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Identification of Flexible Structures for 
Robust Control 

Gary J. Balas and John C. Doyle 

ABSTRACT: This article documents our 
experience with modeling and identification 
of an experimental flexible structure for the 
purpose of control design, with the primary 
aim being to motivate some important 
research directions in this area. Initially, a 
multi-input/multi-output model of the 
structure is generated using the finite element 
method. This model is inadequate for control 
design, due to its large variation from the 
experimental data. Next, Chebyshev polyno- 
mials are employed to fit the data with 
single-input/multli-output (SIMO) transfer 
function models. Combining these SIMO 
models leads to a multi-input/multi-output 
(MIMO) model with more modes than the 
original finite element model. To find a 
physically motivated model, an ad hoc model 
reduction technique which uses a priori 
knowledge of the structure is developed. The 
ad hoc approach is compared with balanced 
realization model reduction to determine its 
benefits. Descriptions of the errors between 
the model and experimental data are formu- 
lated for robust control design. Plots of select 
transfer function models and experimental 
data are included. 

Introduction 

This article documents our experience with 
modeling and identification of a flexible 
structure for the purpose of control design. A 
sequence of techniques is presented for 
generating accurate nominal and uncertainty 
models of the experimental structure in a 
framework compatable with robust control 
design methods, specifically structured 
singular value (p) methods [1,2]. There are 
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no new theoretical results in the article, only 
the application of curve fitting and model 
reduction techniques. These techniques 
provide an ad hoc approach to system 
identification, though a more systematic 
method is desired. The primary aim of this 
article is to motivate some important research 
directions in this area. 

Initially, a theoretical model of the flexible 
structure is developed using the finite 
element method. The natural frequencies and 
mode shapes of the model vary considerably 
from the experimental data. These variations 
(uncertainties) are attributed to inaccuracies 
in the mathematical model and the interaction 
between the actuators and the structure. 
Chebyshev polynomial curve fitting is used 
to formulate single-input/multi-output 
(SIMO) transfer function models from 
experimental data, to provide more accurate 
models. A multi-input/multi-output (MIMO) 
transfer function model is constructed from 
the individual Chebyshev SIMO models, with 
the resulting MIMO model having the same 
number of states as the sum of the states of 
each SIMO model. This leads to a number of 
excess states in the MIMO model which are 
not motivated from the physics of the 
problem. A direct MIMO curve fitting 
method has been developed [3] ,  but its 
implementation presents some numerical 
problems, and it is not used. 

Two methods are used to construct a 
reduced order MIMO model from the SIMO 
models: one uses physically motivated 
arguments to combine states of the system, 
and the other balanced truncation. These 
methods provide varying degrees of accuracy 
in approximating the experimental data. 
Quantitative descriptions of the variations 
between the experimental data and the 
mathematical models need to be developed 
for control design. These descriptions 
determine the tradeoff between achievable 
performance and robustness of the control 
design. A controller synthesized for a 
physical system not within the set of plants 
described by the nominal and uncertainty 
model may be unstable or exhibit poor 
performance when implemented on the 

physical system. However, if the uncertainty 
descriptions are overly conservative, system 
models may be included inthe set that severly 
limit the performance of the closed loop 
system. Therefore, tight uncertainty bounds 
are required to synthesize control designs that 
achieve high performance onthe "real" system 

It is apparent that there are a number of 
shortcomings associated with these methods 
for modeling and identification of flexible 
structures for control design. Some of the 
issues in need of attention are: 

~41. 

1) More straightforward and direct MIMO 
modeling. 

2) Identification methods that produce 
nominal models with both perturbations and 
noise. For control design, there is an explicit 
need for uncertainty models to account for 
model inaccuracies. 

3) Improved mathematical models. Of 
particular importance is the problem of 
producing nominal and uncertain models 
using the finite element method. Such 
models are likely to be conservative, but will 
be better than those used herein in the initial 
control design. 

4) Integration of the identified model with 
the finite element method. There should be 
a way of incorporating post-identification 
models of the system into updating the finite 
element model of the system. Progress in 
these areas will lead to a more integrated 
framework in which structural and control 
design for flexible structures can be better 
performed. 

Objective 
The objective of the Caltech flexible 

structure experiment is to examine active 
control techniques for vibration suppression 
of flexible structures. The performance 
requirement is to significantly attenuate 
vibration of the first six flexible modes, 
measured at the sensors, via active control. 
To  achieve these tight performance specifica- 
tions, an accurate transfer function model and 
uncertainty descriptions of the structure are 
required. 
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The control design methodology is based 
on the y-framework. The nominal structural 
model, uncertainty descriptions and perfor- 
mance specifications are combined to form 
an interconnection structure P used in the 
control problem formulation. Fig. I depicts 
the general interconnection structure used in 
the y-analysis and synthesis methodology, 
with A representing norm-bounded perturba- 
tions and K the control design. 
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The y-framework most naturally uses 
frequency domain descriptions of the plant 
model, uncertainties and performance 
specifications. Therefore. transfer function 
models are developed to accurately describe 
the experimentally derived Bode plot data in 
the frequency domain of interest. Once a 
baseline model is defined, its variation from 
the experimental data is quantified and used 
to develop ud hoc, uncertainty models that 
bound these variations. 

e 

Experimental Flexible Structure 
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The Caltech experimental flexible structure 
is designed to include a number of attributes 
associated with large flexible space structures 
12.51. These include lightly damped. closely 
spaced modes, colocated and non-colocated 
sensors and actuators, and numerous modes 
in the controller crossover region. In addition 
to these considerations. expandability of the 
structure is a desired feature. Modular 
construction provides a means for increasing 
the modal density in a frequency range of 
interest. 

The initial experimental structure, Fig. 2. 
consists of two stories. three longerons 
(columns) and three noncolocated sensors and 
actuators. The first story columns are 
0.838 m (33 in) long, with 6.35 mm (1/4 in) 
diameter aluminum rods. The second story 
columns measure 0.759 m (29.9 in) with 
4.76 mm (3/16 in) diameter aluminum rods. 

Y 

Including the platforms. the  height of the 
structure is 1.651 m (65 in). The two 
platforms are in the shape of equilateral 
triangles with a 0.457 in ( I X  in) base. The 
longerons are connected between the stories 
via a triangular mating fixture and three 
bolt\. This allow? for the easy addition of 
stories to the structure. All the longerons are 
shrunk fit and welded to their mating 
brackets. to reduce the effects of joint 
nonlinearities. 

The first story platform is a 9.52 mm (318 
in) thick plate of aluminum. weighing 2.36 
kg (5.2 lb), with diagonal mounting brackets 
for attachment of the actuator diagonals. The 
second story platform is a 6.35 mm (114 in) 
thick plate of aluminum with mounting holes 
for three accelerometers. It weighs 1.55 kg 
(3 .3 Ib). A sinall offset mass is located on 
the second story platform to lower the 
torsional natural frequencies. The entire 
structure hangs from a mounting structure 
fixed to the ceiling. This alleviates the 
problem of buckling of the longerons. The 
three actuators are attached 10 the mounting 
structure, and act along the diagonals of the 
first story. The three sensors. accelerometers. 
are located on the second bay platforni. 

The two stories are designed to have the 
w n e  first bending natural frequency. This is 
obtained by selecting the siiffness of the 
second story columns to be 114 the stiffness 
of the first, with a similar ratio between the 
masses of the two stories. The ratio of 
stiffness and masses allows the interaction of 
the two stories to decrease the first bending 
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natural frequency of the combined structure, 
without significantly spreading out the 
remaining modes. Interaction of the stories 
leads to poor performance of a colocated 
velocity feedback at the voice coil actuators. 

The actuators are a voice coil type design. 
built by Northern Magnetics Inc.. that 
produce a force proportional to an input 
voltage. The actuators are rated at k1.37 kg 
(3 Ib) of force at f5 V, and have a band- 
width of 60 Hz. 

The sensors are Sunstrand QA-1400 
accelerometers. These are mounted on the 
second (lower) story platform, along the .v- 
axis. j-axis, and at 45" to both axes. The 
accelerometers are extremely sensitive and 
have a flat frequency response between 0 and 
200 Hz. The noise associated with them is 
rated at 0.05% of the output at (3-10 Hz and 
2% at 1C-100 Hz. The sensors are scaled for 
accelerations of approximately 0.016 g/V. 
This provides a maximum kS V output at 
peak accelerations of the input disturbance. 
The accelerometer output is conditioned by 
a 100-Hz fourth-order Butterworth filter 
before input into the A D ;  this provides 
attenuation of the high frequency signals and 
noise. 

Modelirig 

A model of the structure which relates 
input signals to system outputs is needed for 
control design purposes. Initially, an 
input/output model is derived using the finite 
element method. In addition to this model, a 
transfer function model between the actuators 
and sensorb is determined, by the ad hoc, 
technique presented in this article. State 
space models of these are then constructed. 

The finite element model (FEM) of the 
experiment provides a first approximation to 
the natural frequencies and mode shapes of 
the structure [6].  The columns and diagonals 
are treated as space frame elements having 
three translational and three rotational 
degrees of freedom at each node, and a 
torsional stiffness and bending stiffness in 
two directions. The longerons and diagonals 
are circular bars which have the same 
bending stiffnesses in two directions. Both 
are modeled as having fixed-fixed ends due 
to the welding of their end connections. The 
accelerometers, mounting brackets, platforms 
and additional weights on the structure are 
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modeled as lumped masses. The inertia 
properties of each are taken into account in 
the finite element description. 

The diagonals in the first story ride on the 
bearings of the voice coil actuators when the 
control system is not activated. No force is 
exerted in the open-loop configuration. The 
voice coil actuators are modeled as having 
free axial motion and being fixed in the two 
transverse directions. In reality, the diagonals 
ride on bearings that exhibit some stiction, 
friction, and free play. The bearings cause 
the damping levels to vary with the excita- 
tion amplitude. The degrees of freedom 
associated with vertical motion (along the 
longerons) are neglected in the analysis, since 
they correspond to high frequency modes 
outside the bandwidth of the current control 
design objectives. 

The first six global modes are of interest 
for control purposes. The first group of local 
modes, involving bending of the longerons, 
occurs in the frequency range of 37 to 43 Hz. 
The local modes are accounted for by 
uncertainty descriptions in the control design 
to insure that they are not destabilized. 
Attenuation of their vibration is not a 
performance criteria. Table I contains a list 
of natural frequencies derived from the 
Nastran finite element model and experimen- 
tally derived natural frequencies and damping 
levels. The variation in the natural frequen- 
cies is believed to be caused by two phenom- 
ena: the wires to the accelerometers were 
tightly fixed to the columns and pulled taut, 
thereby adding stiffness to the longerons: and 
stiction/friction associated with the voice coil 
actuators resulted in amplitude-dependent 
damping levels. 

NASTRAN Experimental 

Frequency (Hz) Frequency (Hz) 
Natural Natural Damping Ratio Mode Type 

0.99 1 1.17 1.8% 1 st bending 

0.992 1.19 1.8% 1 st bending 

2.004 2.26 1 .O% 1st torsional 

Real Time Control Implementation 

4 

5 

A 5400 Masscomp computer is used for 
real time control. The controllers consist of 
3-input/3-output systems that are imple- 
mented at 200 Hz. The processor is capable 
of implementing a 60th-order control law, in 
modal coordinates, at this sample rate. 

2.069 2.66 1.6% 2nd bending 

2.100 2.15 1.8% 2nd bending 

Experimental Transfer Functions 

A more accurate input/output description 
of the structure can be derived experimental- 
ly. A white noise random process is used as 
an input signal to each voice coil actuator, 
with the accelerations due to this signal 
measured by the sensors. The accelerations 
are scaled to achieve a large signal to noise 
ratio for the disturbance excitation. With this 
in mind, the random noise signals are scaled 
accordingly. These scalings lead to a 

6 I 3.832 I 4.43 I 0.9% I 2nd torsional 

Transfer Function A2S I : Expcriment ;tnd Nastr;in niodel  
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maximum force output from the actuators of 
+ O S  Ib for the noise input. The input signals, 
in the form of voltage levels, are suppled by 
the Masscomp computer D/A converters to 
each voice coil actuator. The corresponding 
signals from the sensors are filtered by a 
100-Hz fourth-order Butterworth filter, and 
input to the Masscomp computer via the A/D 
converters. A sample rate of 200 Hz is used 
for the identification experiments, the same 
as used in the closed-loop control experi- 
ments. Each single-input to multi-output 
identification experiment is run for a total of 

F i g .  3:  Transfer function A2S1: Experimenr and Nastran model. 

409.6 s (81 920 sample points). 
A Fourier transform of the time history is 

performed on each input/output pair. For the 
Fourier transform, the data is chopped into 
windows of length 4096 data points. Each 
window overlaps the previous one by 2048 
data points. A total of 39 windows of data is 
averaged for each transfer function. Ham- 
ming windowing is used on the time domain 
data, to improve the smoothing properties of 
the frequency spectrum. A total of nine 
transfer functions are deterinined. The Bode 
plots of two experimentally derived transfer 
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functions are shown i n  Figs. 3 and 3, 
together with the Bode plot7 of the finite 
element transfer function models. In the plots 
of the FEM transfer functions. we have 
substituted the experimentally derived natural 
frequencies and damping ratios of the 
structure for the Nastran ones. The acronym 
AiSj in the figure legends denotes a transfer 
function from actuator i to sensor j .  

Notice that the agreement is poor betueen 
the theoretical finite element model and the 
experimental data in the frequency range of 
interest, 0.5 to 5.5 Hz (3.13 to 33.5 rndis). 
The FEM had unacceptable variations from 
the experimental data. Therefore. new models 
are developed from the experimental data to 
more accurately represent the inputioutput 
behavior of the real system. The impro\ed 
transfer functions model is used to design 
active control aystems for vibration suppres- 
sion. 

Uncertainty Descriptions 

The y-framework requires the nominal 
structural transfer function model to be 
formulated as a linear time invariant (LTI) 
system. Though this model might deicribe 
the physical system accurately. any model is 
only an approximation of the physical 
system. There is always some "uncertainty" 
present. even when the underlying process is 
essentially linear. This can be due to not 
knowing the physical parameters exactly. 
neglecting the high frequency dynamics. or 

mahinp in\ alid asjumptionz i n  formulating 
the model. These inaccuracie\ can be 
dejcribed i n  numerou\ LI a> s. such as: bound 
on the parameter\ of a linear model. bounds 
on the nonlinearitie\. and frequenc) domain 
hounds on transfer function models. One 
needs to account for the \ ariation between 
the mathemstical model and the "real" 
\ystern i n  the control de\ipn. 

We & i l l  re\trict our attention to frequency 
domain de\criptions of uncertaint! for  the 
control desiyn model. This lead\ to the 
fexible \trticture being described b) a 
noininnl LTI \ysteni and frequency varying 
uncertainty model\ in  the control problem 
fomitila1ion. These models allow LIS to 
account for the variation i n  experimental data 
at \pecilic frequent) points. For example. a 
frcquencq re\pon\e experiment i \  performed 
to establi\h upper and louer bounds on both 
the magnitude and phaw of the real jystem 
a\  a function of frequenc). Variations in the 
data are then approximated by dish shaped 
regions i n  the complex plane. M hich lead to 
either a multiplicative o r  additive uncertainty 
description of the bounds (71. The nominal 
plant model. together with the uncertainty 
models. is u\ed to define a set of planti, 
within uhich the "real" physical sj'stem is 
aswined to lie. u-anal? \ i \  techniques measure 
the stability and perfomunce of control laws 
for these prescribed models. n,hilc the U- 

synthesis methodology i i  employed to 
optimize the control h \ % s  to meet the 
stability and performance requirementz. 

The plant transfer function can be de- 
scribed by f ( s )  + A f ( s ) .  Nhere P(s) is the 
nominal plant model and U ( s )  is an un- 
known perturbation. Every transfer function 
is taken to be a function of s, therefore the 
( s )  notation will be dropped henceforth. 

Consider a SISO system with AP bounded 
acrosh frequency by a weighting function W<, 
which is a real-rational, stable minimum 
phase transfer function and 6. a norm 
bounded complex number 6/21 such that 

o represents individual frequency points. The 
set of plants described by this uncertainty is 
given by 

P(jwj = P ( j w )  + W,,(jw)6 IAI 5 I .  ( 2 )  

Equation ( 2 )  is referred to as an additive 
uncertainty description and ( 1  j defines the 
bound on the allowable additive uncertainty. 
6 is an unknown complex constant at each 
frequenc). This assumption is implicit in the 
fomiulation of the robust control analysis and 
synthesis methods. For a multivariable 
\ystem. the magnitude bounded scalar 
uncertainty 6 can be replaced with A. a 
norm bounded complex matrix such that 
B(A)Crl, The magnitude bounds in ( 1  ) would 
be replaced by nomi bounds on the maxi- 
in tun <i ngul ar value. 

Additive uncertainty is used to account for 
unmodeled dynamics in flexible structures. 
The\e unmodeled dynamics are a result of 
IOM or high frequency modes outside the 
desired control bandwidth. They are not 
modeled because the mode representations 
are inaccurate. the frequencies and mode 
shapes asociated with them vary. or because 
low order design models are desired. 
Uninodeled modes need to be accounted for 
in the problem formulation. so as not to 
destabilize them with the control design. The 
\ire of the additive uncertainty weight i \  
selected to encompass the transfer function 
response of these modes at each frequency. 

Another approach to modeling errors 
iniuives multiplicative uncertainty descrip- 
tions. Consider a SISO transfer function 
initial11 . Defining W,,(joi = ~ ' ~ , ( j o J / f  f p / .  
\ve can describe a set of plants by 

P ( j w )  = P(jw)(l + W J j U ) )  

and 
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Equation (3) is referred to as a multiplicative 
uncertainty description, and states a bound on 
the allowed multiplicative uncertainty. 

Multiplicative uncertainty descriptions are 
used to account for relative variations in 
input or output signals and, in multivariable 
systems, to account for directionality of 
signals. Additive and multiplicative uncer- 
tainty descriptions are formulated for control 
design based on engineering judgement, since 
no systematic approach, in conjunction with 
system identification, is available for their 
selection. Other techniques to determine these 
uncertainty descriptions have been proposed, 
but are not addressed in this article [8,9]. 

Chebyshev Polynomial Curve Fitting 

Chebyshev polynomials have previously 
been used in F I T  signal analyzers to curve 
fit measured transfer function data of single- 
input/single-output (SISO) systems [ IO]. This 
technique was extended to single-input/mult- 
iple-output (SIMO) systems and has been 
applied successfully to experimental data [3].  
The same technique is employed to develop 
SIMO transfer function models for the 
Caltech flexible structure experiment. 

The transfer function equation, which is 
nonlinear in the coefficients, is transformed 
into a linear equation by multiplying through 
by the denominator ,y(s)d(s) - n(s)  = 0, 
where s is defined as jw :  

The transfer function data is a set of 
complex numbers g(jw) at various frequency 
points w. Separating this equation into real 
and imaginary parts, two real equations are 
produced for each value of w. Written in 
matrix form, they form a linear least squares 
problem, inf ,,,=, Ndn 11. The real vector -1- 

contains the polynomial coefficients of n ( s )  
and d(s). 

A problem with this approach i s  that the 
matrix d is ill-conditioned. This is due to the 
ratio n(s)ld(s) being very sensitive to small 
changes in their coefficients. To alleviate this 
problem, the numerator and denominator are 
written as sums of Chebyshev polynomials 
and, therefore, indirectly as sums of powers 
of s. 

At each frequency point w, the equation 
g(jw)d(jw) - n(jw) contributes two rows to 
the matrix Â . A weighting can be associated 

with each individual frequency point, 
allowing the accuracy of the fit to be traded 
off for different frequency ranges. Each row 
is normalized by [g ( jo )d( jw) ( ,  using an 
estimated d(jw) to achieve a constant relative 
accuracy (in log magnitude and phase) at 
each frequency. 

The algorithm used to fit the data with 
Chebyshev polynomials is as follows [3] : 

1) Read in data points g(jw) and associat- 

2) Construct A = Z A .  
3 )  Solve for x to minimize .\-‘Ax. 
4) Use .v to build d(jw), n(jw). 
5 )  Using /g ( jw)d( jw) /  ’ as a weight, 

6) When the process converges, compute 

ed weights. 

cycle back to Step 2. 

the state space realization of n(s)/d(s).  

For the SIMO case, the denominator has 
the same dynamics as in the SISO case. 
Therefore, by extending the number of 
numerator coefficients n ( s )  one can address 
the SIMO case in a fashion similar to the 
SISO case. 

One problem with the Chebyshev curve 
fitting method is that it does not guarantee 
that a stable transfer function will be fit to 
the raw data. However, given that the 
frequency domain data reflects a stable 
system. and the polynomial approximation is 
a good fit to the data, the stability properties 
of the two are usually comparable. This was 
not an issue in this instance. Once the single- 
input/multi-output transfer functions are fit 
with Chebyshev polynomials, the models are 
converted to a state space description. 

MIMO Transfer Function Model 

A multivariable transfer function model is 
constructed from the individual SIMO 
models. This model has the same number of 
states as the sum of each SIMO model, 
leading to an excess number of states in the 
MIMO model which are not physically 
motivated. A singular value decomposition 
(SVD) model reduction technique, based on 
an a priori model of the system, is developed 
to produce a MIMO transfer function model 
of the same order as the finite element 
model. The Chebyshev polynomial curve 
fitting and SVD-based model reduction 
techniques are used in sequence to form a 
system identification method for flexible 
structures. 

Based on the finite element model and 
physical data, the experimental structure has 
only six natural frequencies and mode shapes 
between 0.5 and 5.5 Hz. This is the frequen- 

cy range in which an accurate multivariable 
model of the structure is required for control 
design. Therefore, the 3-input/3-output 
multivariable transfer function model of the 
structure should have six modes associated 
with it. The SIMO Chebyshev curve fitting 
technique is used to develop transfer function 
models from each actuator to the three 
accelerometer sensors. These models 
contribute four modes to the total system 
model for each input. Although all six modes 
are excited by each actuator, only four modes 
appear distinctly in the experimental data. 
After fitting the individual SIMO transfer 
functions. twelve modes comprise the 3- 
input/3-output transfer function model. One 
would like to take advantage of the physical 
knowledge of the problem to reduce the 
twelve-mode model to a six-mode model. 

Ad Hoc Model Reduction Technique 

This model reduction technique requires an 
a priori knowledge of the flexible structure 
experiment. Modes in the SIMO models are 
grouped together based on their natural 
frequencies and the theoretical model. Four 
groups of modes are defined in the frequency 
range of interest. These groups include the 
first bending modes, first torsional mode, 
second bending modes and the second torsio- 
nal mode. SVD is used to reduce the modes 
present in the Chebyshev MIMO model, to 
the number of physically motivated modes. 

The experimental structure has two first 
bending and second bending modes present 
in the frequency range of interest. The two 
modes associated with the first bending mode 
have approximately the same natural 
frequency, as do the second bending modes. 
The bending modes have similar natural 
frequencies, but their mode shapes are 
perpendicular to one another. In the in- 
dividual transfer functions, it is hard to 
differentiate between the individual bending 
modes with similar natural frequencies. 
Hence in fitting the Chebyshev polynomial 
models to the experimental data, the first and 
second bending modes are treated as having 
only one mode each. Each SIMO model 
consists of one first bending mode, a first 
torsional mode, a second bending mode and 
a second torsional mode. 

Combining the SIMO Chebyshev polyno- 
mial transfer function models for actuators 1 
and 2, a 2-input/3-output eight-mode model 
is formed. Because there are two first and 
second bending modes, the coefficients 
associated with both the first and second 
bending modes remain in the model. This 
model contains two modes that are not 
physically motivated. It i s  found that each 
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torsional mode in the eight-mode model has 
two nearly identical natural frequencies 
associated with it. accounting for the two 
extra modes. The extra modes are due to the 
torsional response showing up predominantly 
in both sets of transfer functions from 
actuators 1 and 2 to the three sensors. From 
the physics of the problem, there is only one 
mode associated with each torsional natural 
frequency. A common. one-mode model for 
each torsional mode must be unraveled from 
the two SIMO transfer function models. To 
see how this might be done. a modal 
description of the experimental structure is 
constructed. 

The voice coil actuators input a force to 
the structure, and accelerations are measured. 
Assuming modal damping, a SISO transfer 
function model relating force input to 
acceleration output can be developed for 
individual modes. For the ith mode. i t  has the 
form: 

h,c,s' 
( 5 )  

s 2  + 23;w,s + U;'  

Rewriting the transfer function in strictly pro- 
per fonn yields 

The coefficients h , c q .  <, and o, are deter- 
mined from the Chebyshev polynomial 
models. Notice that only the combined \calar 
h , ~ , ,  can be determined uniquely. Unfortu- 
nately, this does not allow for the identifica- 
tion of the individual modal coefficients 17, 

and (', associated with each mode. However. 
the identified coefficients are n,ithin a rcalur 
transformation of the modal coefficients. 

The transfer functions, written in state 
space form, are described by 

(7) 

The D term derived from curve fitting is 
often inaccurate, hence disregarded since it 
is outside the frequency range in which the 
data is fit. 

One way to determine each component 
from the curve fitting data is to replace s by 
,io. and evaluate the strictly proper transfer 
function associated with each individual 
mode at w = 0. Consider an individual mode 
of an identified SISO transfer function G(,s) 
whose state space representation is of the 
form 

Evaluating this equation at .\ = 0. with the 
il, component disregarded and -A scaled by 
- 1 .  leads to 

The individual model components h,c , can be 
determined for each inode with this method. 
The same idea can be applied to multiple 
input and output pairs with a single mode. 
Instead of a scalar. ;I full matrix would be 
determined. 

A priori it i \  known that only one or two 
modes are prejent in the data at each modal 
natural frequency. In the case of the experi- 
mental truss Structure. i t  i \  knoMn that there 
are two first bending modes whose natural 
frequencie\ are close. one first torsional. two 
second bending mode\ with close natural 
frequencies. and one second torsional mode. 
Using this information. a SVD of the matrix 
is performed and the dominant inode is kept 
for the torsional case. M hile two lire kept for 
the bending cases. For one mode. the 
maxiinurn singular value and i t s  auociated 
right and left eigenvectors determine the h, 
and c, coefficients. 

The singular value decoiiiposition for 
an i i  x 171 matrix A [ I  I I. is given by the 
following. where C' and I '  are unitary 
matrices with column vectors denoted by CJ 
= ( u , .  r12 ..... U,,/  and I = (i,,, I '  ...... i',,). and Z 
contains a diagonal nonnegative definite 
matrix of singular values arranged in 
descending order: 

z 
A = UCV" = a , ( A ) u , z ~ ~  ( I O )  

The C matrix. corresponding to the output 
direction of the mode. is constructed from the 
maximum singular value and the unitary b' 
matrix. For a single mode. the C matrix i \  
given by C = olril. where C is a vector of 
the length of the number of outputs. The B 
matrix. constructed from the 1' matrix. 15 

given by B' = l ' , .  which is the right singular 
vector associated with the maximum singular 
value. The matrix B'C has the corresponding 
/ I , ( , )  matrix elements asociated with input i 
and output j .  For multiple modes. the B and 
C vectors would be matrices of size (rirrrnher 
of' niotlils x rrrtniher of iqiru.s) and (rnrniher. 
o f '  orrrprc r s  x uitnihcr of nioc/c,s I. re spec t i vel y . 

, = I  

These matrices could be derived in a similar 
fashion. 

This approach is tired to transform the 3- 
inputi3-output twelve-mode model developed 
from Chebyshev polynomials into a 3-in- 
put/_i-output six-mode model which agrees 
with the physical properties of the structure 
in the frequency range of' interest. The three 
SlMO transfer function models have three 
modes describing the first bending modes. 
three modes for the first torsional mode, 
three modes dewribing the second bending 
modes. and three modes for the second 
torsional mode. Applying the SVD-based 
reduction method to these modal groups led 
to the development of a six-mode MIMO 
transfer function model of the experimental 
flexible \tructure with two first bending 
modes. a first torsional mode. two second 
bending modes and a second torsional mode. 

Presented in Figs. 5 and 6 is a comparison 
among the Bode plots of the transfer 
functions from a )  the experimental data, b) 
the SlMO Chebyshev polynomial model 
method. and c )  the six-mode MIMO method 
derived using the techniques described above. 
The frequency range of interest for fitting of 
the Cheby\hev polynomial model is between 
0.5 and 5.5 Hr (3.14 and 35 radis). 

The method of model reduction based on 
balancins i \  a lw applied to the twelve-mode 
MIMO model constructed from the three 
Chebyshev SlMO models. The objective is 
the m n e  as before. to obtain ;I six-mode 
inodel from the Chebyshev MIMO twelve- 
rnode model. This method requires no 
physical knowledge of the system it is trying 
to approximate. 

The balanced model reduction technique 
computes an nith order reduced model G,,, of 
a possibly nonminimal iith order system G 
such that certain condition5 hold: 

In this notation, o(i) are the square-roots 
of the eigenvalues of the controllability and 
observability grammians. These are also the 
Hankel singular valuer of G(.si [12.13,14]. 

A six-mode MIMO model is developed 
using this technique. The reduced order 
transfer function model matches the original 
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Fig. 6:  Transfer function A3S3: E.rperiment and SIMO,  M I M O ,  balanced models 

twleve-mode MIMO quite well. The corre- 
sponding natural frequencies and damping 
values also closely match those in the 
Chebyshev model. The corresponding Bode Uncertainty models are developed to account 
plots are shown in Figs. 5 and 6, and are for variation between experimental data and 
compared therein to those from the Cheby- the MIMO model for control design. An 
shev models and the experimental data. additive uncertainty weight is used to 

Selection of Uncertainty Weights 

describe the low frequency variation (below 
0.5 Hz) and the high frequency modes (above 
5.5 Hz) not included in the design model. 
The additive uncertainty transfer function 
weight, shown in Fig. 4, is given by 

(s + 6)(s + 12)(s + 24) - - 
8'o (s + 0.6)(s + 400)(s + 400)' 

This weighting requires use of the p- 
control design methodology to gain stabilize 
the high frequency modes not included in the 
design model, and to limit the controller gain 
at low frequency. Input and output multiplic- 
ative uncertainties are included, to model 
variations between the experimental data and 
the MIMO model in the frequency range of 
0.5 to 5.5 Hz. There is little variation in the 
uncertainty in this range. Therefore, both 
multiplicative uncertainties are taken to be 
scalars [4,5]. The input and uncertainty levels 
are selected to be 4%. 

Experimental Data and Models 

Three different multivariable models are 
developed for the experimental data in the 
frequency range of interest. The first model, 
SIMO, is the Chebyshev SIMO transfer 
function model for each actuator input. A 
twelve-mode MIMO model is developed by 
combining the three Chebyshev SIMO 
models. The second model, MIMO, is the 
reduced, six-mode MIMO transfer function 
model that was formed using the ad hoc 
model reduction technique. The third model, 
"Balanced", is a six-mode MIMO model 
formed by applying balanced model reduct- 
ion to the Chebyshev SIMO transfer function 
models. 

As one would expect, the Chebyshev 
SIMO models provide the best fit to the 
experimental data. This is because the other 
two models only approximate the Chebyshev 
model. The poorest fit occurs in the Bode 
plot representing the transfer function 
between actuator 1 and sensor 3. Since 
actuator I excites the direction perpendicular 
to sensor 3, the magnitude of the transfer 
function is an order of magnitude below that 
of the other actuator 1 transfer functions. The 
curve fitting technique applies a maximum 
magnitude error criteria to fit the data, which 
accounts for this discrepancy. 

The ad hoc technique achieves a very 
good fit to all the experimental Bode plot 
data, except from actuator 1 to sensor 3. The 
magnitude and phase characteristics of all the 

June 1990 57 



other Bode plots are well matched. The 
balanced model reduction also fits the data 
well. with the notable exception of'the Bode 
plots associated with the transfer functions 
A2S2 and A I S .  The balanced model 
transfer function from actuator 2 to sensor 2 
has problems with the interlacing of the poles 
and zeros associated with the second bending 
modes. Overall, the balanced model reduction 
method performed quite well. considering it  
required no knowledge of the dynamic 
characteristics of the system. The lid /KJC 

technique produced the best correspondence 
between the six-mode model and the experi- 
mental data. 

Con cl usions 

The finite element model of the structure 
provided a physical understanding of the 
dynamic characteristics of the first six modes. 
Unfortunately, this model had considerable 
error in the determination of the natural 
frequencies and mode shapes of the structure. 
To obtain a more accurate model of the 
experimental data. Chebyshev polynomials 
were employed to curve fit the data. This 
approach proved successful in deriving SIMO 
transfer function models for each actuator 
input, which accurately fit the data in the 
frequency range of 0.5 to S.5  Hz. To form a 
MIMO model, the three SIMO models were 
combined. A shortcoming of this combination 
was that additional modes were present in the 
resulting model. that were not physically 
motivated from the finite element analysis. 
The resulting Chebyshev MIMO model 
contained 12 modes, whereas the finite 
element model had only six. 

The nd hoc. model reduction technique 
provided the best fit to the experimental data 
for a six-mode model consistent with the 
finite element analysis. The balanced model 
reduction also provided a consistent model 
which fit the data. An U ,17rYori knowledge of 
the physical system aids in providing an 
accurate transfer function model correspond- 
ing to the physical data. 

The problem with all three approaches is 
that they don't provide models which are 
readily useful for control design. A series of 
uti hoc, assumptions and fixes are required to 
fit them into the robust control framework. 
The uncertainty descriptions developed to 
account for model error were determined 
from engineering judgment, rather than by a 
systematic approach. It is therefore difficult 
to verify their accuracy. As discussed in the 
introduction. there are a number of issues 
that need to be resolved in the area of 
identification for control design. Although the 

developed models proved \,er\. useful fcir our 
mearch. we do have ;I great interest in 
approaching sjstein icientification in a 
manner more consistent with the robust 
control framework. 
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