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Q. In my course on linear control, we 
learned that asymptotic convergence 
is global, but in nonlinear control we 
learned about the “domain of attrac-
tion.” The instructor mentioned that 
it can be hard to figure out what the 
region of attraction (ROA) is, but that 
there is something called “SOS” that 
can be used. I know that SOS stands 
for sum of squares, but other than 
that I don’t know anything about it. Is 
there anyone at IEEE Control Systems 
Magazine who can explain SOS? 

Andy: I’m happy to try to help, with 

the assistance of my colleagues Ufuk 

Topcu, Pete Seiler, and Gary Balas. It’s 

important to note that we’re users of 

SOS methods, not experts, but I think 

we can answer your question or at least 

point you in the right direction. Your 

question leads with “what is SOS?” so 

let’s begin there. Once that’s out of the 

way, just a few steps lead to optimiza-

tions whose feasible solutions yield cer-

tified, quantitative inner estimates of the 

region of  attraction. 

In its basic form, SOS applies to 

polynomials in several real variables. 

A polynomial is a finite linear combi-

nation of monomials. For example, the 

polynomial 

q(x1, x2) J x1
212x1

412x1
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2x2
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 (1)

is a linear combination of five mo-

nomials in two variables. Quadratic 

polynomials, such as xTQx, where Q is 

a symmetric matrix, appear frequently 

in control theory. This form can be 

generalized to polynomials of higher 

degree, namely, if p (x )  is a polyno-

mial of degree less than or equal to 

2d, then a Gram matrix representation 

is p (x ) 5 zT (x )Qz (x ) , where z (x )  is 

a vector of monomials of degree less 

than or equal to d, and Q is a sym-

metric matrix. For example, the poly-

nomial q(x1, x2 )  can be represented as 

zT (x )Qz (x ) , where 

 z (x ) J ≥  

x1

x1
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The Gram matrix Q is not unique due 

to the dependencies among the mo-

nomials in z. In this example, x1
2x2

2 can 

be expressed as either (x1x2 ) (x1x2 )  or 

(x1
2 ) (x2

2 ) . Therefore, if 

 N J ≥ 0 0 0 0

0 0 0 20.5

0 0 1 0

0 20.5 0 0

¥
then zT (x ) Nz (x ) 5 0 for all x,  and 

thus Q1lN also gives a Gram matrix 

representation of q for every l [ R.

A polynomial p is an SOS if there 

exist polynomials g1, c, gN such 

that p5a
N
i51

gi
2. The set of SOS poly-

nomials in the vector variable x is 

denoted by S 3x 4. One trivial, but im-

portant, fact is that every SOS poly-

nomial is nonnegative everywhere.

The polynomial q(x1, x2 ) given by (1) 

is an SOS since it can be expressed as 

 q(x1, x2 ) 5 x1
21
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which is easy to verify by multiplying it 

out, but it is not so obvious how it was 

obtained. The question, then, is how 

to automate the search for such a de-

composition. To answer this question, 

we use the following key result, which 

relates SOS polynomials to positive-

semidefinite matrices. A polynomial 

p of degree 2d, that is, a polynomial 

with monomials up to degree 2d, is an 

SOS if and only if there exists Q f 0 

such that p (x ) 5 zT (x )Qz (x )  for all x,  

where z (x )  is the vector of all monomi-

als of degree up to d. Here, Q f 0 and 

Q s 0 mean that Q is positive semidefi-

nite and positive definite, respectively. 

This result, which is proved in [1]–[3], 

follows from the following equivalent 

statements for a polynomial p of degree 

2d and the vector z of all monomials of 

degree less than or equal to d: 

p1)  is SOS. 

There exist row vectors 2) L1, c,

LN [ R13 lz such that p(x) �a
N

i51
(Liz (x)) 2 for all x [ Rn. 

There exists a matrix 3) L [ RN3 lz 

such that p (x ) 5 zT (x )LTLz (x )  for 

all x [ Rn. 

There exists a positive-semidef-4) 

inite matrix Q such that p (x ) 5

zT (x )Qz (x )  for all x [ Rn. 

We’ve already seen that the Gram 

matrix representation for a poly-

nomial p might not be unique. We 
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now parameterize all Gram matrix 

 representations of a given polynomial 

p of degree 2d. To this end, define a 

linear operator L that maps each sym-

metric matrix Q to the polynomial 

zT (x )Qz (x ) ,  where z (x )  is a vector 

of monomials of degree up to d. Each 

Gram matrix representation for p is a 

solution of L (Q ) 5 p. Let Q0 be a par-

ticular Gram matrix representation, 

that is, L (Q0 ) 5 p. Let the matrices 

N1, c, NM [ Rn3n,  where n is the 

length of z (x ) ,  span the null space of 

L,  that is, L maps each Ni to the zero 

polynomial and every matrix in the 

null space of L is a linear combination 

of N1, c, NM. Then, for every value 

of li [ R,  Q5Q01 a
M

i51
liNi ,  is a 

solution to L (Q ) 5 p. Consequently, 

p is an SOS if and only if there exist 

l1, c, lM such that 

 Q01 a
M

i51

li  Ni f 0, (2)

which is a linear matrix inequality 

(LMI) feasibility problem. A matrix 

representation of L can be computed 

since both the domain and range spac-

es of L are finite dimensional. Solv-

ing L (Q ) 5 p for a particular solution 

and L (Q ) 5 0 for all homogenous 

solutions, that is, for N1, c, NM,  re-

duces to standard matrix operations. 

Software tools, such as those given 

in [4]–[6], automate these procedures 

by determining whether a given poly-

nomial is SOS and, if so, producing a 

polynomial SOS decomposition. 

Thus far, SOS refers to a compu-

tationally viable sufficient condition 

for a polynomial in several real vari-

ables to be globally nonnegative by 

expressing the polynomial as a sum of 

squares. But how is SOS used in sta-

bility analysis? As motivation, recall 

that global stability of an equilibrium 

point can be ensured with a Lyapunov 

function, which is globally nonnega-

tive and radially unbounded, along 

with a linear transformation of that 

function, namely, the derivative along 

the ordinary differential equation 

flow, which is globally nonpositive. 

Since SOS decompositions guarantee 

global nonnegativity, they can be used 

to verify these conditions. 

To discuss ROA questions, we con-

sider the autonomous nonlinear dy-

namical system 

 x
#
( t ) 5 f(x (t)) ,  (3)

where x ( t ) [ Rn is the state vec-

tor and the locally Lipschitz function 

f : Rn S  Rn determines the system 

dynamics. Assume that f(0) 5 0, that 

is, the origin is an equilibrium point of 

(3). Let f (j, t )  denote the solution to 

(3) at time t with the initial condition 

f (j, 0) 5j. The ROA for the equilib-

rium point x5 0 of the system (3) is 5j [ Rn : limtS` f (j, t) 5 06. A set M 

is called invariant under the flow of (3) if 

f (j, t ) [  M for all t $ 0 and j [M. 

As an example, consider the time-

reversed version of the Van der Pol 

dynamics 

 x
#
152x2,  (4)

 x
#
25 x11 (x1

22 1)x2. (5)

This system has the unique equilibri-

um x5 0,  and both eigenvalues of the 

linearization have negative real parts. 

Therefore, x5 0 is a locally asymptoti-

cally stable equilibrium point. However, 

x5 0 is not globally asymptotically 

stable. The phase plane plot in Figure 1 

shows convergent and divergent 

trajectories of this system. The  unstable 

limit cycle forms the boundary between 

the convergent and divergent trajecto-

ries. The region of attraction for this sys-

tem consists of all points in the interior 

of the unstable limit cycle. 

Computing the exact ROA or even 

an estimate of the ROA is, in general, 

a difficult task. For systems with two 

or three states, the ROA can be visu-

alized by simulating the system from 

many initial conditions and plotting 

the trajectories in a phase plane plot. 

However, an analytical approach is 

desirable for higher-dimensional sys-

tems. The following slight modifica-

tion of a result in [7] characterizes 

some invariant subsets of the ROA. 

LEMMA 1
Let g . 0 and assume that there exists 

a continuously differentiable function 

V: Rn S R such that 

 VV,g J 5x[Rn : V (x )# g6 is bounded,

 (6)

V (0)50, V (x).0 for all nonzero x[Rn,

 (7)

 VV,g\506 ( 5 x[Rn : =V (x) f(x), 06.
 (8)

Then, for all j [ VV,g, the solution 

f (j, # )  of (3) exists on 30, ` ) ,  satis-

fies f (j, t ) [ VV,g for all t $ 0, and 

limtS` f (j, t ) 5 0. 

Lemma 1 shows that VV,g is an in-

variant subset of the ROA for the equi-

librium x = 0. Given a positive-definite 

function V, condition (8) must be veri-

fied. Note that both sets in (8) are de-

fined in terms of inequalities, and 

generalizations of the S-procedure [8] 

(see “Generalized S-Procedure”) can 

be used to verify containment. For ex-

ample, if l : Rn S R is positive definite, 

s : Rn S R is positive semidefinite, and 

 2( l(x) 1=V (x)  f(x)) 1

 s (x) (V (x)2g )  $ 0  for all  x,  (9)

then (8) holds. To prove this statement, 

let x be nonzero and satisfy V (x ) # g. 

Since s (x ) $ 0,  it follows from (9) that 

=V(x) f(x)#2l(x) , 0. This sufficient 

condition leads to the  following 
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FIGURE 1 Phase plane for the time-

reversed Van der Pol dynamics (4), (5). 

The unstable limit cycle (black, thick 

curve) forms the boundary between the 

convergent (red, solid curves) and diver-

gent trajectories (blue, dashed curves). 

The region of attraction for this system 

consists of all points in the interior of the 

unstable limit cycle. 
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 optimization, which can enlarge the 

value of g such that VV, g is an invari-

ant subset of the ROA by the choice of 

positive-semidefinite function s 

 max
g, s

     g  (10)

subject to 

s (x ) $ 0     for all x,

 (11)

 2( l(x ) 1= V (x) f(x))

  1 s (x) (V (x)2g) $ 0    for all x, 

 (12)

where V, l are given, and the scalar g 

and function s are decision variables. To 

solve (10)–(12), we must find a positive-

semidefinite function s so that a specific 

affine map, namely, the left-hand side of 

the inequality in (12), of s is also globally 

nonnegative. SOS decompositions and 

SOS programs play a key role in this 

computation. Toward that end, if the 

functions V, f, l,  and s are polynomi-

al, then the polynomial nonnegativity 

constraints can be enforced with more 

restrictive SOS constraints, and the op-

timization (10)–(12) can be recast as the 

following optimization problem:

 max     g
g[R, s[S

 (13)

subject to 

s (x ) [ S 3x 4,  (14)

 2( l(x ) 1=V (x ) f(x ))

  1 s (x ) (V (x) 2g ) [ S 3x 4, (15)

where S is a given finite-dimensional 

subspace of polynomials, for example, 

all quadratic or quartic polynomials. 

This optimization problem involves 

two SOS conditions and motivates 

the definition of the following SOS 
Program. 

Given c [ Rm and polynomials fj, k,  

for 1 # j # Ns and 0 # k # m, solve 

 max
a[Rm

    cTa

subject to 

 f1,0 (x ) 1a1 f1,1 (x )  1c

 1am f1,m(x ) [ S 3x 4, 
   (
 fNs,0

(x ) 1a1 fNs,1
(x ) 1c

 1am fNs,m
(x ) [ S 3x 4.

Each SOS constraint leads to an LMI 

feasibility constraint. Therefore, an 

SOS program is transformed to a linear 

semidefinite program (SDP), where a 

and the homogeneous terms in the 

Gram matrices, that is, l1,c, lM in 

(2), constitute the decision variables. 

Returning to the constraint (15), 

if basis functions are chosen to pa-

rameterize the search space for s,  

for example, all quadratic functions, 

then the optimization is nearly an 

SOS program. This program has SOS 

constraints and an objective func-

tion that is a linear function of the 

decision variables. However, the 

constraint (15) involves the term 

2gs (x )  and hence is bilinear in the 

decision variables. More specifically, 

(15) is quasi-convex [9], that is, for 

each fixed value of g,  (15) is convex 

in the remaining decision variables. 

Therefore, the optimization (13)–(15) 

can be solved using bisection on g,  

and a computational strategy for the 

ROA estimation is given by the fol-

lowing procedure: 

Let 1) A5 'f/'x 0 x50 be the lineariza-

tion of (3). If A is Hurwitz then, for 

each Q s 0, there exists P s 0 that 

satisfies the Lyapunov equation 

ATP1 PA52Q.

V (x ) J xTPx2)  satisfies the condition 

in (7) and the constraints in (6) and 

(8), respectively, for all and suffi-

ciently small values of g . 0.

With this 3) V, maximize g subject to 

condition (15).

For the Van der Pol example, the 

choice 

Q5I leads to P5 c  1.5 20.5

20.5 1
d . 

Optimization (13)–(15) is solved with 

l(x ) 5 1026xTx and s restricted to 

be quadratic. The largest inner esti-

mate of the ROA in this manner is 

VV, 2.35 5x [  Rn : V (x )# 2.36,  so that 

g5 2.3. Different choices of Q lead to 

different inner estimates, as shown in 

Figure 2. While these estimates are 

similar, it can be seen that each esti-

mate is better than the remaining es-

timates along some direction of the 

state space. This difference motivates 

the use of a “shape” function h to fur-

ther optimize the estimate by choice of 

V as well. 

The shape function h is a fixed pos-

itive-definite polynomial in x whose 

Generalized S-Procedure 

In robust control theory, we often encounter problems with constraints of the form 

 g0(x ) $ 0 (S1) 

for all x satisfying 

 g1(x ) $ 0, c, gm(x ) $ 0, (S2) 

where g0, g1, c, gm : R
n S R. Note that (S1) and (S2) can equivalently be written 

as the set-containment constraint 5x [ Rn  :  g1(x ) $ 0, c, gm(x ) $ 06 8 5 x [ Rn  :  g0(x ) $ 06.
A potentially conservative but useful algebraic sufficient condition for (S1)–(S2) is 

the existence of positive-semidefinite functions s1,c, sm :Rn S R such that 

 g0(x ) 2 a
m

i51

si(x )gi(x ) $ 0 for all x [ Rn . (S3)

To verify that (S3) implies the set containment condition in (S1)–(S2), take an ar-

bitrary point x  such that g1(x ) $ 0, c, gm(x ) $ 0. Then, gi(x )si(x ) $ 0 for all 

i5 1, c, m. Consequently, g0(x ) $ 0 is satisfied due to (S3), and the constraint 

in (S1) and (S2) holds. For the case in which g0, g1, c, gm are quadratic functions, 

the sufficient condition in (S3) is known as the S-procedure relaxation for (S1) and 

(S2), which can equivalently be written as a linear matrix inequality [8]. 
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sublevel set Vh,b is contained in the 

ROA. The goal of optimization is to 

maximize the value of b for which 

this containment can be certified us-

ing Lyapunov methods. The choice of 

h is problem dependent, and the sub-

level sets of h reflect the goals of the 

analyst, namely, easy-to-understand 

quantitative inner estimates of the 

ROA in high-dimensional problems. 

The choice of h can reflect dimension-

al scaling information as well as the 

importance of certain directions in 

the state space. 

Given h, one method for enlarg-

ing the ROA estimate is illustrated 

in  Figure 3, where V is adjusted to 

 enlarge b. The corresponding optimi-

zation problem can be written as 

 max
b.0, VPv    

b (16)

subject to (6)–(8) and 

 Vh,b # VV,g. (17)

Here, v denotes the set of candidate 

Lyapunov functions over which the 

maximum is defined, for example, 

polynomials in x of a fixed degree. 

A suboptimal value of b in (16)–(17) 

can be computed through the SOS 

opt imization 

 max
V[v, g, b, si[Si

  b (18)

subject to

 V (0) 5 0, si [ S 3x 4,b . 0, (19)

 V2l1[S 3x 4,  (20)

 23(b2h )s11 (V2g )4[S 3x 4,  (21)

 2(l21=Vf )1s2(V2g)[S3x 4. (22)

Here, l1 and l2 are fixed, positive-def-

inite polynomials, and the sets Si are 

given finite-dimensional subspaces 

of polynomials. The constraints (21) 

and (22) imply the set containments 

in (17) and (6), respectively, while (20) 

imposes the positive-definiteness of V 

and the boundedness of VV,g. 

Both V and the multipliers s1 and 

s2 are decision variables in (18)–(22), 

which is a critical difference between 

the optimization problems in (18)–(22) 

and (13)–(15), where V is fixed. Con-

sequently, the problem in (18)–(22) is 

bilinear in the decision variables due 

mainly to the product term s2V. Opti-

mization problems with bilinear SOS 

constraints as in (18)–(22) result in bi-

linear SDPs, that is, SDPs with bilinear 

matrix inequality constraints, and are 

much more theoretically and pragmati-

cally difficult to solve than those with 

only affine SOS constraints. Bilinear 

SDPs are nonconvex in general and are 

usually attacked by using local solvers. 

For example, PENBMI, a local solver 

for bilinear SDPs [10], is used to com-

pute invariant subsets of the ROA [11]. 

Alternatively, observe that if V is fixed 

in (18)–(22), the problem becomes af-

fine in the multipliers s1 and s2 and vice 

versa. This observation leads to the fol-

lowing coordinate-wise optimization 

approach: starting from feasible deci-

sion variables V, s1, s2, b, and g, the 

solution can be improved by solving 

(18)–(22) for the multipliers as an affine 

SDP, holding V fixed, then solving (18)–

(22) for V, holding the multipliers fixed, 

and repeating these steps until a stop-

ping criterion is satisfied. Initial feasible 

solutions can be constructed in multiple 

ways either including the linear analy-

sis as discussed above or by incorporat-

ing simulation data to  restrict the set of 

candidate Vs and sampling a convex 

outer bound on the set of Vs that are 

feasible for (18)–(22) [21]. 

To illustrate the V-s iteration for the 

time-reversed Van der Pol dynamics 

(4)–(5), we set h (x ) 5 xTx and initialize 

the search over polynomials of degree 6 

with a quadratic Lyapunov function ob-

tained from the linearized system with 

Q5 I. The resulting ROA estimate and 

maximal level set of h are shown in Fig-

ure 4. For this particular example, the 

ROA estimate from the iteration covers 

almost the entirety of the ROA. 
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{x : V (x ) = 1}
{x : h (x ) = 2.3236}

FIGURE 4 A region of attraction (ROA) es-

timate for the time-reversed Van der Pol 

 dynamics (4)–(5) using V -s iterations. 

The blue curve is the unstable limit cycle 

(boundary of the actual ROA), while the 

red and black curves show the boundaries 

of VV, 1 and Vh, b after 30 iterations, where 

the shape function h is h (x ) 5 xTx  and a 

degree-6 polynomial Lyapunov function is 

used. The degrees of the multipliers s1 and 

s2 in the optimization problem (18)–(22) 

are two and four, respectively.

∇V (x )f (x ) < 0
V (x ) ≤ γ

h (x ) ≤ β

0

FIGURE 3 Enlarging the region of attraction 

estimate. Given the shape function h, the op-

timization problem in (16) and (17) maximizes 

b such that the set-containment conditions 

Vh, b # VV, g ( 5x :=V(x ) f (x ), 06h506 hold.
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FIGURE 2 Various region of attraction 

(ROA) estimates for the time-reversed 

Van der Pol dynamics (4), (5) (red, black, 

and green curves) and the limit cycle (blue 

curve). The ROA estimates are com-

puted using quadratic Lyapunov functions 

V(x ) 5 xTPx,  where P s 0 satisfies the 

Lyapunov equation ATP1PA52Q with

Q 5 c1 0

0 1
d ( red ) ,     Q 5 c1 0

0 2
d (black ) ,  

Q5 c5 0

0 2
d (green ) .



22 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2010

In conclusion, we have described how 

the ROA can be estimated using SOS 

methods. SOS techniques can also be 

used to perform other nonlinear analy-

ses, including computation of  input/out-

put gains, estimation of reachable sets, 

and computation of robustness margins. 

A similar procedure is used to solve 

each of these problems: i) formulate the 

systems question in terms of set-contain-

ment conditions, ii) use the generalized 

S-procedure to convert set-containment 

conditions to global nonnegativity con-

straints, iii) relax global nonnegativity 

constraints to SOS constraints, and iv) 

solve the resulting bilinear SOS problem 

using coordinate-wise affine iterations 

or other heuristics. 

We emphasize two caveats that ap-

ply to SOS methods. First, the compu-

tational requirements grow rapidly in 

the number of variables and polynomi-

al degree, which roughly limits SOS-

based analysis to systems with at most 

eight to ten states, one to two inputs, 

and polynomial vector fields of degree 

3. Second, numerical issues can arise 

in solving the SDPs that result from 

SOS programs. For example, it is pos-

sible to inadvertently formulate SOS 

programs where one SOS constraint 

forces a decision variable c to satisfy 

c $ 0 and another constraint forces 

the same decision variable to satisfy 

c # 0. See the appendix of [12] for an 

example of how such constraints can 

arise. The implicit constraint c5 0 can 

cause SDP solvers to have difficulty 

detecting feasibility of the constraints. 

These implicit constraints can be auto-

matically detected and removed lead-

ing to improvements in the numerical 

reliability of the SDP solvers [6]. Ad-

ditional research is needed to fully 

understand the numerical reliability 

of SOS methods. 

Finally, detailed notes, working soft -

ware, and demonstration examples can 

be found in [6]. This reference includes 

software for creating and manipu-

lating polynomials, a solver for SOS 

programs, and code to solve various 

nonlinear analysis problems including 

region of attraction estimation. A good 

starting point for additional details on 

ROA estimation using SOS methods is 

[13] and [14]. There is also a rich theory 

surrounding SOS methods that we have 

only briefly mentioned in this note. In 

particular, there are connections to al-

gebraic geometry and dual interpreta-

tions involving statistical moments. 

A few good starting references for a 

deeper understanding of the theory are 

[1]–[3], [15], [16], and [22]. 
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