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We introduce a family of robust design problems for complex systems in uncertain environments which
are based on tradeoffs between resource allocations and losses. Optimized solutions yield the “robust, yet
fragile” features of highly optimized tolerance and exhibit power law tails in the distributions of events
for all but the special case of Shannon coding for data compression. In addition to data compression, we
construct specific solutions for world wide web traffic and forest fires, and obtain excellent agreement
with measured data.

PACS numbers: 05.65.+b, 05.45.Tp, 64.60.Ak, 89.70.+c
In this Letter, we introduce a class of optimization
problems that we refer to as probability-loss-resource
(PLR) problems, to reflect their three elements. PLR prob-
lems represent the simplest examples of highly optimized
tolerance (HOT), a mechanism for complexity based on
robustness tradeoffs in systems subject to uncertain en-
vironments. The PLR problem is a generalization of
Shannon source coding theory for data compression (DC),
and solutions can be obtained analytically. As shown in
Fig. 1, the resulting event size distributions agree quite
well with experimental data for DC, as well as the well-
studied, high quality data sets for world wide web traffic
(WWW) [1], and forest fires (FF) [2]. These and other
applications in which a single relationship between re-
sources and losses applies over a broad range of scales in
an otherwise relatively homogeneous substrate are particu-
larly well suited to the PLR setting. Further extensions
of the PLR problem may explain the existence of heavy
tailed distributions in a wide variety of complex systems
in which design or evolution play a pivotal role.

The PLR objective is to minimize the expected cost

J �
nX

pili j li � f�ri�,
X

ri # R
o

. (1)

Here i, 1 # i # N , indexes a set of events, such as the oc-
currence of source symbols (DC), file accesses (WWW),
and fire ignition and propagation (FF). Each event is as-
sumed to be independent and initiated with probability pi

during some time interval of observation. Resources ri are
allocated to suppress the sizes li of the events, such that
li � f�ri�, subject to a bound R on the resources avail-
able. The li can be thought of as the loss or cost of an
event, proportional to area burned (FF), or the lengths of
files (WWW) and code words (DC) to be transmitted on
the internet. A related continuous version with integrals
replacing sums was considered in [3]. DC has a well-
defined resource in code words. In designing websites
on the WWW, files and/or links play a similar role. We
assume the FF resources are firebreaks, roads, and other
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man-made mechanisms which limit fire propagation, and
discuss natural occurring mechanisms.

We propose a general one-parameter resource vs loss
function li � fb�ri� of the form

fb�ri� �

(
2c log�ri�, b � 0 ;
c
b �r2b

i 2 1�, b . 0 , (2)

where resources are normalized so that 0 # ri # 1 and
fb�1� � 0, while the marginal loss per unit resource
is f 0

b�ri� � 2cr
2b21
i , ;b $ 0. These conventions

uniquely determine fb�ri� to within the constant c. The
strongest assumptions are that the pi are independent
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FIG. 1. Log-log (base 10) comparison of DC, WWW, and FF
data (gray circles) with the results of the PLR problem (black
dots) for b � 0, 1, and 2, respectively. Results for an SOC FF
model with a � 1�b � 0.15 �1� and an inaccurate PLR FF
fit with b � 3�2 �3� are included for comparison. The cumu-
lative distributions of frequencies P�l $ li� vs li describe the
areas burned in 4284 fires from 1986–1995 on all of the United
States Fish and Wildlife Service lands (FF), 130 000 web file
transfers to 591 users on 37 machines at Boston University dur-
ing 1994–1995 (WWW), and code words from data compression
(DC). Both the size units [1000 km2 (FF), 2 megabytes (WWW),
and bytes (DC)] and the logarithmic decimation of the WWW
and FF data are chosen purely for convenient visualization.
© 2000 The American Physical Society
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of the resource ri , and that the events are independent.
Both are true in DC, but will be assumed throughout for
simplicity.

The values of b which characterize DC, WWW, and FF
(b � 0, 1, 2, respectively) are discussed individually
below. DC is a special case where b � 0 follows from
a standard result in information theory, and the resource
limitation is imposed by the need for unique decod-
ability. Dimensional arguments motivate WWW and FF,
where b is associated with the dimension d of the design
problem. Suppose the loss or cost of an event is as-
sociated with a d-dimensional volume, jd , where j is
a characteristic length scale of the file accessed, or the
region burned. The event size is limited by the resources,
which can be thought of as �d 2 1�-dimensional cuts
which isolate the event from the rest of the system. In
WWW, dividing a one-dimensional document into a chain
of linked files corresponds to d � 1, while in FF dividing
a two-dimensional forest into areas corresponds to d � 2.
Thus the resource density allocation in a given region is
ri � jd21�li � j21. This leads to li ~ r2d

i , consistent
with our interpretation that b � d in the PLR problem
[Eq. (2)]. In general, b is determined by a resource/loss
relationship, which may or may not be directly related to
physical dimension.

The optimal solution minimizes J [Eqs. (1) and (2)],
and is obtained using standard constrained optimization
methods (Lagrange multipliers). Setting the gradient
of l�

P
ri 2 R� 1

P
pifb�ri� equal to zero yields

2pif
0
b�ri� � l, which equalizes the expected marginal

loss and can be solved for the ri . Then the optimal l

saturates the resource constraint with
P

ri � R, ri # 1
yielding

ri � Rp
1��11b�
i

µX
j

p
1��11b�
j

∂21

, (3)
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(5)

These globally optimized solutions provide a baseline for
the study of applications such as WWW and FF, where
resource/loss tradeoffs and design play some role, albeit
less direct than is represented in the simple PLR setting.

Comparison with data.—The data sets in Fig. 1 consist
of pairs �li , Pi� with cumulative frequencies Pi of events of
size l $ li . In the standard “forward engineering” design
problem the noncumulative pi’s are given, and optimizing
the ri produces the li in Eq. (4). “Reverse engineering”
starts with the li data as given and generates model pre-
dictions using the PLR solution, with b given and c and
R fit to the data.
Our aim is not to make detailed predictions, although
these are surprisingly good, but rather to explore the quali-
tative differences in the data in Fig. 1. The DC data were
generated by a standard DC algorithm that is equivalent to
the PLR solution with the additional constraint of integer
code word length. Comparison with the WWW [1] and FF
[2] data is less direct, as these data are aggregated from
many individual websites and forests. The WWW and FF
data start as large lists of event sizes, with presumably
some measurement error in the FF case. The data in Fig. 1
have been logarithmically binned (decimated) for easier
visualization, and ordered with li . li11 and Pi , Pi11,
but our comparisons are insensitive to this binning.

A noncumulative distribution can be derived from the
data using the difference approximation to p � 2dP�dl

pi � �Pi11 2 Pi���li 2 li11� , (6)

which can also be interpreted as the average probability
density in the interval �li11, li�. This representation of the
data can be compared with PLR predictions by inverting
(4), which yields

p̂i�li� � r�bli�c 1 1�2�111�b� (7)

for the probability density, where r is a constant set by
the total number of events. The resulting comparison (not
plotted in Fig. 1) between the model prediction and the
data is good, although the data are noisy. Cleaner compar-
isons can be obtained using the cumulative distributions.
In particular, Eqs. (6) and (7) yield

P̂i �
X
j#i

p̂j�lj 2 lj11�

�
X
j#i

r�bli�c 1 1�2�111�b��lj 2 lj11� , (8)

which we compute from the data �li�. The resulting PLR
�li , P̂i� pairs give strikingly accurate predictions when
compared with the data �li , Pi� shown in Fig. 1. The
shape of the body and tail of the curve is determined
completely by b, with b � 0, 1, 2 for DC, WWW, FF,
respectively, and is independent of r, c, and the details
of the binning procedure. For b . 0, this leads to power
law distributions (Pi ~ l2a

i ) with a � 1�b. The small
scale cutoff depends on the constant c, which has units of
loss li , and r shifts the curve vertically. The large scale
cutoff is determined by l1 in the data.

Both 2D percolation and the standard self-organized
criticality (SOC) forest fire model have a � 0.15 [4] and
this is plotted as well for comparison in Fig. 1 by set-
ting 1�b � 0.15. An additional “fit” to the FF data with
b � 3�2 is also included to illustrate the substantial dis-
crepancies associated with a mismatch in b. While the
simple SOC FF model was not constructed specifically to
produce the correct exponents, the alleged quality of the
fits has, nevertheless, been used as an argument in sup-
port of the relevance of SOC models [2,5]. We consid-
ered the three additional FF data sets from [2], which yield
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similar excellent correspondence with the PLR predictions
with b � 2, and discrepancies when compared with other
a � 1�b. We now consider the DC, WWW, and FF prob-
lems in more detail to derive the values of b used in these
predictions.

Data compression.—Data compression has one of the
simplest and most elegant design theories in all of engi-
neering, and thus makes an excellent starting point. The
objective in DC is to compress long source messages into
short coded messages for more efficient storage or trans-
mission [6]. The standard DC formulation due to Shan-
non [7] is the PLR problem with b � 0, although with
different notation. A source message is assumed to be a
sequence of independent, identically distributed (IID) ran-
dom variables, chosen from N source symbols, which oc-
cur with probabilities pi ,

P
i pi � 1.

Source coding yields a map that assigns each source
symbol a code word ci of length li in a D-ary alphabet
�0, 1, . . . , D 2 1�. The resource limitation

P
i D2li # 1

(Kraft’s inequality) is equivalent to the requirement that no
code word ci � y1y2 · · · yli can be the prefix of any other
code word, which is necessary and sufficient for instanta-
neous decodability [6]. To see how the prefix condition
leads to Kraft’s inequality, let xi � 0.y1y2 · · · yli be a real
number in base D corresponding to ci , and �xi , xi 1 D2li �
a subinterval of �0, 1�. The prefix condition implies all in-
tervals are disjoint, since if any other code word fell in
that interval it would have ci as a prefix, which is not al-
lowed. Thus,

P
i D2li # 1. This argument can be reversed

to construct an instantaneous code for any set of integer li

satisfying
P

i D2li # 1.
Defining as the resource ri � D2li , the length of the

ith interval, this exactly fits the PLR problem with b � 0
and c � 1� log�D�. Minimizing the expected length of
the coded message J [Eq. (1)] yields ri � pi and li �
2c log�pi�. The cost J0 � 2

P
pi log�pi� is the Shan-

non-Kolmogorov entropy. The data in Fig. 1 use 16-bit
source symbols and a standard scheme called Huffman
coding to compress the postscript file of [8]. The slight
discrepancy is due to integer code word lengths, which we
have neglected.

World wide web.—Inspired by DC, we next cast effi-
cient website design as a PLR problem. This requires more
significant simplifying assumptions, in addition to approxi-
mating integer sizes (code words or file lengths) by real
variables. The simplest view is to treat website layout as
the subdivision of a one-dimensional document into files of
length li , accessed with frequency pi determined by user
interest. The cost J �

P
pili is roughly the average de-

lay a user experiences in downloading files. The resource
constraint preventing the use of many tiny files is that the
hyperlinks between them consume space, user attention,
and make web management and navigation difficult. This
creates a tradeoff between simple websites and fast indi-
vidual downloads, which we model as a resource constraint
on the total number of links. In a one-dimensional chain
of files this is equal to the number of cuts in the document.
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The most subtle aspect of the PLR problem is determin-
ing b to reflect the resource vs loss tradeoff. Subdividing
a one-dimensional document into linked files leads to an
inverse relationship between the file size and the resource
density, li ~ r21

i , so that b � 1 as discussed above. This
does not account for the fact that in the division of the doc-
ument the resource allocation ri (separation of the docu-
ment into linked files) may influence the pi (hit probability
for a given file). We can construct a microscopic model
for which the PLR formalism (and the dimensional ar-
gument) applies exactly, by insuring that the pi are not
changed by varying the ri . Formally, in d dimensions
we achieve this by splitting the system (in this case the
one-dimensional document) into N regions of equal size
Ld with uniform probability pi of a user access in the
ith region, and making the simplifying assumption that
each such access is independent. We then design �d 2 1�-
dimensional cuts subdividing the ith region into ni equal
regions (files) each of size li . Thus, the size of event i
is li � Ld�ni , while the resource allocation per unit loss
is ri ~ �L�ni��d21��d��L�ni�. This yields li ~ r2d

i , giving
b � d � 1 for WWW.

The well-studied 1995 WWW data in Fig. 1 were
measured when the web was in a nascent form, where
files were primarily online versions of preexisting one-
dimensional documents, consistent with b � 1. Subse-
quent web evolution to more efficiently exploit hyperlinks
reduces the effective dimensionality, and this is consistent
with more recent observations [9]. In our PLR setting, con-
sider the extreme case in which every file in a “region” is
linked to every other file, and links are still the limiting re-
source ri . Then the number of links ri scales as n2

i , yield-
ing li ~ r

21�2
i and b � 1�2. As in DC, more machinery is

needed to develop useful tools for designing websites, and
we have begun developing more complete models for
website management. We have extended the PLR formu-
lation to allow for the dependence pi�ri�, and with suitable
choices very complex web topologies, resource limitations,
and user navigation models can be incorporated in detail.
The numerical solution of a variety of such problems
with more realistic assumptions qualitatively matches the
results from the PLR problem with 1�2 , b , 1 [10].

Forest fires.—In FF we associate design with the sub-
division of a two-dimensional forest by one-dimensional
man-made firebreaks and suppressors. This leads to b �
2, by the same d-dimensional argument constructed above
for WWW. In FF the li are burned areas. The pi are deter-
mined by the probability of sparks occurring in different
regions and initiating fires. The cost J is the average tim-
ber lost in fires, which would tend to be minimized by
deliberate design in managed forests. The resource ri is
the density of firebreaks and suppressors employed to stop
the spread of fires. The tradeoff between use of land for
trees or firebreaks sets the constraint on the total resources
available.

The role of geometry and microscopic scales for FF are
more complex and subtle than for WWW and DC, and
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we lack more sophisticated design methods to check the
details. Thus our conclusions are necessarily much more
speculative. Interestingly, the exponents describing the
distribution of recent fires do not seem to differ signifi-
cantly from the historical record of fires in which there
were no human interventions [2], so the PLR problem may
be relevant to some extent to natural forests as well. The
crucial fact may be that most mechanisms for fire spread-
ing lead to expanding fronts. The fire terminates when the
energy is absorbed by a resource, whether it be a firebreak
(no fuel to burn), or some alternative man-made or natural
means of suppression. This much more general scenario
still leads to b � d, with d � 2 for mesoscopically homo-
geneous forests. More effective fire prevention might shift
the curve without altering the shape. Alternatively, land-
scapes which naturally break forests into regions of fractal
dimension lower than 2 would have steeper power laws.
For example, brush fires in California occur in unusually
rugged terrain, and data [11] plotted similar to Fig. 1 are
an equally good match to the PLR prediction with b � 1.

Discussion.—While the correspondence between the-
ory and data appears quite convincing, our theory is new,
and clearly neither the 1995 web statistics nor the forest
fire data arose from a purposeful global optimization of
resource allocations such as we describe. Figure 1 repre-
sents data from a large number of websites and forests over
some limited time period, not a single source. A good fit is
obtained as long as the deviations from optimality between
different sites are roughly uncorrelated, a much weaker
requirement than individual optimality. Furthermore, any
individual websites with statistics far from optimal would
simply present opportunities for practical application of the
theory.

In percolation and other examples of equilibrium criti-
cal phenomena, as well as the standard SOC forest fire
[4] and sandpile [12] models, increasing the dimension d
leads to steeper power laws, corresponding to a relative
suppression of large collective fluctuations of microscopic
degrees of freedom. In sharp contrast HOT consistently
predicts exactly opposite trends. Decreasing the effective
dimension in both the WWW and FF PLR formulations
leads to steeper power laws, since for small b microscopic
resources are more efficient in suppressing large events.
Comparisons of the brush fire data [11] and the forest fire
data [2], as well as the 1995 web statistics [1] compared
to more recent results [9] both lead to an effectively re-
duced dimensionality, and steeper power laws. All these
examples support the statistical trends predicted by HOT,
and deviate from those associated with criticality, inde-
pendent of the specific values of the exponents. The HOT
theory, and its application to DC, WWW, and FF, suggests
that a new type of universality might apply to complex sys-
tems in which design and evolution play a role, but with
most features in sharp contrast to familiar properties found
in statistical physics [3,8].
As suggested by the name highly optimized tolerance,
HOT systems arise when deliberate robust design aims
for a specific level of tolerance to uncertainty, which is
traded off against the cost of the compensating resources.
Optimization of this tradeoff leads to high performance
and high throughput, ubiquitous power law distributions
of event sizes, and potentially high sensitivities to design
flaws and unanticipated or rare perturbations. HOT sys-
tems can be extremely sensitive (fragile) to design flaws
associated with perturbations systems were not designed
to handle (e.g., new viruses or invasive species) and where
existing resources prove ineffective. In the PLR setting,
inaccurate assumptions about the pi for a known category
of disturbance can result in misallocations of the ri , some-
times with disastrous effects. This is particularly true for
the small pi , where few resources are allocated. Maximal
costs associated with errors in pi are of order the size of
the largest event, so that the more tuned the design (i.e.,
the more nongeneric the allocation of ri), the greater the
performance, but also potentially the greater the risk.
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