1 = T (an+1)

Note that (an, n ≥ 0) is a routing sequence going backward in time.

The following lemma is proved in the appendix, following [10].

Lemma 8. Let bα = T (rα) = h(rα). Then

0 = a0 < a2 < . . . < rα < . . . < a3 < a1 < 1

T (0) = b0 < b2 < . . . < bα < . . . < b3 < b1 < T (1)

Since the sequences are monotone, the lemma implies that there are r and r with 0 < r < rα <

r < 1 such that

lim
n→∞

a2n = r and lim
n→∞

a2n+1 = r

By continuity of T and h, we have

T (r) = h(r) and T (r) = h(r)

This implies that starting from r(0) = r or r(0) = r, the subsequent routings oscillate between r and
r.

To show the second claim, suppose r(0) < r. Specifically, suppose a2n−2 < r(0) < a2n for some
n. If h(r(0)) > T (1) (possible since α ≥ T (1)), then r(1) = 1 and subsequent routings oscillate
between 0 and 1. Otherwise, from (31), r(0) = h−1(T (r(1))), and hence a2n−2 < h−1(T (r(1))) <

a2n. Since h is strictly decreasing, we have b2n−1 < T (r(1)) < b2n−3 by definition of bn. Hence,
since T is strictly increasing, a2n−1 < r(1) < a2n−3. The same argument then shows that a2n−4 <

r(2) < a2n−2. Hence we have shown that r(0) < a2n implies r(2) < a2n−2. This proves the second
claim.

The proof of the third claim follows the same argument of part 1.

3. By the mean value theorem, we have

|h−1(T (a)) − h−1(T (a′))| =
T ′(u)

α
|a − a′|

for some u between a and a′. Hence the iteration map

an+1 = h−1(T (an))

is a contraction provided α > maxu∈[0,1] τ(u). This implies that the sequence (an, n ≥ 0) converges
and, since rα is the unique fixed point of h−1(T (·)), r = r = rα. The assertion then follows from
part 2(b).
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4 General topology: simulations

It seems difficult to derive an analytical bound on α to guarantee routing stability or to compute
optimal routing for general network. In this section, we present simulation results to illustrate that the
intuition from the simple ring network analyzed in the last section extends to general topology.

We generate the random network based on Waxman’s algorithm [18]. The nodes are uniformly
distributed in a two dimensional plane. The probability that a pair of nodes u, v are connected is given
by

Prob(u, v) = a exp

(

d(u, v)

bL

)

where the maximum probability a > 0 controls connectivity, b ≤ 1 controls the length of the edges
with a larger b favoring longer edges, d(u, v) is the Euclidean distance between nodes u and v, and L

is the maximum distance between any two nodes.

In our simulation, we set the number of nodes N = 30, a = 0.8, b = 0.3, which generated about
200 links; see Figure 4.
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Figure 4: A random network

The fixed delay τl of each link l is randomly chosen according to a uniform distribution over
[100, 400]ms. The link capacities are randomly chosen from the interval [1000, 4000] packets/sec,
also with uniform distribution. There are 60 flows on the network with randomly chosen source and
destination nodes.

Routing on this network is computed using Bellman-Ford shortest-path algorithm, with link cost
dl(t) = τl + apl(t) in each update period t, on a slower timescale than congestion control. In
each routing period t, we first solve the link prices based on the current routing, using the gradient
projection algorithm of [12]. We iterate the source algorithm to update rates and the link algorithm to
update prices, until they converge. The link prices are then used to compute the shortest paths for the
next period.

We measure the performance of the scheme at different α by the sum of all source’s utilities.
If the routing is stable (at small α), the aggregate utility is computed using the equilibrium routing.
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Otherwise, the routing oscillates and the time-averaged aggregate utility is used. The result is shown
in Figure 5.
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Figure 5: Aggregate utility as a function of α for random network

As expected, when α is small, routing is stable and the aggregate utility increases with α, as in
the ring network analyzed in Section 3.2 (Theorem 4). When α < 4, the static delay τl dominates
the link cost and the routes computed with dl(t) remain the same as with static routing (α = 0), and
hence the aggregate utility is independent of α. Routing becomes unstable at around α = 10. Even
though the time-averaged utility continues to rise after routing instability sets in, eventually it peaks
and drops to a level less than the utility achievable by the necessarily stable static routing.

5 Conclusion

Given a routing, TCP-AQM can be interpreted as a distributed primal-dual algorithm over the In-
ternet to maximize aggregate utility over source rates. In this paper, we study whether TCP-AQM
together with shortest-path routing can maximize utility over both source rates and routing, on a
slower timescale. The answer is generally negative, because the problem of maximizing utility over
both rates and routes is NP-hard and thus cannot always be solved by shortest-path routing. We ex-
hibit an inevitable tradeoff between routing stability and utility maximization. For the special case
of ring network with a common destination, we prove rigorously that shortest-path routing based
purely on prices is unstable, and adding a sufficiently large static component to the link distance met-
ric that is independent of congestion stabilizes it. The maximum utility achievable by shortest-path
routing, however, decreases with the weight on the static component. Simulations suggest that these
conclusions extend qualitatively in general network topology. Furthermore, they show that routing
instability can reduce utility to less than that achievable by static routing which is necessarily stable.

The duality model of TCP-AQM has been useful to understand the equilibrium properties, in-
cluding throughput loss, delay, and fairness, of large-scale networks under TCP-AQM control. This
paper is a first attempt to apply the same methodology to understand the interaction of TCP-AQM and
shortest-path routing. The analytical model, though provides clear insights on the tradeoff between
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utility maximization and routing stability, is simplistic. Although the simulation results provide hope
that these insights may hold in a more realistic setting, we have not been able to find an analytical
proof. One of the major difficulties is that, in a general network, shortest-path routing cannot be as
conveniently represented as is done here, and a new approach will be needed to analyze the general
case.

6 Appendix

6.1 Duality gap when N is odd

We prove that there is generally a duality gap between the primal problem (8)–(9) and its dual when
N is odd.

It is easy to see that the primal optimal routing is

r∗ =
N − 1

2
or

N + 1

2

Suppose without loss of generality that r∗ = (N − 1)/2 (the other case is similar). Then, the source
rates are

x1 = · · · = xr∗ =
2

N − 1
and xr∗+1 = · · · = xN =

2

N + 1

yielding a primal objective value of

N − 1

2
U

(

2

N − 1

)

+
N + 1

2
U

(

2

N + 1

)

= N

{ (

1

2
− 1

N

)

U

(

2

N − 1

)

+

(

1

2
+

1

N

)

U

(

2

N + 1

) }

< NU

(

2

N

)

where the last inequality follows from the strict concavity of U . We now show that the right-hand
side is the optimal dual objective value, and hence there is a duality gap.

The dual problem of (8)–(9) is (e.g., [12])

min
p1,pN+1≥0

N
∑

i=1

max
xi

(U(xi) − xi min{p1, pN+1}) + (p1 + pN+1)

First, note that the minimizing (p1, pN+1) must satisfy p1 = pN+1, for otherwise, if (say) p1 < pN+1,
then the dual objective value is

N
∑

i=1

max
xi

(U(xi) − xip1) + (p1 + pN+1)

and can be reduced by decreasing pN+1 to p1. Hence the dual problem is equivalent to

min
p≥0

N
∑

i=1

max
xi

(U(xi) − xi p) + 2p (32)

17



Let p∗ denote the minimizer and x∗
i = xi(p

∗) = x(p∗) =: x∗ denote the corresponding maximizers
(they are equal for all i by symmetry). Then we have

U ′(x∗) = p∗ (33)

Differentiating the objective function in (32) with respect to p and setting it to zero, we have

0 = N(U ′(x∗)x′(p∗) − p∗x′(p∗) − x∗) + 2 (34)

Using (33), we have

x∗ =
2

N

and hence the minimum dual objective value is

N(max
x∗

U(x∗) − x∗ p∗) + 2p∗ = NU

(

2

N

)

as desired.

6.2 Primal-dual optimality

We prove that the solution given by (24) is primal-dual optimal using the saddle-point theorem (e.g.,
[1, pp.427]). Clearly, (r∗, x−∗, x+∗) is primal feasible and (p−∗, p+∗) is dual feasible. We now show
that (r∗, x−∗, x+∗, p−∗, p+∗) is a saddle point, i.e., for all (r, x−, x+, p−, p+),

L(r, x−, x+, p−∗, p+∗) ≤ L(r∗, x−∗, x+∗, p−∗, p+∗) ≤ L(r∗, x−∗, x+∗, p−, p+) (35)

For the right inequality, substitute (r∗, x−∗, x+∗) from (24) into L(r∗, x−∗, x+∗, p−, p+) to get,
for all (p−, p+),

L(r∗, x−∗, x+∗, p−, p+) = U(2)

But U(2) = L(r∗, x−∗, x+∗, p−∗, p+∗), establishing the right inequality.

For the left inequality, we have from (24), denoting p∗ := p−∗ = p+∗,

L(r, x−, x+, p−∗, p+∗) = rU(x−) + (1 − r)U(x+) − (rx− + (1 − r)x+)p∗ + 2p∗

≤ U(y) − yp∗ + 2p∗ (concavity of U (36)

with y := rx− + (1− r)x+, where equality holds if and only if x− = x+ since U is strictly concave.
Notice that the right-hand side is maximized over y if and only if y satisfies

U ′(y) = p∗

This implies that y = x−∗ = x+∗ = 2 since U ′ is strictly monotonic. Substitute y = 2 into (36)
yields, for all (r, x−, x+),

L(r, x−, x+, p−∗, p+∗) ≤ U(2)

as desired, since U(2) = L(r∗, x−∗, x+∗, p−∗, p+∗).
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6.3 Proof of Lemma 8

We will prove the lemma by induction. Note that b0 < bα implies that a1 = h−1(b0) > h−1(bα) =

rα. Since α ≥ T (1) and h(1) < 0, a1 = h−1(b0) < 1 (see Figure 6). Hence

h(r)

a2

T(r)

b1

T(0)

b0 r
a1a0

Figure 6: Lemma 8.

0 = a0 < rα < a1 < 1

This implies that b1 = T (a1) satisfies

T (0) = b0 < bα < b1 < T (1)

Since b1 < T (1) < h(0), a2 = h−1(b1) > h−1(h(0)) = 0, we have

0 = a0 < a2 < aα < a1 < 1

Let the induction hypothesis be

a0 < . . . < a2n < rα < a2n−1 < . . . < a1

b0 < . . . < b2n−2 < bα < b2n−1 < . . . < b1
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Then b2n = T (a2n) > T (a2n−2) = b2n−2 and that b2n = T (a2n) < T (rα) = bα. Hence,

b2n−2 < b2n < bα

This implies that rα < a2n+1 < a2n−1, which in turn implies that bα < b2n+1 < b2n−1. This
completes the induction.
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