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Abstract- This  paper reviews control system analysis and syn- 
thesis  techniques for  robust performance  with structured uncer- 
tainty in the  form of multiple unstructured  perturbations  and 
parameter variations. The  structured singular  value, p,  plays a 
central role. The case where parameter  variations  are known to 
be real is considered. 

1. Introduction 

This  paper will review some basic methods for analyzing the 
performance  and  robustness  properties of feedback systems. The 
particular  approach  taken  here is from [l]-[G] which builds on 
results by many other researchers. 

The general  framework to  be used in this  paper is illustrated in 
the  diagram in Figure 1. Any linear  interconnection of inputs, 
outputs,  commands,  perturbations,  and a  controller  can be re- 
arranged  to  match  this  diagram. For the purpose of analysis 
the controller  may be thought of as just  another system  compo- 
nent  and  the  diagram reduces to  that in Figure 2. The analysis 
problem involves determining  whether  the  error e remains in a 
desired  set for  sets of inputs u and  perturbations A. The  inter- 
connection structure G can be partitioned so that  the  transfer 
function from u to e can  be expressed as the linear fractional 
transformation 

e = F,(G,A) u = [G22 + G21A(I - GllA)-l  Glz] u. 

In Section 2 only uncertainty in u will be considered so this will 
be referred to as nominal performance to  indicate  that A = 0. 
Nominal  performance will be seen to  be equivalent to a norm 
test on G22. The main  focus of this  paper will be on 1 1  /Io3. 
Section 3 considers stability in the presence of perturbations. 
This will be referred to as robust stability with  robust used here 
to  indicate  that  the  property of stability is maintained under 
perturbations. For simple unstructured  perturbations,  this also 
leads naturally  to a 1 1  0 I l m  norm  test,  but now on G11. The 
1 1  lloo norm  thus provides a single norm which handles botb 
nominal performance  and  robust  stability. Unfortunately, norm 
bounds  are  inadequate in dealing  with  more  realistic  models 
of plant uncertainty involving structure  and more complicated 
mathematical objects involving the  structured singular  value, p j  
are required. 

The  methods  outlined in Sections 2 and 3 allow for assessing 
either  nominal performance  or  robust  stability. Obviously, it 
would be desirable to  treat performance  with both noise and 
perturbations  occurring simultaneously. Section 4 considers this 
problem and shows that  this also leads to  tests using p ,  but now 
involving the  entire  transfer function G. Thus p emerges as an 
essential  analysis tool in dealing with robwt performance as well 
as with structured  perturbations. 
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The  mathematical  properties  and  computation of p are briefly 
taken  up in Sections 5 for the case of complex perturbations  and 
6 for  the  real case. Here p is viewed as a natural generalization 
of both  spectral  radius  and  spectral norm, and  this viewpoint 
leads to useful characterizations of p in terms of these  more  fa- 
miliar quantities.  One consequence is that  estimates for p can 
be  obtained by scaling of ordinary  singular values. The impli- 
cations of this  approach for synthesis  are also briefly considered 
in Section 7. 
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2. Nominal Performance 

This section  considers  performance in terms of bounds on e in 
the presence of uncertain  bounded  inputs u. Bounds  for both 
u and e are expressed in terms of signal power or energy. The 
terms power and energy are used here in a generalized sense to 
indicate  that integrals of the  square of the signals are involved. 
Suppose that u is  a  function of time such that on any finite 
interval it is square integrable. Then we may obtain  bounds on 
u in terms of: 



( I )  Power: BP ={u 1 lim IT !Iu(t)llz dt < I}  
T-so 2T -T 

The prefix B denotes  the unit ball. The  bounds  are scaled to 
1 since  any other scaling can simply be absorbed  into  the in- 
terconnection  structure G. Likewise, any weighting or coloring 
filter can be absorbed  into G so that only unweighted signals 
need be considered.  Note that in practice, the use of weightinga 
on both u and e are essential to reflect the varying spatial  and 
frequency content of both  the  input signals and  the performance 
specifications. 

Any linear interconnection of inputs,  outputs,  transfer  functions, 
parameter  variations,  and  perturbations can be rearranged to 
fit the  diagram in figure 2, where T(A) < 1 but A  is block- 
diagonal. This is an obvious consequence of the  fact  that com- 
position of linear  fractional  transformations  are linear fractional, 
and it  holds  for perturbations  to  transfer  functions as well as ele- 
ments of state-space realizations.  Reducing to  the uniform norm 
bound typically  requires the  absorption  into  the nominal inter- 
connection structure of scalings and weights. Then A will be a 
member of a  set like 

The  relationship between u and e is expressed by the following I 4 E R, A j  E C k j x k j }  

Performance  Theorem  (Power/Power): or its  bounded  subset: 

(3.1) 

The  same  theorem holds for u and e in BLz. This theorem is 
a trivial  restatement of the induced norm  but focuses attention 
on the use of 11 0 as a test for  performance. 

3. Robust  Stability 

In this  section, we will consider plant  perturbations, a type of 
uncertainty entirely different from  uncertain  input signals. Since 
plant  perturbations  can destabilize  a  nominally stable  system, 
the first issue to  be addressed is robust stability. In what fol- 
lows, it  makes no difference whether A is a constant complex , 
rational, or real-rational  matrix so for  simplicity  it will be as- 
sumed  constant complex. Stability will be  taken  to  mean  that 
the  perturbed  system  has no closed rhp poles. Under  these as- 
sumptions, we have the following simple and well-known theo- 
rem([12],[13j): 

Theorem RSU (Robust  Stability,  Unstructured): 
Stable for all A ,a(A) < 1 
iff 1lG1111s 5 1 

The  term  unstructured refers to  the fact that A is assumed to 
be  bounded  but otherwise  unknown.  Typically weights are used 
when  modeling plant  uncertainty  to reflect the frequency and 
spatial  variation of the  perturbations.  These weights can always 
be  absorbed  into  the nominal  interconnection structure so in 
that sense  it is no loss of generality to assume  a  uniform norm 
bound on A,  It is in the  assumption  that no structural infor- 
mation is available for A that  limits  the usefulness of Theorem 
RSU. In practical problems,  it is generally the case that  the 
uncertainty consists of parameter  variations  and mdtiple norm- 
bounded  perturbations. Using only  a single norm-bounded  per- 
turbation for  analysis is rarely adequate.  Parameter variations 
typically  arise  because of uncertain coefficients in differential 
equation models of physical systems  and involve real  scalars. 
Norm-bounded perturbations often  arise when trying to  cap- 
ture  the effect of unmodeled dynamics  and  are themselves dy- 
namic systems.  This would typically lead to  norm-bounded reai- 
rational  perturbations,  but for analysis, it is sufficient to  instead 
consider constant complex matrix  perturbations. 

BA = {A E A I a (A)  < l} . (3.2) 

It is possible to define more  general sets involving, for example, 
repeated  perturbations,  and  these will be considered in Section 
5. Nonsquare perturbations can easily be handled in what fol- 
lows by augmenting  the interconnection structure with rows or 
columns of zeros. 

Given A E BA Theorem RSU could be used to  obtain sufficient 
conditions for robust  stability,  but  the  test could be  arbitrarily 
conservative. That is, it is easy to  construct examples where 
llG1lllrn can be  made  arbitrarily large but no A E BA leads to 
instability. In order  to  obtain a precise generalization of Theo- 
rem RSU to  handle  structured  uncertainty, we need the  struc- 
tured singular  value, p [Z]. The positive  real-valued  function 
satisfies the  property 

d e t ( I - M A ) # O   f o r Y A E   A 1 v ( A ) < 7  
iff r p ( M )  5 I. (3.3) 

Note that p is a function of M that  depends on the  structure 
of the A’s in A. This  dependency is typically  not  represented 
explicitly. If p ( M )  # O,(i.e. 3A E A such that  det(1-MA) = 0 
then 

1 -- - min (a(A) I det(1- MA) = 0).  (3.4) 
P(M) AEA 

Unfortunately, (3.4 ) is not typically very useful in computing p 
since the implied optimization problem is cumbersome and  can 
have multiple local maxima which are not  global. Computation 
of p is a  complicated  problem and some results will be given 
in Sections 5 and 6. For now, assume p is the  function defined 
above. 

With these  definitions, the correct  generalization of Theorem 
RSU to  structured  uncertainty is 

Theorem RSS (Robust  Stability,  Structured) 
Stable for all A E BA 
iff IIGllII, 5 1 

where 

Note that l/Gllcl is not  actually a norm, but  the  notation is con- 
venient.  Note also that it depends not only on G but also the 
assumed structure of A. 



4. Robust  Performance 

The  methods  outlined in the previous two sections allow for 
analyzing either nominal  performance  or robust  stability. Ob- 
viously, it would be desirable to  treat performance  with both 
noise and  perturbations occuring  simultaneously [3].  The fol- 
lowing theorem addresses  exactly this problem. 

Theorem RP: 

F,(G,A)  stable  and IIF,(G, A)llm < 1 VA E BA 

iff IlGllp 5 1 

where p is taken w.r.t. the  structure 

= {d = diag (A,  An+l) I A E A}. 

This  theorem is the real payoff for  using p. It's made possible 
by the equivalence of performance and robust stability when 
using 1 1  0 Iloo. The block An+l  may be  thought of loosely as 
a  "performance block' used to  turn  the performance  condition 
into a robust  stability condition and finally into a test using p. 
Note that p is computed for the full G and is taken with  respect 
to  an augmented structure. 

Analysia Summary 
Performance , 

I 

Stability 

llG22llm I 1 ~ No C+ poles A = O  

I i Perturbation 
e E B P  ~ 

I 

*(A) < 1 

A E BA j llG11llp L 1 ~ IlGlILl L 1 

IlGllp I 1 IIGllllm 5 1 
~ 

~ ! 
6. p For Complex  Perturbations 

In the previous  sections,  it was shown that  robust  performance 
and  stability  with  structured  uncertainty reduces to  comput- 
ing p for constant  matrices  G(jw)  and  then  taking  sup over all 
w .  For this  to  be useful, we must have ways of computing p 
or bounds for it.  This section will begin by outlining  some of 
the  mathematical  properties of p for  complex perturbations  and 
viewing it as a natural generalization of the  spectral  radius p ,  
and  the  spectral  norm  (maximum singular  value) 8 . The  rest 
of this section will focus on using scalings to  characterize p in 
terms of p and 8.  

Suppose that A is  some subalgebra of matrices  satisfying 

(X1 lX  E C} c A c CJYxN. (5.11 

In this  paper we will be  interested in block diagonal A. Define 
the  spectrum, sp (M) ,  and inverse spectrum, i sp (M) ,  of a matrix 
M E  CNxh' with respect to the subalgebra A as 

s p ( M )  = {A E A I det(M - A) = 0) 

i sp (M)  = {A E A I det (1-   MA) = 0). (5.2) 

Since both  sets  depend on A i t  would be appropriate to sub- 
script  the symbols, but  to keep notation simple this will be 
avoided throughout.  The set s p ( M )  is a natural generalization 
of the usual  notion of spectrum  and is always nonempty. In this 
context, p can be viewed as a natural generalization of spectrai 
radius since it is easily verified that 

If p ( M )  # 0 (which  is equivalent to isp(M) $ 0 )  then 

(5.4) 

This  characterization emphasizes the view of p as a  generaliza- 
tion of 8 and is simply  a restatement of (3.4). Indeed, in the 
special  cases  where A is equal  to one of its possible extreme  sets 

in (5,1),  pis exactly either  the usual spectral  radius  or  maximum 
singular value: 

It is possible to use these two special cases to  obtain  bounds for 
p.  For any  set A it  easy to see that 

but  these  bounds  are not directly useful for computation as 
matrices may be found that make the differences between the 
bounds  and p as large as desired. 

It is possible to improve the  bounds in (5.6) by using simple 
properties of A. Suppose that U and D are  sets such that for 
any  A E A 

U E U  + a(UA) = b ( A )  
D E  D =+ D-'AD=A. (5.7) 

Then it is easy to see from  the definition of that 

so the  bounds in (5.6) can be improved to  

The key theorems  about p show when these  inequalities are ac- 
tually equalities. 

Let us first  consider the case where all the blocks are complex 
and none are  repeated.  Then we have the  sets 

A = { diag  (AI,  Az,..  . , An)  I A i  E CmJxmj} 

U =  (diag(U1,U2,... ,Un) l U j U i =  

D = (diag(d11,dzI ,..., d , r )  I di  E R+} (5.10) 
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It is easy to verify that (5.7) holds so that  the inequaiities in 
(5.9) apply. What is more important is that 

SUP P(MU) = P ( W  (5.11) 
U E U  

holds  for  all M and A and 

p ( ~ )  = a ( DMD-’)  (5.12) 

if n 5 3 ( three or fewer blocks ) or if M is  real [2]. There  are 
other  conditions  under which this  upper  bound is an  equality 
but  they  are more  cumbersome to  state  and generally of less in- 
terest. An example of strict inequality  for the  upper  bound  has 
been  found  for n = 4. Extensive computational  experimentation 
has yet to find a matrix  for which the  upper bound exceeds p 
(actually some lower bound for p )  by more than 15%, and  the 
upper  bound is nearly equal for  most  matrices. This seems to 
be  independent of matrix size and  number of blocks. This is en- 
couraging but  additional  theoretical work is needed to  guarantee 
the  quality of the  upper  bound in general, 

The case of repeated blocks is less well understood. To see what 
U and D arise when there  are  repeated blocks consider the simple 
case  where each block is a repeated  scalar 

A = diag (611,621,. . . , & I )  6 j  E C { I 1  
U = { diag ( ~ 1 1 ,  ~ 2 1 , .  . . Un1) I Uj  E C ,  Iujl 1) 

D = {diag ( D l ,   D z , . .  . , Dn) 1 Dj invertible] (5.13) 

It is possible to  restrict  the D E D to positive  definite Hermitian 
matrices ( D i  = 03 > 0) without loss of generality. As above, 
the inequalities in (5.9) hold and (5.11) also holds for all M and 
A. Unfortunately, it is not known under  what  conditions  the 
upper  bound is also an equality. The  computational experience 
with the case of repeated blocks is much more  limited than with 
nonrepeated blocks, but  the evidence so far suggests that  the 
upper  bound is also nearly  an  equality. The case of repeated 
nonscalar blocks is just  the obvious combination of the  the above 
two cases. 

The lower bounds in terms of p ( M U j  have the desirable property 
of always achieving p independent of the  number of blocks. Un- 
fortunately, p ( M U )  can have multiple local maxima which are 
not  global so direct  computation of (5.11) by gradient search 
may not find the  actual maximum. At this  time  there is no al- 
ternative scheme guaranteed to  find the global maximum  that 
has  reasonable  computational  properties. Fan and  Tits 1141 do 
have an  alternative scheme for a lower bound which does  not 
guarantee  that p will be found but  appears  to  be very fast and 
has many advantagea over using (5.11)~ 

The  upper bound in (5.9) is more easily found since the ex- 
pression @ (DMD-’)  has only global minima.  This is a  direct 
consequence of the fact that 5 ( e D M c - D )  is convex in D .  This 
fact was used in [2] to  argue  that  the  upper  bound  in (5.9) prob- 
ably offered a  reasonable alternative  to (5.11) for  computation 
of p.  The original proof of convexity was rather  cumbenome 
and  appeared  later in [15]. 

Computational experience to  date has indicated  that it is desir- 
able in practice to use both  upper  and lower bounds for p ,  since 
the existing bounds nicely complement  each other.  The  upper 
bound  is easily computed  but may not give p except in special 
cases. On the  other  hand, it appears  to be nearly equal  to p in 
all cases. The existing lower bounds (including both (5.11) and 
those in [14]) are, in principle,  equal to p in all cases but may 
fail because of local maxima. By having an  upper bound  it is 
much easier to recognize when a local maxima is not globa! and 
restart  the  algorithm  with  another initial guess. Extensive com- 
putational experience has yet to reveal a  (complex) p problem 
where the  bounds  obtained in this way differed by more than 
about 15%. More research is needed to show whether  this is al- 
ways true.  It could simply turn out  that counterexamples  exist 
but  are difficult to find. 

6. Computation of p for Real Perturbations 

The  properties of p when A has some elements restricted  to be 
real are  quite different from the purely  complex case. Suppose 
that 

A={diag(bl,62,...,6m,Al,A2,...,An) 

1 E R, Aj E C k j x k j }  (6.1) 

and s p ( M )  and i sp (M)  are defined for A exactly as in (5.2). 
In this case, it is possible for  either s p ( M )  or isp(M) to  be  the 
empty  set.  Furthermore, (5.3) is no longer  a  correct characteri- 
zation of p in general and  there is no natural way to view p as a 
simple  generalization of the usual  notion of spectral radius. Of 
course, (5.4) still applies  provided p ( M )  # 0 (Le. i sp(M)  # 0). 

This  section will focus on upper  bounds  to p that can be ob- 
tained by scaling @. The choice of scaling  is based on the fol- 
lowing lemma which characterizes  a useful class of scalings. In 
the following lemma,  assume  that 

and  det(1- T22M) # 0 so that 

Fl(T, M )  = 2’11 + Ti2 M ( 1  - TnM)-’ 7’21 

is well-defined. 

Lemma: 

Suppose 3T such that BA c 

then a(Fl (T ,M))  I 1 + p ( M )  5 1 

This  lemma  says  that if F, (T ,A)  “covers” BA then T can be 
used to  obtain  an  upper  bound  for p. The next step is to identify 
a set of T’s that satisfy the lemma. To this end define 

D = {diag ( d l ,  4 1  * 9 dn, dm+11, dm+21, * 3 . 1  drn+nI) 

1 di  E R+} 

C = (d iag(c l ,c2 , .   . . ,~m,O,0  ,... ,O) I ci E [-1,1]} 
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where D and C are  partitioned conformally  with A. With these 
definitions,  for T E 7 

&(T, M )  = jc + ( I  - ~ 2 ) ' ' ~  D M D - 1 .  (6.3) 

It is a matter of some simple  algebra to show that all T E T 
satisfy the lemma.  Note that if there  are no real parameters 
(m=O), then Fl(T,M) = DMD-' and  this scaling  reduces to 
that considered in (5.10) and (5.12). 

Obtaining an upper  bound based on (6.3) is somewhat  more 
complicated than is possible in (5.12). The difficulty is that  the 
above lemma only  implies that p ( M )  5 1 and does  not scale. 
Using the  sets in (6.2), we can define 

j i (M) = (a 1 & 8 (FI(T, (r 1 M ) )  < 1) .  (6.4) 

It follows immediately from the  lemma  that 

AM) I j i(M) 

and  thus ji provides  an upper bound  for p.  Again note  that  for 
no real parameters, j i (M) simplifies to 

i(~) = %; 8 ( D M D - 1 )  

The  natural question  is how good a  bound is ji for p.  Recail 
that for m = 0, n I 3 that ji = p for  all  matrices independent 
of block size (rn is the  number of real parameters  and n is the 
number of complex blocks). A simple  extension of this result 
yields ji = p when m = 1, n 5 2. Although  counterexamples 
exist  for  problems  with  more than these number of blocks, ex- 
perience has shown that ji is often a good approximation  to p 
even in these cases. While this experience is encouraging it is 
not conclusive and  additional research is needed to establish the 
value of ji. Unfortunately, when there is more than one real 
parameter it is possible for p ( M )  <( b ( M )  . 
7. p-Synthesis 

The previous  sections on analysis showed that  the synthesis 
problem  reduces to finding  a  stabilizing  controller  K so that 

IIFI(f', K ) l l a  5 1 Q = 03 or p (7.1) 

where F l ( P , K )  = 9 1  + Pl2 K ( I  - P22K)-' 9 1 .  The P here 
is a real-rational,  proper  transfer function matrix  and is not 
necessarily stable.  It will be assumed throughout  that P12 has 
at least as many rows as columns, and vice versa for Pzl .  

A  complete  solution to  the  synthesis problem  for the  a-norm 
was recently obtained ([1],[3]-[6]), which removed the previous 
restrictions  that P12 and P21 be square.  Another feature of this 
solution is that it provided an efficient computational scheme 
using standard real matrix  operations on statespace represen- 
tations.  This H,-synthesis solution  can be used to provide an 
approach  to solving the  p-norm  synthesis problem, refered to as 
p-synthesis.  These  results will be briefly reviewed before con- 
sidering the achievable performance results. 

The first step in the Hm synthesis solution involves finding 3 so 
that  the  substitution K = Fl(J, Q) yields 

FdP,K)  = J'z(p,FI(J,Q)) = R +  UQV (7.2) 

with Fl(P ,K)  internally stable iff Q E H,. This is a version 
of the so-called Youla parametrization [16]. Further, U is in- 
ner  and V co-inner (U'U = I and VV' = I ) ,  and  there exist 
complementary  inner  factors UL and V l  such that [VUl] and [K] are  both  square  and  inner.  The U and V are  obtained  from 
coprime factorizations P12 = UML' and P21 = MT'V. 

The next step involvea using  a rational  matrix version of the 
Davis-Kahan- Weinberger matrix dilation results [ 171 to  further 
reduce the problem to one of finding 0 E RH, such that 

IIG + QI IW I 1 (7.3) 

where G E RL,. This problem  can then be solved using 
the Hankel norm  approximation  methods developed by Glover 
1181. The  resulting  optimal Q can  then  be used to find first the 
optimal Q and  then  the  optimal K .  

The  p-synthesis problem  does  not yet have as complete  a solu- 
tion as does the Hm synthesis problem. A reasonable approach 

would be to  try  to find a stabilizing controller K and scaling D 
so that 

IIDFdp, WD-'lIw I 1. (7.4) 

One  method  to  do  this is to  alternately minimize the above 
expression for  either K and D while holding the  other  constant. 
For fixed D the  left-hand side of (7.4) is just  an H, control 
problem and  can  be solved using the  methods reviewed above. 
For fixed K ,  the  left-hand side of (7.4) can be minimized at each 
frequency as a convex optimization problem in D .  The  resulting 
D can be  fit  with a stable,  rational  transfer  function with stable 
inverse (the  phase of D does  not affect the  norm). 

This  approach  to  p-synthesis  has been successfully applied to 
several example problems. In principle,  it could be used to  ob- 
tain controllers that  are  arbitrarily close to  p-optimal in the 
case of 3 or fewer blocks and provide  nearly optimal controllers 
for  the general  case. This would depend on the suggested iter- 
ative scheme converging to  the global optimal K and D. Un- 
fortunately, individual convexity in the two parameten of an 
optimization problem  does not imply  joint convexity, and  this 
scheme is not always guaranteed  to converge globally to  the best 
K and D .  

To better  understand  the  properties of the problem in (7.4) it is 
useful to consider the  constant  matrix probiem. Using (7.2), we 
can reduce (7.2) to 

IID(R -+ UQV)D-'II, 5 1.  (735) 

for  constant R,U,V with U'U = 1 and VV' = 1. For D = I ,  it 
follows from [18] that 

min a( R + UQV) = max (r(U;R) , a(RV;)) 
Q ( 7.6) 

where U; and V; are chosen so that [U V l ]  and [K] are  both 
square  and  unitary. All of these  quantities  are easily computed 
using standard SVD routines. 

Posing (7.5) as an optimization problems gives 

min F ( D ( R  + UQV)D-')  . 
D,Q 

(7.7) 
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It is known that  this problem is convex in either D (actually 
ln(D))  or Q  individually when the  other is held fixed, but is not 
convex in both variables  jointly. This  means  that  the  iterative 
scheme  suggested as a possible approach  to  p-synthesis is not 
guaranteed  to converge even in the  constant  matrix case. It is 
possible, however, to  compute  the desired D in (7.7)  directly. 

The result in (7.6) may be applied to (7.8) to  obtain 

min F (D(R + UQV)D-’) = 

max{a((DU);DR) , a(RD-’(VD-’);)} (7.8) 

Q 

where 
(DU)I = D -‘UI(U:D-2UI)-1/2 (7.9) 

and (VD-’), is defined similarly. Note that 
[DU(U’  D2U)-’/2  (DU),] is unitary.  It can be shown that 
the right hand side of (7.8)  is convex in ln(D) so that  the ‘op- 
timal” scaling for (7.7) may be  computed by search in advance. 
This gives a tight lower bound for (7.7) and  the resulting D 
scaling may be used to  compute  the  optimal &. 
A  simple example will illustrate all the essential features of this 
possibly confusing  sequence of ideas.  Consider the problem 

min 9 p ([ i ] )  = mi; a ([ Gi :I).  (7.10) 

The  p-optimal q is q = 0 which gives p = 1. For fixed d the 
a-optimal. q = d2 and  for fixed q > 0 the  a-optimal d is d = 
4. Thus,  iteratively solving for either q or d will immediately 
converge to  the  curve q = d2 .  For example, with  the initial guess 
of q = d = 1,  the  iterative scheme will not  change either q or d 
and will thus fail to  find the global optimum. 

On the  other  hand, 

= \/l+d2. (7.1 1) 

Thus, 

min min F ( [ i i  f ] )  d d 
= min \1? (7.12) 

which is  clearly convex and achieves its minimum as d + 0. If 
the expression in (7.8) were used to  compute  the d in advance, it 
would be possible to find the  optimal achievable level for (7.9). 
This  example also illustrates why, strictly  speaking, inf,  not min 
must be used for the D scalings as in (5.9). This issue will not 
be taken up in this  paper.  It  turns  out to be of little significance 
anyway. 

The simplest application of these ideas to  the selection of the 
D scalings  for the  p-synthesis problem is to compute  an  initial 
guess for D at each frequency using (7.8). This would be  the 
optimal D for  an acausal  controller,  and should  provide  a good 
initial guess  for the  optimal D for  the  causal controller  probiem. 
A deeper  question is whether some generalization of (7.8)  and 
its convexity properties applies to  the  rational case. While this 
seems likely, the  details have not been worked out  and  the  prac- 
tical  implications are  uncertain. For some additional  results on 
p-synthesis, see 1191. 
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