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t a b i l ~ ~ a t ~ o ~  of Uncertain Linear 
FT Approac 

Wei-Min Lu, Kemin Zhou, Member, IEEE, and John C. Doyle 

Abstract- This paper develops machinery for control of un- 
certain linear systems described in terms of linear fractional 
transformations (LFT’s) on transform variables and uncertainty 
blocks with primary focus on stabilization and controller param- 
eterization. This machinery directly generalizes familiar state- 
space techniques. The notation of &-stability is defined as a 
natural type of robust stability, and output feedback stabiliz- 
ability is characterized in terms of &-stabilizability and &- 
detectability which in turn are related to full information and 
full control problems. Computation is in terms of convex linear 
matrix inequalities (LMI’s), the controllers have a separation 
structure, and the parameterization of all stabilizing controllers 
is characterized as an LFT on a stable, free parameter. 

I. INTRODUCTION 

INEAR fractional transformations (LFT’s) have come to 
play an important role in control system design [36], 

[12], [14], [28], [7], [31], [44]. In this paper, we develop 
machinery for linear fractional uncertain systems, represented 
as an LFT of a constant matrix on a block structure which 
includes the transform variables and uncertainty blocks. This 
LFT machinery is a direct generalization of the now standard 
state-space machinery for linear system analysis and synthesis. 
One of the advantages of the use of LFT representations is that 
it facilitates manipulation using state-space-like machinery, 
and computation involves constant matrix manipulation. The 
LFT provides a uniform framework for realization, analysis, 
and synthesis for uncertain systems, and even streamlines some 
of the standard linear systems results [4]. 

We focus on synthesis of stabilizing controllers for sys- 
tems with LFT representations. The notion of Q-stability is 
employed for such systems; it is a natural generalization of 
the conventional notions of stability for linear systems, robust 
stability for linear fractional uncertain systems, and robust per- 
formance of linear fractional uncertain systems. In particular, 
for a linear fractional uncertain system with norm-bounded 
linear time varying (LTV) or nonlinear uncertainty, Q-stability 
is a necessary and sufficient test for robust stability and robust 
performance, and Q-stability, &-stabilizability, &-detectability 
can be characterized using linear matrix inequalities (LMI’s) 
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which result in computationally appealing convex optimization 
problems. 

We first consider the stabilization problem in several special 
cases, i.e., the full information feedback, partial infomation 
feedback, and constant output feedback. The construction for 
the output feedback (OF) synthesis problem is then achieved 
via a separation argument and two special problems: full 
information (FI) and full control (FC). Our approach is similar 
to that in [13] and directly generalizes standard stabilization 
results and state-space methods, while streamlining much of 
the development. In particular, in the FI case, it is shown that 
the solvability is equivalent to Q-stability and is characterized 
by the positive definite solutions of an LMI, and the controllers 
can be chosen as constant feedbacks. Dual results hold for 
the FC case, and Q-stabilizability and Q-detectability are 
necessary and sufficient for robust stabilization by output 
feedback. 

The OF controllers are represented by LFT’s on the same 
block structures as the plants, and all stabilizing controllers 
are parameterized as an LFT on a free, stable parameter. 
An appealing feature of this approach is that the necessity 
portion of the controller parameterization relies heavily on 
elegant LFT machinery [36], [19], [44] and avoids the need 
for coprime factorizations (see [43], [12], and [30]). In a 
further generalization it is noted that all that is required for 
the separation principle to hold for the LFT systems is that 
the stability is invariant under certain system transformations 
and cascade interconnections. The machinery used here also 
can be generalized to deal with controller parameterization for 
nonlinear systems [25]. 

There are several interpretations for such control schemes 
that are LFT’s on the same block structure as the plant. In the 
multidimensional system case, the block structure represents 
transform variables, and the resulting controller then provides 
dynamic feedback [16], [ZO]; for an uncertain linear system 
with structured parameteric or dynamical perturbations, which 
can be viewed as a linear parameter varying or linear dynamic 
varying system [39], [41], [37], [SI, [2], the resulting con- 
trollers, which are dynamical and depend on the perturbations, 
therefore may be thought of as gain scheduled or dynamically 
scheduled 1421, [3 11; the application implications of such 
control schemes are obvious when the uncertainties can be 
measured or identified on-line [42], [37]. 

The control problems of linear systems whose coefficients 
depend on unknown parameters is also addressed in the context 
of other algebraic structures [24], [23], [5], [25] and the 
parameter-dependent, or gain-scheduled, control solutions are 
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characterized [23], [5], [25]. One of the major differences 
between the proposed LFT approach and others are that the 
arbitrary perturbations, including LTV and nonlinear uncer- 
tainties, can also be treated by the LFT approach, where 
the Q-stability exactly captures this feature. In addition, the 
proposed LFT framework provides a systematic approach for 
gain-scheduled control design, where control solutions can be 
analytically constructed by solving the corresponding LMI’ s 
independent of the parameters (see [28], [33], [27], and [31]), 
and therefore the conventional ad hoc point-wise controller 
design and curve-fitting procedures (see [39]) are avoided; 
moreover, the type of scheduling that results from this LFT 
approach guarantees the global stability and global perfor- 
mances even when the uncertainty varies arbitrarily fast and 
thus avoids any potential hazards arising from conventional 
scheduling [41], [39]. On the other hand, one disadvantage 
of the proposed approach, which emphasizes Q-stabilization, 
is that unless the uncertainties are arbitrary time-varying 
operators, the stability analysis on which the synthesis is based 
is potentially conservative [32]. This conservativeness may 
be most troublesome when the parameters are slowly time- 
varying, since neither the slow variation nor the parameteric 
nature of the uncertainty is exploited. Thus the methods in 
this paper should be viewed as a possible aid in conventional 
scheduling rather than a replacement. 

This paper is based on the conference paper [28], where 
the main results were presented. Some relevant results in 
particular the LMI characterizations, were also obtained in 
[33] in the parallel context of robust performance synthesis 
for linear fractional uncertain (discrete-time) systems. Though 
robust stability and robust performance can be uniformly 
treated as &-stability, the essential difference between the 
results in this paper and those in [33] lies in their approaches 
taken for synthesis problems; the approach using separation 
arguments for the stability synthesis problem in this paper 
cannot be naively extended to the performance synthesis 
problem because of the block-dependent nature of the designed 
controllers. Many extensions and generalizations have been 
done since the appearance of these two conference papers 
[34], [27], [31], [21]. More recently, the LMI treatment has 
been extended to cope with robust performance synthesis for 
continuous-time systems [ 171, [2], [22]. A fairly complete 
review of LMI’s and their roles in control theory is given 
in [8], and a software toolbox for the numerical solutions to 
LMI’s is available [18]. 

This paper is presented in an axiomatic fashion in the order: 
Section 11-A, Section 111-A, Section IV, and Section V. The 
remaining structure is as follows: In the Appendix, some 
background material about LFT’s, p, and matrix dilation are 
reviewed. In Section 11, we first present a general framework 
for linear systems with LFT descriptions, Q-stability is defined 
and characterized, and the robust stability and robust perfor- 
mances for linear fractional uncertain systems is examined to 
give some motivations for the stability notions; the implication 
of the stability notions in multidimensional systems is given in 
Section VII-B. In Section 111, the properties of stabilizability 
and detectability for the LFT systems are examined, in particu- 
lar, the Q-stabilizability and Q-detectability are characterized 

in terms of LMI’s. Some simple cases for the stabilization of 
linear fractional uncertain systems, including full information 
feedback, partial information feedback, and constant output 
feedback, are examined. In Sections IV and V, the stabilization 
problem is considered, and an axiomatic approach is proposed; 
in Section IV, the stabilization problems are stated, and the 
relevant system structural properties are examined; Section 
V is devoted to the solutions of the general output-feedback 
problems, the special FI, DF, FC, and OE problems are first 
treated to develop machinery; the stabilizing controller and 
controller parameterization are constructed from the special 
problems via separation arguments. 

The notations used in this paper is quite standard. 2’ 
denotes the set of nonnegative integers. For a matrix A4 E 

(Cnxm), MT denotes the transpose of M and M* the 
conjugate transpose of M ;  F ( M )  denotes the largest singular 
value of M and p ( M )  the spectral radius of M .  The block 
diagonal matrix is denoted with specified diagonal blocks as 
A := Diag [A,, . . . ,A,]. The upper and lower LFT’s of M 
on N are denoted as 3u(A4, N) and &(Ad, N), respectively. 
The Redheffer star product of M and N is S ( M ,  N ) .  

R n x m  

11. LINEAR FRACTIONAL UNCERTAIN SYSTEMS AND STABILITY 

A control implication for LFT is the feedback structure. In 
this section, an LFT framework is proposed for the description 
of unccrtain linear systems where the perturbations enter the 
systems in feedback fashions. We will consider the general 
linear systems with LFT descriptions, and their implications 
for linear fractional uncertain systems are revealed afterwards. 

A. Systems with LFT Descriptions 

sented as an (upper) LFT on some block structure A, i.e., 
Consider a class of systems each of which can be repre- 

A B  
G=3& D ] ,  A) 

with ( A ,  B ,  C, D )  E Rnxn x Rnxp x Rqxn x Rqxp .  We will 
refer to this class of linear systems as LFT systems, and (1) 
is its transfer function. The block structure A is defined as 
follows 

A := Diag [XIn,, &I,, , . . . , 6 J T 6 ,  A1 + . . A,] (2) 

which may include repeated full blocks and has dimension 
n x n; the block structure may have several interpretations. We 
define a scaling matrix set with respect to the block structure 
A for the system as 

D := { D  E Cnxn is nonsingular: DA 
= AD for all A E Cnxn with structure (2)). (3) 

By analogy with standard terminology, we can also give the 
representation (1) a state-space interpretation. As in the con- 
ventional one-dimensional systems, (nonsingular) state vari- 
able transformations are useful in the analysis and synthesis 
of LFT systems. However, not all transformations are allowed 
in this setting; if we think of the system has “state” vector IC, 

then the admissible state variable transformations IC H T x  is 
therefore specified. 
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Dejnition 11.1 (Admissible Transformation): Consider the 
LFT system (1) with block structure A defined by (2) and the 
corresponding scaling matrix set 73 by (3). If T E D, then the 
following system transformation 

is said to be admissible. 
It is remarked that the transfer function after the transfor- 

mation does not change. We will further show that many other 
properties of LFT systems are also invariant under admissible 
transformations. 

With the block structure A defined in (2) and the corre- 
sponding scaling matrix set (3), the p and Q values of the 
matrix A are well defined. Next, we give some stability notions 
in terms of those values; their implications are given in the 
next subsection. 

Definition 11.2 (p-Stability and Q-Stability): Consider the 
LFT system (1) (or matrix A).  It is p-stable (with respect 
to A) if pa(A)  < 1. It is Q-stable (with respect to A) if 
Qn(A) < 1, i.e., there is a D E D such that Z(DAD-l)  < 1. 

Q-stability is a sufficient test for p-stability, but p-stability 
does not imply Q-stability, in general. These two stability 
notions are equivalent if and only if ~ A ( A )  = &(A). The 
implications of Q-stability and p-stability are given in the next 
subsection. In the following, we only consider Q-stability, the 
p-stability is discussed in [26]. It is noted the Q-stability can 
be given the following Lyapunov characterization [ 141, [32]. 

Lemma II-3: System A with block structure A is Q-stable 
if and only if there exists a P E D with P = P* > 0 such that 

(4) A P A ~  - P < o 
where the matrix set D is defined as in (3). 

The following structural property of LFT systems follows 
immediately from the properties of p and Q. 

Theorem 11-4: The p-stability and Q-stability of LFT sys- 
'tems are invariant under the admissible (system) transforma- 
tions. 

Theorem II-5: Lct A1 and A2 be two system matrices with 
respect to the block structures AI  and A,, respectively. Then: 

If the system matrix [ 2:] with any compatibly 
dimensional matrices A12 and A21 is Q (or p)-stable 
with respect to the block structure A := Diag [A,, A,], 
where A, and A, are independent, then AI and A2 are 
also Q (or p)-stable with respect to structures A1 and 
A,, respectively. 
The system matrix [ $ with any compatibly di- 
mensioned matrix A12 is Q (or p)-stable with respect to 
the block structure A := Diag [A,, A,] if and only if A I  
and A2 are also Q (p)-stable with respect to structures 
A1 and A2, respectively. 

Note that statement 1) holds in the case where the structures 
AI and A2 are independent, while 2) holds even when AI and 
A2 depend on each other. 2) implies that a cascade system 
is Q (or p)-stable if and only if each subsystem is Q (or 
p)-stable. The definitions of p-stability and Q-stability are 
generalizations of the notions of conventional stability (see 

:L;Ju W 

Fig. 1. 

Section W-B),  robust stability, and robust performance [32], 
[25]. In the next section we will further reveal those facts for 
Q-stability . 

B. Robust Stability of Linear Fractional Uncertain Systems 
A large class of uncertain linear systems can be described 

in terms of LFT's on some specified structures. Consider an 
uncertain system, where the uncertainty enters the systems in 
a feedback fashion as illustrated in Fig. 1, where G is the 
nominal linear discrete-time system and A p  is the un 
which belongs to a designated uncertainty set. Both G 
are causal, and the interconnection for the uncertain system 
is well-posed for each admissible uncertainty; w is an input 
vector, and z is an output vector. Thus, the transfer function 
of the uncertain system from w to z for each uncertainty 
is represented in terms of the LFT formula as 

3U(G(X), A P ) .  (5 )  

In this paper, we assume that the uncertainty structure has the 
following fonn 

A p  := Diag [&IT1,. . . , 6JTS, A,, . . . , A,] (6) 

where no blocks are repeated. Define a scaling matrix set 
corresponding to the uncertainty structure A p  as 

Vp := {Diag[Dl;..,D,, dlI,...,dfI] 
E Pxm nonsingular: D, E Crs X r % ,  d3 E C }  (7) 

where the dimensions of each block are the same as those of 
the corresponding block in Ap.  

Note that transfer function (from [ :] to [ E ]  ) of the nominal 
system no, can be described in terms of an LFT 

where X is the transform variable, i.e., the delay operator. 
Therefore the transfer function in (5) is 

;F,(G(X), A P )  = KA(FU(nif, Go), A,) 

Thus the uncertain system is described as an LFT system 
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where 

A := B : =  [M13] 
M21 M23 

C := [M31 M32] D := MSS (10) 

and the block structure with dimension (no + m) x (no + m) 

A : =  Eo L\opl. 
Let n := no + m; define a scaling matrix set corresponding 
to the block structure A as follows 

D := {Diag [Dl ,  0 2 1  E Cnxn : D1 E Cnoxno 
is nonsingular, D2 E Dp}. (12) 

Suppose the nominal system is internally stable, i.e., 
p(M11) < 1. It is known that if the uncertainty Ap is 
linear time-invariant and bounded by 1, then the notion of p -  
stability captures the robust stability and robust performances 
of the corresponding linear fractional uncertain systems [26]. 
Next our emphasis is dealing with the uncertain structure Ap 
which includes time-varying uncertainty; we will consider 
the robust stability and performance of the linear fractional 
uncertain system given by (9) and establish the relations to 
the &-stability. 

Let Z s X t  denote the set of linear time-varying causal op- 
erators: 1i(Z+) 3 1$(2+). Consider the linear fractional 
uncertain system (9); the permissible uncertainty set is defined 
as 

BAgTv := { A p  = Diag [SI&., , . . . , 6 J v s ,  A I , .  . . , A,] 

where 1 )  Ill2 is the 12-induced norm of an LTV operator. 
The transfer function of system (9) is Fu(G(X),  Ap) for 

each A p  E BAkTV. The system (9) is said to be robustly 
stable if the system is asymptotically stable for each fixed 
A p  E It has robust performance if the system 
is stable and has 12-induced norm less than 1 for each 
Ap E BAgTV. The robust stability and robust performance 
problems have been extensively studied (see [291, [40], [35]). 
The analysis is reduced to the gain-analysis of some scaled 
systems. In fact, let G(X) be partitioned conformably with 
the block structure Ap as in (8). The following results are 
relatively new, but are now well known (cf. 1401, 1291, [351, 
and [9]). 

Lemma 11-6: Consider the uncertain system (8) with Ap E 
BAgTV. Then: 

1) It is robustly stable if and only if the nominal system 
is stable, i.e., p(M11) < 1, and there exists a positive 
definite matrix Dp E Vp such that 

E p x m .  . 1IAPllZz I 1) (13) 

SUP (r(DpG1l(X)Dpl) < 1. 
1x151 

2)  It has robust performance if and only if the nominal 
system is stable, and there exists a positive definite 
matrix DQ E Dp such that 

It is noted that the above results also hold for nonlinear 
uncertainty [9]. We further have the following LMI charac- 
terizations. 

Theorem 11-7: Consider the uncertain system (8) with 
~p E B A ~ ~ ~ .  Then: 

1) It is robustly stable if and only if there exists a positive 
definite matrix P E D such that 

A P A ~  - P < 0. 

2) It has robust performance if and only if there exists a 
positive definite matrix Q E D such that 

M [ :  : ] M T -  [o Q O  I] 

It is known from the discussion in the previous section 
that the LMI conditions of robust stability and robust perfor- 
mance for a linear fractional uncertain system are exactly the 
conditions for Q-stability for some LFT systems. Therefore, 
from Theorem 11-7 and the definition of &-stability, we 
can conclude that the &-stability is an abstraction of robust 
stability and robust performance of a linear fractional uncertain 
system under LTV perturbations. 

111. STABILIZATION OF LFT SYSTEMS: 
STABILIZABILITY AND DETECTABILITY 

In this section, we will first examine the stabilizability and 
detectability of LFT systems in the context of Q-stability, 
and then we will consider their robust control implications 
for linear fractional uncertain systems. 

A. Stabilizability and Detectability 

defined by (2) 
Consider an LFT system y = Gu with block structure A 

where y is the measurement output and u is control input. 
Suppose ( A ,  B ,  C,  D )  E Rnxn x RnXp x Rqxn x Rqxp,  and 
assume further that B and C are of full column and row ranks, 
respectively, i.e., Rank ( B )  = p I n and Rank (C) = q 5 n. 
The scaling matrix set D with respect to A is given by (3). 

The notions of stabilizability and detectability play impor- 
tant roles in the stabilization problem; they are defined in terms 
of the following two special structures of (17), respectively 

Definition 111.2 (Stabilizability): System (17) is &- 
stabilizable if there exists a controller for the corresponding 
system G ~ P  

such that the closed-loop system is &-stable with respect to 
the induced block structure. 
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Dejnition 111.3 (Detectability): System (17) is e- 
detectable if there exists a controller for the corresponding 
system Go1 

such that the closed-loop system is &-stable with respect to 
the induced block structure. 

It is known that for a one-dimensional system, the stabiliz- 
ability is equivalent to the statement that the system can be 
stabilized by a constant state-feedback. Is this property still 
true for a general LFT system? The answer is positive for 
the &-case. But first, we shall see when the LFT system is 
Q-stabilized by a constant state-feedback. 

Suppose the LFT system is Q-stabilized by a constant state- 
feedback matrix F E Rpx", i.e., Q,(A + B F )  < 1, then by 
the Lyapunov characterization of &-stability, there exists a 
P E D with P = PT > 0 such that 

( A  + B F ) P ( A  + BF)T - P < 0.  

If Rank(B) = p < n we can find a Bl E Rnx(n-p) such 
that B T B l  = 0 and Rank (a,) = n - p ,  then we have 

BF(A + B F ) P ( A  + BF)TBl - BFPBl < 0 

i.e., 

B T A P A ~ B ~  - B T P B ~  < 0. 

So the solvability of the last LMI is necessary for the sys- 
tem to be constant-state-feedback &-stabilizable. Surprisingly, 
this condition is also sufficient as stated by the following 
proposition. 

Proposition 111-3: Consider the LFT system (17) with block 
structure A, and Rank ( B )  = p < n. Let B l  E Rnx("-p) be 
such that B T B l  = 0 and [B BI] be invertible. There exists 
a constant state feedback F such that A+ BF is Q-stable with 
respect to the block structure A if and only if there exists a 
matrix P E D with P = PT > 0 such that 

BTAPATBl - BTPBL < 0. (15) 

Moreover, if P E D with P = PT > 0 satisfies the above 
inequality, then a Q-stabilizing constant state feedback matrix 
can be chosen as 

F = -(BTP-'B)-lBTP-lA. (16) 

Prouf: By the definition of Q-stability, there exists a 
constant feedback F such that the closed-loop system matrix 
A + BF is Q-stable with respect to the block structure A if 
and only if there exists a D E D, such that 

1 > inf a ( D ( A + B F ) D - l )  
 FER^'^ 

 FER^'^ 
= inf Z(DAl2-l + DBFD-I ) .  

Let 

VF = (B,T(DTD)-lB~)-$BTD-l  

then it is easy to check that VFVl = I and VF(DB) = 0. 
By Lemma VII-8, we have 

1 > inf a ( D ( A  + B F ) D - l )  = Z(VFDAD-') 

i.e., 

( V ~ D A D - ~ ) ( V ? D A D - ~ ) ~  < I .  

Take P = (DTD)-l ,  then P E D and P = PT > 0;  hence, 
we have 

(BTPB,)-~B,TAPA~B~(BTPB~)-~ - I < 0 

B T A P A ~ B ,  - B T P B ~  < 0. 

or 

Moreover, if some P E D with P = PT > 0 satisfies 
the above inequality, then we can construct a constant state 
feedback matrix F via Lemma VII-8 such that A + BF is 
Q-stable. 

In fact, let 

VF = (BT(DTD)B)-l12BTDT. 

Then [Vi, VL] is unitary; thus FD-' = - (V,DB)-lVF 
DAD-', or 

F = -(V,TDB)-'VTDA = -(BTP-lB)- 'BTP-'A. 

The folIowing theorem gives another LMI characterization 
for &-stabilizability. 

Theorem 111-4: Consider the LFT system (17) with block 
structure A. Then there exists a constant state feedback F 
such that A + BF is &-stable if and only if there exists a 
matrix P E V with P = PT > 0 such that 

(17) 

Moreover, if P E D with P = PT > 0 satisfies the above 
inequality, then a Q-stabilizing constant state feedback matrix 
can be chosen as 

A P A ~  - P - B B ~  < 0. 

F = - ( B T P - l B ) - ' B T F I A .  (18) 

Proot If B is square and of full rank, then the re- 
sult is straightforward. We thus consider the case where 
Rank ( B )  = p < n. So we only need to show that both LMI 
characterizations (19) and (21) are equivalent. 

The implication (21)*( 19) follows by observing that 

BT(APAT - P - B B T ) B l  = By(APA' - P ) B l .  

To show the reverse implication, suppose there exists a positive 
definite matrix Q E FnXn such that 

BT(AQAT - Q)BI < 0. 

Note that (BF( AQAT -&) B )  (BTB)-' ( BT(AQAT -P)  B,) 
is a symmetric matrix, then there exists Q > 0 small enough 
such that 

By(AQAT - Q ) B i  + a(B:(AQAT - Q)B)(BTB)-2  
. (BT(AQAT - Q ) B l )  < 0.  
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Let P = a& which is positive definite, then the above 
inequality implies 

BT(APA* - P ) B l  BT(APAT - P ) B  
APAT - P ) B l  - (B 'B)~  

or 

which implies ( 1  7). 
Using the above result we can easily get the following 

theorem. 
Theorem ZIZ-5: System G is Q-stabilizable if and only if 

there exists a constant feedback matrix F such that A + BF 
is Q-stable with respect to the same block structure. 

Pro08 The sufficiency is obvious. As for the necessity, 
assume that the system can be Q-stabilized by a controller 
K = 3, ( [ 2; g;], A , )  where A0 depends on the system 
block structure A. By the interconnection properties of LFT's, 
this statement is equivalent to the fact that the augmented 
system 

is Q-stabilized by the constant feedback [zz g;] with 

respect to the block structure A N  = [$ io]. Denote the 
scaling matrix set with respect to A N  by V N ;  then by 
the above proposition, there exists a positive definite matrix 
Plv =: [$ E VN such that 

A 0  A 0  
[o 0 1 4 0  [":' :I 

which implies 

A P A ~  - P - B B ~  < 0. 

Thus the above LMI has a solution P > 0. The conclusion 
follows via the previous theorem if we can verify that P E V. 
Indeed, since PN E V N ,  P N A N  = A N P N ,  i.e., 

for all complex matrices A and A0 with the given structures; 
in particular, (20) implies P A  = A P .  By the definition of the 

The dual notion @detectability can be similarly character- 
ized in terms of LMI's by some dual arguments. We have the 
following theorem. 

scaling matrix set 2) (3), we have P E D. 

Theorem 111-6: The given system G ( A )  is @detectable if 
and only if there exists a matrix P E V with P = PT > 0 
such that 

A ~ P A  - P -  C ~ C  < 0. (21) 

In addition, there exists a constant output injection matrix 
L such that A + LC is Q-stable with respect to the same 
frequency structure, and such an output injection matrix L 
can be taken as 

for some P E V with P = PT > 0 satisfying the LMI (21). 

B. Control of Linear Fractional Uncertain Systems: 
Constant Feedback 

In the last subsection, we considered the general notions of 
stabilizability for LFT systems. It was further shown that the 
stabilizability is reduced to constant full information feedback 
stabilization. In the following, we will further explore the 
implications of Q-stabilizability and discuss several simple 
stabilization problems for the linear fractional uncertain sys- 
tems. The system considered is represented as an LFT of 
a constant matrix on some block structure and is illustrated 
by the diagram in Fig. 2. The uncertainty A p  is allowed 
to be structured and LTV, and varies in the uncertainty 
set BA$TV as defined in (13). 2,  is the real state of the 
system and xd shows the signals from the uncertainty (and 
external disturbances if performance problem is considered). 
The transfer function is 

G = 3 u ( M ,  A )  =: 3,, ([a 3 A )  (22) 

where ( A ,  B, C, D )  E Rnxn x Rnxp x Rqxn x Rqxp,  A 
is partitioned conformally with the block structure A := 
Diag[Xl,o, A p ]  as A = [AI Az],  and B and C are of full 
column and row ranks, respectively; to avoid triviality, it is 
assumed that Rank(B) = p < n and Rank(C) = q < n. 
The scaling matrix set V with respect to A is given by (3). 

Constant Full Information Feedback: Suppose the full in- 
formation 2 := [:;] is available; the following statement 
directly follows from the discussions in the last subsection. 

Theorem 111-7: Consider the linear fractional uncertain sys- 
tem (26). There exists a constant full information feedback 
such that the system is rebu-ble-ifaffo-cxly if there 



56 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO 1, JANUARY 1996 

exists a positive definite solution in P E D such that any of 
the following LMI's is satisfied 

B , T ( A P A ~  - P ) B ~  < o 
A P A ~  - P- B B ~  < o 

U = -(B~P-~B)-~B~AP-~~. 
and such a constant feedback is given by 

Therefore, the full information problem is solvable if and 
only if the related LFT system is Q-stabilizable. 

In the following, we will consider other two cases, i.e., only 
the real state of the system z, is available to the controller, 
and the measured output y is available to the controller. 

Constant State Feedback: 
Theorem 111-8: Consider system (22) where these exists 

a constant state feedback U = Kz,  such that the closed- 
loop system is robustly stable if and only if there exists a 
positive definite matrix P = Diag [PI ,  Pz] E D satisfying the 
following LMI's 

B , T ( A P A ~  - P ) B ~  < 0, 
A2P2AT - P < 0. 

(23) 
(24) 

Proof: By the definition of Q-stabilizability, the closed- 
loop system A + B[K 01 is robustly stable iff there exists 
D E 2) such that 

inf 5 ( D ( A  + B[K O])D-') < 1. (25) 
K cRP 

Let D = [ 7 j2], then the above inequality is equivalent to 

Let V: = ( B T ( D ~ D ) - ~ B ~ ) - ~ / ~ B ~ D - ~  and U: = [0 I ] .  
It is easy to check that VFVl = 1 and VT(DB) = 0, and 
UTU, = 1' and [KO;' O]U? = 0. By Proposition VII-7, we 
have that (25) holds if and only if 

max {Z(V:DAD-'), 5(DA2D;')} < 1. (26) 

Take 

then P E D and P = PT > 0. Condition (26) can be rewritten 
as 

~ ( v ~ D A D - ' )  < 1 e B , T ( A P A ~  - P)B~ < o 
and 

- a(DA2DCl) < 1 + AzPzA; - P < 0. 
Thus, (25) holds iff we can find some matrix P = PT > 0 

E 
In the above theorem, such a state-feedback matrix K is 

explicitly given in [21 J by the use of Parrott's theorem (Lemma 
VIM) and the condition (23) can be replaced by the following 
LMI 

satisfying LMI's (23) and (24). 

A P A ~  - P- B B ~  < o 
which, as well as (23), implies &-stabilizability. 

Fig. 3. 

Constant Output Feedback: The following theorem gives a 
constant output feedback solution; it can be proven similarly 
to the above theorem by using Parrott's theorem (Proposition 
VII-7). 

meorem IZI-9: Consider system (9). Assume that BI E 
R"x("-p) is such that BTBl  = 0 and [B B l ]  is invertible, 

invertible. Then there exists an admissible constant output- 
feedback controller if and only if there exists a positive definite 
matrix X E D such that the following two matrix inequalities 
hold 

and C_L E B("-4)x" is such that C1CT = 0 and [E] is 

ByAXATBI - BTXBL < 0 
C ~ A ~ X - ~ A C , T  - C ~ X - ~ C :  < 0. 

Unfortunately, the matrix inequalities are not convex in X 
and may not even have connected solution sets. Thus it is not 
clear that the search over X is easier than the original problem 
of directly searching over controller gains. 

It is a routine adaptation of Parrott's theorem to get a 
parameterization of all constant !&stabilizing output-feedback 
matrices. The above matrix inequality characterizations imply 
that the system is Q-stabilizable and Q-detectable. The above 
treatment in each case is suitable not only for the robust 
stabilization problem, but also for a robust performance syn- 
thesis problem by the standard trick of adding the additional 
performance block into A,[ 151. 

IV. CONTROL OF LFT SYSTEMS: PROBLEM 
STATEMENT AND SPECIAL STRUCTURES 

From now on, the stabilization problem for general LFT 
systems are investigated. The implication of the results for 
robust stabilization of linear fractional uncertain systems is 
obvious. In this section, we will examine the basic structures 
of the problems. 

A. Problem Statement 
Consider the control LFT system with standard block dia- 

gram in Fig. 3 where G is the plant with two sets of inputs: 
the exogenous inputs w and the control inputs U ,  and with 
two sets of outputs: the measured outputs y and the outputs 
z measuring the behavior of the system. The control problem 
is to design a feedback controller K such that the resulting 
closed-loop system has some prescribed properties. 

Suppose that the plant G with block structure A is defined as 
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where all matrices are real and have compatible dimensions 
with the related physical variables, the block structure is 
defined in ( 2 ) ,  and the corresponding scaling matrix set is 
defined in (3). In addition, let the controller K with block 
structure A” be defined as 

K = Fu( [c A B  B]. A,) 

In the following, it is assumed that the feedback system 
is well posed. The block structure A, of the controller is 
determined by A. In particular, for the output-feedback Q- 
stabilization problem to be considered, the controller may have 
the same dependence on the block structure as the plant, i.e., 
A, = A. This type of controllers for uncertain linear systems 
can be given a “gain scheduling” or “dynamic scheduling” 
interpretation; in the linear multidimensional system case, this 
means that dynamical feedback controllers are allowed (see 
Section VII-B). 

Since we are only focusing on the Q-stabilization problem, 
we will say that a feedback controller K is admissible if it has 
the same dependence on the block structure as the plant and 
Q-stabilizes (27), i.e., Fl(G, K )  is Q-stable with respect to 
the induced block structure Diag [A, A]. Then the admissible 
controller set is denoted as IC. For convenience, this general 
synthesis problem is called the output feedback (OF) problem. 
The following two synthesis problems are considered in this 
paper: 

(Stabilization) Find a dynamical output feedback K E K 
which Q-stabilizes (27). 
(Parameterization) Characterize all controllers K E K: 
that &-stabilize (27), or more specifically, find an 
LFT system J which has the same dependence on 
the block structure as the plant such that K: = 
{Fl(J ,  Q) : Q is a Q-stable LFT system}. 

Note that G is Q-stabilized by K if and only if G22 is 
Q-stabilized by K .  Thus, the input w and output z do not 
affect the final stabilization results. They are reserved in the 
following treatment for technical reasons and to facilitate 
comparison with related problems where they are present. 
Next, we will examine some basic structural property for 
control LET systems; we will use the following notation to 
represent an LFT system 

Fig. 5. 

noted that if G = [&/-$I, then its dual system is 

Next we conside; a feedback system with block diagram 
in Fig. 4 where the plant G and the controller K are assumed 
to be LFT’s with respect to the same block structure A. The 
dual structure of the above feedback system is shown in Fig. 5 
whose plant and controller are the dual objects of G and K ,  
i.e., GT and K T ,  respectively. It is routine to verify that 
A ( G T ,  K T )  = [ A ( G ,  K)IT. In addition, K Q-stabilizes G 
with respect to the induced block structure A, = Diag [A, A] 
if and only if KT Q-stabilizes GT with respect to the block 
structure AN. Whence, as far as stabilization or other synthesis 
problems are concerned, we can obtain the results for system 
GT from those of its dual object G if available. 

Equivalence of LFT Systems: System equivalence notion 
will also play an important role in this paper. Two systems 
are said to be equivalent if every achievable closed-loop 
map of one system can be achieved by the other through 
some controller. More concretely, two LFT systems GI and 
G2 with the same block structure are equivalent, if for all 
possible K1, there exists an suitable K2 depending on the same 
block structure as K1, such that Fl(G1, K I )  = Fl(G2, K2); 
and also for all possible K2, there is an suitable K1 
depending on the same block structure as K2, such that 
Fi(G1, K i )  = Fi(G2, Kz) .  

Special Structures: We consider four special structures 
which are related to the general OF problem whose associated 
plant G with block structure A is given as in (27) 

r A  I B~ B~ 1 
provided that the block structure is clear from context. (29) 

B. Duality, Equivalence, and Special Problems 

Duality of Linear Systems: Duality plays an important role 
in the analysis and synthesis of linear systems. We now 
examine this notion further in the LET setting employed in 
this paper. Algebraically, the dual system of an LET system 
G with block structure A is defined as the system represented 
by the transpose GT of G with the same structure. It is 

Full Information (FI) Problem: The corresponding plant 
has a structure as 

GFI = 
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where the “state” and the disturbance are directly mea- 
sured. 
Full Control (FC) Problem: The associated plant is given 
by 

A + 32F + LC2 + LD2zF 

where two independent parts of the control input directly 
affect both the “state” and regulated output. 

0 Disturbance Feedforward (OF) Problem: The correspond- 
ing plant has a structure as 

A BI B2 
(32) 

-L B2 + LDa2 

where the disturbance enters the measurement directly. 
e Output Estimation (OE) Problem: The corresponding 

plant has the following structure 

where the control input enter the regulated output directly. 
Note that all of these special systems have the same block 

structures as G. The parameters in the special structures, 
however, do not necessarily refer to the same parameters of 
the above OF structure G. They are said to be special cases of 
the OF problem only in their structure. The reader is referred 
to [13] for motivations of different problems. 

Structurally, FI and FC problems are dual and so are DF 
and OE problems. More precisely, GFI has an FC structure, 
GFG has an FI structure, and so on. In addition, FI and DF, 
and FC and OE are equivalent structures, respectively; this 
point will be made precise in the next section. 

v. STABILIZATION OF L m  SYSTEMS 

In this section, we will show through the construction of 
solutions that the Q-stabilizability and Q-detectability are 
necessary and sufficient conditions for the output-feedback 
Q-stabilization problem to be solvable. 

A. Solutions to Stabilization Problems 

In this subsection, we give the main results about the 
stabilization of LFT systems. 

Theorem V-I (Stabilization): Given a system G (27). There 
exists an admissible controller, i.e., K; # 0, if and only if there 
exist two positive definite matrices X E D and Y E D such 
that the following two LMI’s hold 

A X A ~  - X  - B B ~  < o 
A ~ Y A  - Y - C ~ C  < O. 

(34) 
(35) 

B. Stabilization Problems for Special Systems 

In this subsection, we will develop machinery leading to 
a constructive proofs of the main theorems and consider the 
&-stabilization problems for special problems. 

first 
examine the dual structures: FI and FC. Consider the plant 
GFI  and (30) and GFC (31) with the same block structure A; 
we immediately have the following statements using Theorem 

Proposition V-3: Let F be a constant matrix such that 
A + 3 2 F  is &-stable. Then a class of admissible controllers 
for the FI system can be parameterized as 

KFI  = [F Q1 

Admissible Controllers for FI and FC Systems: We 

11-5. 

with ‘2-stable Q. 
Proposition V-4: Let L be a constant matrix such that 

A + LCz is Q-stable. Then a class of admissible controllers 
for FC can be parameterized as 

with any Q-stable Q. 
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Equivalence Relations Between Special Problems: The 
equivalence relations between DF and FI, and OE and FC 
problems are examined in this subsection. We will construct 
the controller parameterizations for DF and OE problem 
through the equivalence relations. The different structures 
GFr, GFC, GDF, and GOE are given as in the preceding 
section. We first have the following observation about DF 
and FI problems. 

Proposition V-5: Consider FI and DF structures as given 
in Section V-A. Then 

1) GDF = [ O  c, I ] G F I .  
2) GFI = S(GDF,  PDF),  where S denotes the Redheffer 

1 0 0  

star product and 

Proof: 1 )  is easy; we only prove 2). Consider system 
S(GDF, PDF),  let x and 2 denote the “states” of GDF and 
PDF., respectively; conduct a state transformation 

which is admissible. The resulting interconnected system is as 
follows 

with respect to the block structure Diag [A, A]. The resulting 

The following theorem follows the above observation im- 

Theorem V-6: 
1) KFI := K D F [ C ~  

transfer matrix is exactly G F I ,  as claimed. 

mediately. 

I ]  &-stabilizes GFI if KDF Q = 
stabilizes GDF. Furthermore 

Fi(GFr, KDF[CZ 11) = &(GDF, K D F ) .  

2) Suppose that A-B1 Cz is Q-stable. Then KDF := Fl 
(PDF, K F I )  &-stabilizes GDF if K F I  Q-stabil- 
izes G F I .  Furthermore, 4 (GDF, Fl (PDF, KFr)) 
= Fi ( G F I , K F I ) .  

Pro08 1) it is easy. As for 2), note that by Proposition 
V-5, we have 

Fl(GFI, KFI) FZ(S(GFI, PDF), KFI) 
= ~ ( G D F ,  &(PDF, K F r ) ) .  

The Q-stability of the latter is confirmed by Theorem 11-5-2), 
because of the structure of the closed-loop system in terms of 
the previous observation, the Q-stability of A - BlCz, and the 

This theorem shows that if A - BlCz is Q-stable, then 
choice-of KFI .  

problems FI and DF are equivalent. 

Consider the DF system defined in the last section. Let 
KDF be an admissible controller. We next parameterize KDF.  
By Theorem V-6, KFI = K D F [ C ~  I ]  &-stabilizes the cor- 
responding GFI. Then by Proposition V-3, given F such 
that A + B2F is Q-stable, there exists Q which is Q-stable 
such that K F I  = [F Q] Q-stabilizes G F I .  Furthermore, 
~ ( J D F ,  Q) = ~ ( P D F ,  KkI) where 

JDF = rm]. (40) 

Hence by Theorem V-6, KDF := Fl( JDF, Q )  stabilizes GDF 
for any Q-stable Q. 

Actually, the above constructed parameterization character- 
izes all admissible controllers (not just a class of them) for 
the DF system. 

Proposition V-7: Consider the DF system. Suppose it is &- 
stabilizable and A - BlCz is Q-stable. Then all admissible 
controllers for the DF problem can be characterized by KDF = 
F ~ ( J D F ,  Q o )  with Q-stable Qo, where JDF is given in (44). 

Proof: From the above construction, it is known that the 
controllers expressed in the given LFT formula do &-stabilize 
GDF. Let ^KDF be any admissible controller for GDF, then 
Q := .F~(JDF, K D F )  is &-stable where 

since ~ D F  and GDF have the same parameters (CZ,  A, B z )  
which are the only parameters affecting the stabilization re- 
sults. We now claim that KDF = & ( J D F ,  Q ) .  

In fact, ~ ( J D F ,  Q )  = ~ ( J D F ,  Fz (JDF,  K D F ) )  =: 
Fi ( Jtmp, K D  F )  , where 

By conducting an admissible transformation, we have 

Hence, ~ ~ ( J D F ,  Q) = fi(Jt,,, K D F )  = KDF. This shows 
that any admissible controller can be expressed in the form of 

Dually, we can also conclude that the structures FC and OE 
are equivalent provided A - B2C1 is Q-stable. Furthermore, 
we have the following results about the structures FC and OE. 

7 KOE &-stabilizes GFC if KOE &- 

&((JDF,  Q )  for some Q-stable Q. 

Theorem V-8: 
1 )  KFC := 

stabilizes J ’  OB. Furthermore 

5 (GFc, [y ] K O E )  = ~ ~ ( G o E ,  KoE). 
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2) Suppose that A - B2C1 is Q-stable. Then KOE := 
4 ( POE, KFC)  Q-stabilizes GOE if KFC Q-stabilizes 
GFC. Furthemore, F~(GoE,  Fz(PoE, KFC))  = 
f i ( G F C ,  K F C ) .  

Proposition V-9: Assume that A - B2Cl is Q-stable. All 
admissible controllers for the OE problems can be character- 
ized as .F~(JoE, Qo) with any Q-stable Q O ,  where JOE is 
defined as Fig. 6. 

A i- BzF 

C i f D i z F  

I I  0 1  

Dii 0 1 2  

with L such that A + LC2 is Q-stable. 

C. Stabilization by Output Feedback 
In this subsection, we will prove the main results based 

on the results provided in the last subsection. We only prove 
Theorem V-2; Theorem V-I is obtained by letting Q = 0. The 
construction essentially involves reducing the OF problem to 
the simpler FI and FC problem. Consider system G (27) with 
the block structure A 

\ 

Controller Construction: We shall assume 0 2 2  = 0 with- 
out loss of generality. In fact, if 0 2 2  # 0, then the mapping 

is well defined by the assumption that the closed-loop system 
is well posed. Define 

then &(G,  K )  = Fl(G, 2). Thus, if K is designed for the 
above structure, and K can be obtained from Lemma VII-1 as 

This justifies the simplification. 
Next, we construct the controllers for OF problem with 

Dzz = 0. Let z denote the state of the system G. Since 
(A ,  Bz) is Q-stabilizable, there is a constant matrix F such 
that A + B2F is Q-stable. Note that [F 01 is actually a special 
FI stabilizing controller. Let 

which is Q-stable, and 

When D22 is arbitrary, the conclusions in the main theorems 
follow by the transformation (41). 

Uniqueness of Parameterization: Let us further examine 
Theorem V-2. The theorem says that any admissible controller 
K can be characterized as an LFT of a Q-stable parameter 
matrix Q, i.e., K = & ( J ,  Q) .  In fact, such a Q can be 
uniquely determined by K .  To state this precisely, recall from 
the inversion formulas for LFT’s in Lemma VTI-1 that we can 
solve the equation K = Fi ( J ,  Q) to uniquely give 

Q = FU(J-‘, K )  = & ( j ,  K )  

where a little algebra shows that 

J - l =  

-F 

I I = U - F X  and 
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Note that Q is stable if and only if K stabilizes j 2 2 .  But 
&2 = G22, so Q is stable if and only if K stabilizes G, as 
desired. We summarize this observation as follows. 

Theorem V-10: Any admissible controller K can be char- 
acterized as an LFT of a Q-stable parameter matrix &, i.e., 
K = F’i(J, Q) with Q realized by 

Q := f i ( j ,  K )  

where 

and the realization for K is Q-stabilizabk: and Q-detectable. 
Moreover, this characterization is unique for a given pair F 
and L satisfying the requirements stated in Theorem V-I. 

D. A Separation Principle for LFT Systems 
Observer-Based Controller: The above construction was 

conducted by reducing the synthesis of the problem to the 
independent synthesis of FI and OE problems. This reduction 
is based on the separation property. And it also leads to a 
separation structure for the resulting closed loop system. 

Let li. be the “state variables” for the central controller which 
is represented as follows 

which has an observer structure. The corresponding closed- 
loop system, under the admissible transformation T := 

, has the following transformatioin 

[-: A + C ; L C z  1 -4-1 
c1 - Dl2F 

i.e., the transformed system is decoupled into two separated Q- 
stable subsystems: the state-feedback system and the output- 
injection system; hence, it is also &-stable with respect to the 
new block structure A, = [ $ 11 by Theorem 11-5, so is the 
original closed-loop system as desired. 

Structure of Parameterized Closed-Loop Systems: The cen- 
tral controller for the controller parameterization (with Q = 
0) is an observer-based controller, and the observer 0 is 
given by (42) where 2 is the estimate of the state z of 
the original system. Therefore, a parameterized controller 
has some separation structure, and the closed-loop system is 
structured by the diagram, found in Fig. 7. 

Next, consider the closed-loop map which is also parame- 
terized as 

We have the following theorem about the structures of the 
closed-loop maps, whose proof is straightforward and is omit- 
ted. 

Theorem V-11: Let the state feedback and output injection 
matrices F and L be chosen as in the previous theorem. Then 
the closed-loop maps are parameterized as T,, = F’i(T, Q )  
with 

and Q is stable. Moreover, T,, is affine in Q, ik., 

VI. CONCLUDING REMARKS 
We have developed machinery for analysis, stabilization, 

and controller parameterization for linear fractional uncertain 
systems. All of the manipulations have been conducted in the 
LIT framework and have based on some naturally defined 
stability notions for the LFT systems. A separation principle 
is confirmed for the linear fractional uncertain systems. It is 
noted that most of the results, including the separation theory, 
also hold in the p-stability case via simple change of notation. 
It is also remarked that although the stability notion captures 
the robust performances, the separation argument cannot be 
naively carried out for the performance synthesis problem. 
This is the essential difference between the approach used 
here and that in [33], [31]. 

It is observed that the separation property discussed in this 
paper holds in greater generality than for just the Q- and 
p-stability problems. All that is required for the separation 
proof is that the notion of stability satisfy two requirements: 
1) stability invariance under a sufficiently rich set of similarity 
transformations, as in Theorem 11-4, and -2) a certain structural 
property as given in Theorem 11.5. It would clearly be possible 
to develop a more abstract axiomatic stabilization theory using 
these two properties. 
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Fig. 8. 

APPENDIX 

A. LFT's and p 

LFT's: The LFT formula arises naturally when we describe 
a well-posed feedback system as shown by the block diagram 
found in Fig. 8. The resulting input/output relation can be 
represented as z = 3 l (G ,  K ) w ,  where Fi(G, I() is said to 
be the (lower) LFT of G on K .  More explicitly, supposeG 
is partitioned conformably as 

(45) 

Then 

E ( G ,  K )  := G11+ G12K(I - G22K)-lG21 (46) 

provided the inverse is well defined [36]. Similarly, the (upper) 
LFT on A, which corresponds to the feedback A around upper 
loop, is defined as 

FU(G, A) = Gzz + G21A(I-  G11a)-~G12. (47) 

The following observation is about the inversion property 
of an LFT (161. 

Lemma VII-1: Suppose G is partitioned as in (45). Let 
P = Fl(G, K ) .  If G, G12, and G2l are square and invertible, 
and det (G11 - P )  # 0, then K = FU(G-', P) .  

Redheffer Star Products: Consider the following well- 
posed feedback configuration shown in Fig. 9. Then the 
Redheffer star product of Q and M [36], denoted as S(Q,  M ) ,  
is the resulting transfer function, i.e., [ ii] = S(Q, M )  [xi]. 
If Q and M are suitably partitioned as 

Note that for any compatibly dimensioned matrix K ,  we 
have 

provided that the related LFT's are well defined. 

Fig. 9. 

Structured Singular Values: Consider a matrix M E 6"'" 
and an underlying block structure A 

A := Diag [&IT1,. . . , 6 J T S ,  A,, . . . ,A,]. (49) 

Corresponding to this block structure, define a set 

5 := {Diag [&I,, , . . . ,6&, A I , .  . . , S,] : 

6, E C ,  A3 E Cmjxmj} c C"'". (50) 

We first have the following definition structured singular value 
P I .  

DeJinition VZI.2: The structured singular value p ~ a ( M )  of 
a matrix M with respect to structure A is defined as 

p A ( M )  := sup { 1 : det [ I  - AM] = 0} (51) 
AEA 

unless no A E 5 makes I - A M  singular, in which case 
p n ( M )  := 0. 

From the definition, it follows immediately that p n ( M )  = 
p ( M )  if 5 = {SI: 6 E C }  and ~ A ( M )  = Z ( M )  if A = 
CYX". 

The scaling matrix set 2) with respect to the block structure 
is defined as 

D = { D  E C"'" nonsingular: DA = AD, A E a}. (52) 

DeJnifion VII.3: The Q-value of M with respect to struc- 
ture A is defined as 

It is known that Q a ( M )  is an upper bound of ~ A ( M )  [9], i.e., 
,uA(M) 5 infDGD F(DMD-l) .  The upper bound is achieved 
for the following special block structures: 

1) A = {Diag[SI,, A] : 6 E C, A E C("-')'("-') 1. 
2) A = (Diag[Al, . . . ,A,] :  A, E Cmsxm*} E e"'", 

f 5 3, where no blocks are repeated. 
Remark VIZ.4: Both ~ A ( M )  and Q a ( M )  are continuous 

functions of M for fixed block structure 5. 
To end this review, we state the following result known as 

main-loop theorem in [29]. 
Lemma VIZ-5: Given a matrix M := [Ad2, n,,] 

partitioned conformably with the block structure 
A = Diag [A,, &I, then p*(M) < 1 if and only if 

pa,(J422) < 1, max p ~ , ( f i ( M ,  A,)) < 1. 
a(A2) 5 1 
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B. Multidimensional Systems Represented by LFT's 

tem of order (nl, 722) described by the Roesser state-space 

Let y > yo, then those matrices X E R"''"' such that 
Consider a two-dimensional linear shift-invariant (LSI) sys- Z( [ 5 21) < 7 are exactly those of the form 

equation [35] X = -YATZ + y(1-  YYT)1/2W(I - ZTZ)1/2 

; m ( k 1 +  1, 52) 

2 2 ( k 1 ,  k2 + 1) 

Y(k1, 52) 

= Aiizi(ki,  k2) + A i z ~ z ( k i ,  k2) + Biu(ki, k2) 

= A21~1(51, k2) + A2222(h, k2) + B24k1, k2) 

= ClSl(k1, k2) + C22Z(kl, k2) + DU(k1, k2) i 

(54) 
where ~ ( k 1 ,  kz) E R"' and z ~ ( k 1 ,  k2) E R"" denote the 
state vectors, U (  k l ,  kz) E Rp the input vector, and g( 51, k z )  E 
Rq the output vector. Define 

A : =  All  -412 A22] B := E:] C : =  [Cl CZ] 

where Y = B(y21 - ATA)-1/2, Z = (y21 - AAT)-ll2C, 
and W is an arbitrary contraction: Z(W) < 1. 

As a corollary to the above lemma, the following result 
plays the key role in this paper. 

Proposition VIZ-7: Consider the triple ( A ,  B ,  C) E 
x RnXp x Rqxn with Rank(B) = p < n and Rank 

(C) = q < n. Let BI E Rnx(n-P) and Bo E Rpx" be 
such that BTB = 0 and [Bo BI] is unitary, and let C, E 

R("-dx" andCoERnX4besuchtha tCLCT=0and [z] 
is unitary. Then 

R 7 Z X T I  

inf Z ( A  + BFC) = max{a(BFA), F(ACY)}. 

and A = Diag IAIIn,,  A2In2], where A i l  can be interpreted as 
a backward shift operator. The transfer matrix for this system 
with zero initial conditions is 

Pro03 Notice that both [Bo B I ]  and [CO Cl] are uni- 
tary matrix. Then 

F(A + BFG) =a([& BllT(A + BFC)[Co C l ]  

i.e., this system is represented as an LFT with respect to block 
structure A. More generally, an N-dimensional discrete LSI 
system with order ( 1 ~ 1 , .  . . , n ~ )  can alslo be represented in 
terms of an LFT as (55)  with respect to block structure 

A = Diag [ A l l n , ,  . . . , AN m,]. (56) 

Define U N  := {(XI,. . . ,AN) : A, E C ,  (A,( 5 l}. It is known 
that the N-dimensional system with system matrix A defined 
above is internally stable if and only i i  T(X1,. . . , AN) := 

Det [I - AA] # 0 in U N  [ 5 ] ,  [l]. Equivalently, pa(A) < 
1; in addition, the system is stable if there exists P = 
Diag [PI ,  . . . , PN] which is positive definite and P, E Rns xnz,, 

i = 1, . . . , N,  such that the following Lyapunov inequality 
holds [ I ]  

A P A ~  - P < 0. 

= max{a(BlfA), a(ACT)} 

which follows the preceding lemma. 
Given y > max{F(ByA), F(ACT)}, it is a routine adap- 

tation of Parrott's theorem to get a parameterization of all 
matrices F such that Z(A + B F C )  < y. A special case of the 
above proposition is stated as follows. 

Lemma VIZ-8: Assume (A, B )  E Rnxn x Rnxp and Rank 
( B )  = p < n. Let B l  E R"X(n-P) and Bo E Rpx" be such 
that BYB = 0 and [Bo B I ]  is unitary. Then 

inf 
 FER^'^ 

F(A + B F )  = Z(BYA) 

and the infimum is attained by F = -(BTB)-'BTA. 
Proof: Since U := [Bo B,] is unitary 

inf ' ( A  + B F )  = inf a(UT(A + B F ) )  
 FER^'^  FER^'^ 

= inf a 
 FER^'^ 

. . - ( P A  + B F B F ] )  
B,TA 

Note that the Lyapunov condition is equivalent to the Q- = ~ ( B T A ) .  
stability. 

Moreover the infimum is attained if BTA + BTBF = 0 or 

C. Parrott 's Theorem 
F = -(B ,TB) B;A. 

The matrix Bo in Lemma VII-8 can be chosen as Bo = 
The following lemma is known as Parrott's Theorem [lo], 

Lemma VIZ-6: Suppose (B, C, A) E Rnl xm2 x Rn2 X m l  x 

B(BTB)-1/2,  in which case, F = -(BTB)-lBTA. 
Wl. 
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