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Abstract— The simplest adequate models for congestion ~ Most results on nonlinear stability analysis concen-
control for the Internet are in the form of deterministic trate on handcrafted Lyapunov-Razumikhin functions, a
nonlinear delay differential equations. However the ab- procedure that was followed in most of the analyses of

sence of efficient, algorithmic methodologies to analyze - .
them at this modelling level usually results in the in- congestion control schemes for simple network topolo-

vestigation of their linearizations including delays; or in ~ gies restricted to single bottlenecks [3], [7], [19], [20].
the analysis of nonlinear yet undelayed models. In this Even in the case of systems described by ODEs,
paper we present an algorithmic methodology for efficient  stability analysis has always been a challenging task. An
stability analysis of network congestion control schemes at algorithmic methodology was proposed recently [16]
the nonlinear delay-differential equation model level, using [14] that allows analysis of such systems by al orithmi:
the Sum of Squares decomposition and SOSTOOLS. > y Ys y alge
cally constructing a_yapunov functioras a certificate
. INTRODUCTION for stability of the zero equilibrium using the Sum of
. _ ) Squares decomposition and SOSTOOLS [17].

Internet congestion control is an algorithm to allocate s methodology can be extended to the construction
available resources to competing sources efficiently §¢ | yapunov-Krasovskii functionals for nonlinear TDSs
as to avoid congestion collapse. The simplest adequal@q’the analysis of network congestion control models
models are in the form of deterministic nonlinear delayz|gqrithmically. The functionals that we use have struc-
differential equations [18], [8] but their analysis iSyres that are similar to the complete functionals used for
difficult and researchers are constrained to the inve§gapility analysis of linear TDSs but they have kernels
tigation of the properties of their nonlinear undelayeq,5¢ arepolynomials This allows the use of the Sum of

versions, or the linearised delayed ones. Analysis &g ares decomposition to check the resulting stability
the linearizations is usually misleading: any result i$ongitions through the solution of LMIs.

Ioce}l as rjonlinear phenomenq are ignored. Alsq analy3|s In Section Il of this paper we present the unified
of linearized undelayed versions may result in Majopqqe| framework used in congestion control, and the
pitfalls, as delays are k_nown_t_o_usually cause quradat'%ngestion control schemes we wish to analyze. In
of performance and instabilities. No analysis atttmpgeciion 111 we present key results on functional differen-

th.rough exhaustive simulations of the nonIingar model§a| equations and develop the algorithmic methodology
with delays can ever providemoof of the functionality 4t we propose to use. In Section IV we apply the

of the protocol. _ theory developed to the stability analysis of the network
Stability analysis of time-delay systems (TDS) haggngestion control schemes presented in Section 1.
been under intense research in the past years [9], [5] Notationis standard [6]R" is an n-dimensional real
and .algorithmic analysis proc_edures were developegd clidean space with norm |. Forb > a denoteC™ =
for linear TDSs. As far as time-domain procedure%([%b]’Rn) the Banach space of continuous functions
are concerned, there are two Lyapunov-based methoﬁ]‘apping the intervala, b] into R™ with the topology
ologies: using Lyapunov-Krasovskii (L-K) functionals o niform convergence. Fap € C" the norm ofé is
and Lyapunov-Razumikhin (L-R) functions. These Lya{jefined ad 6| = sup, <y<;, |6(0)|, where|-| is a norm in

punov certificates are constructed through the solutiof» \ve also denote by™ the set{¢ € C™ : ||¢|| < 1.
of Linear Matrix Inequalities — LMIs [2]. Lyapunov- K

Razumikhin LMI criteria are in general more conserva- II. CONGESTION CONTROL

tive than the Lyapunov-Krasovskii ones [5]. Consider a network of. communication links shared

o by S sources. Define the routing matrik by:
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m, o A. The dual congestion control scheme

=yl T

For this congestion control algorithm we have [10]:

o f o) >0 o
Di - maX{O, yl;Cl } If pl(t) — O - gl yl,Cl

(7)
—a;q;(t) A
zi(t) = Tmax,i€ M7 = fi(qi, i) 8)

where); is an upper bound on the number of bottleneck
links that sourcei sees in its pathq,; are (positive)
Fig. 1. The internet as an interconnection of sources akd timough S(.)u.rce gains, antm.x,; are source co_nstants. Com-
delays. bining (2-8) the system has the following closed loop
dynamics:

S Rli -y Z/ﬁ),:l Rmz‘f'm(fr*f'itl*ﬂ?””)
Y4 (t) = g - Lmax,i€ MiTi -1
1

=1
)
with forward time delays/: for p; > 0, andp; is equal to the positive projection of
s the right hand side of (9) if, = 0. For the linearisation
. i fy A L f of system (9) we have:
wlt) = Z;R“x’(t ) SrilenT) @) Theorem 1: [10] If the matrix R obtained from
’ eliminating non-bottleneck elements froRis full row
rank anda; < /2 then the system described by (1-4)
and (7-8) is linearly stable for arbitrary delays and link
capacities.

>

TCP| @i = fi(zi, qi,7i) 1= gy, o1, 1) AQM

i 14

@i = ro(p, 7))

The resourcesreact to the aggregate rajeby setting a
price p;. This is the Active Queue Management (AQM)
part of the algorithm. The prices of all the links that
sourcei uses are added to form, the aggregate price
for sourcei, again through a delay;: B. The Primal-Dual congestion control scheme
L The drawback of the dual control law is that it puts a
a(t) = Z Rupi(t = 70) = ro(pr, 7)) (3)  restriction on the sources’ demand curves, as the source
=1 law is static A primal-dual congestion control scheme,
The pricesy; can then be used to set the rateof source developed in [11], alleviates this problem. Apart from
i. This is the Transmission Control Protocol (TCP) party;, 1; andp; given by (3), (2) and (7) respectively,
of the algorithm, which completes the picture shown in

—aa;(t)

Figure 1. The capacity of link is denoted byc;. The zi(t) = xpietie M (10)

forward and backward delays can be combined to yield : B;

the Round Trip Time (RTT) for sourcé 7;: &) = T[Uz‘/(xi(t)) a) (11)
7= Tz{l + Tib,l (4) whereU;(z;) is the utility function of source andg; is a

parameter. We have the following result for the stability
of the linearised system:

Theorem 2: [11] Assume that for every sourcg
7; < 7. Then the system described by 1-4), (7) and (10—
i = fi(zi, qi 1), (5) 11), witha; < m/2 andz = 2 = 1 for € (0,1)

small enough depending om > «; the closed loop
system is linearly stable.

This setting isuniversa) and what needs to be specified
are two control laws that describe how tht& source
reacts to the price signgl that it sees

and how thdth router reacts to the signgl it observes

P = gi(yi, i, c)- (6)
] I1l. STABILITY ANALYSIS
Here f; models TCP algorithms (e.g. Reno or Vegas)
and g; models AQM algorithms (e.g. RED, REM). Global nonlinear stability analysis of the above net-

work congestion control schemes was performed in [19],

We will be concerned with two congestion control[20] in the single bottleneck case based on Lyapunov-
schemes, a dual [11] (i.e. with dynamics only at thdRazumikhin (L-R) functions. Other attempts to analyze
links) and a primal-dual [10] (i.e. with dynamics at bothstability of time delay systems arising from network
sources and links). congestion control include a passivity approach in [4].



Attempts to construct L-R functions for general topol-We assume that;, andb;, and f(x;, p) are polynomial
ogy networks can be found in [1], [22]. A Lyapunov- functions in their arguments for al| andi,. We further
Krasovskii approach can be found in [13]. require thatf (z, p) has no singularity if2 C C" xR™,

Here we will be concerned with autonomous Retarde€lefined as follows:
Functional Differential Equations (RFDEs) given by ¢ _ {(z5,p) € C" X R™ | ay, (w4, p) < 0, by, (x4,p) = 0,

L(t) = f(ze). (12 for all i, andiy}.

wheref : Q@ — R™, Q C C™, ' "’ represents the right- The inequalitiesa;, can be used to constru? or
hand derivative and:, € Q, z,(0) = z(t + 6), § € define the parametric uncertainty region in g The
[—7,0]. Stability definitions for the equilibriumx* of  equalitiesh;, may result from a change of coordinates,
this system satisfyingf(z*) = 0, can be found in [6]. to ensure that the equilibrium is at the origin as the
Assessing the equilibrium stability properties ofparametersp vary. Without loss of generality, it is
(12) can be done usingime-domain (Lyapunov- assumed thaf(x;,p) =0 for z; = 0 andp € P, where
based) methodologies. From the two equally im- o m ~
portant Lyapunov-based procedures, Razumikhin and P ={peR"[(0,p) € 0}
Krasovskii, we will concentrate on the latter. The L-KWe have the following extension of the Lyapunov-
theorem can be seen as a generalization of the Lyapunivasovskii stability theorem:
thgorem for systems desqri_laed by QDEs, in_whic_h the Theorem 4:Suppose that for the system (13-15)
existence of a positive d_e_fm_lte fun_cUdh(:c) de_flned IN " there exists a functional (z;, p), polynomialsu;, (z¢, p)
a region of the zero eqwhbnum with a negative definiteyq wi, (z4,p) > 0 defined inQ such thatV (z¢, p) is
derivative proves its asymptotic stability. positive definite in¢. Then
More specifically let? ¢ CZ, defineV : Q@ — R a .
continuous functional and lét denote theright upper = V(ze,p) + Zuil(l‘t,p)ﬂlil(l‘t,p)‘F
Dini Derivative. Then we have thenfollowing theorem: + ) wiy (w4, p)biy (21,) > 0 (16)
Theorem 3:(Lyapunov-Krasovskii) [6] Suppos¥ : . o )
Q — R is continuous and there exist nonnegativéVil guarantee that the origin of the state space is a
functions ¢(s), and ¥(s) such thaty(s) — oo as stable equilibrium of the system. Requiring positive

s — 00, ¢(0) = ¥(0) = 0 and definiteness of (16) yields uniform asymptotic stability
. of the equilibrium.
p2(0)]) < V(@), V(¢) < —d(¢(0)]) for all ¢ € . Proof: The first Lyapunov condition is satisfied, as

Then the solution: = 0 of (12) is stable. If, in addition, V'(z¢,p) is positive definite ir2. The second Lyapunov
J(s) is positive definite, then the solution= 0 of (12)  condition is also satisfied, as

is asymptotically stable. .
-V B 2 - 71 3 i1 )
The functiony(s) makes the Lyapunov functiongbsi- (1,P) Zu (@1 P)ai (@,p)

tive definitein Q2. We define the regioft = C for some — Z wi, (¢, p)biy (T4, p) >0
~ > 0. From this condition, a number of constraints can .
be written onz;,; for example, one can write by virtue of the fact that int2 we haveb;, = 0 and
N a;; > 0, and we have chosen;, > 0. Hence the
g1i = (wi(t +0) = y)(zi(t +0) +7) <0, equilibrium of the system is stable. If Condition (16) is
whered ¢ [, 0], whose by-products are: made positive definite, then uniform asymptotic stability
. ’ of the equilibrium follows. [
goi = (wi(t) = y)(xi(t) +7) <0 To use the above theorem, one has to choose a
g3 = (it —7) =Yt —7)+7) <0 structure for the functional/(z;) and then construct

appropriate Lyapunov conditions. Here we concentrate

Consider now a time-delay system of the form (12): on functionals of integral form with polynomial kernels.

(t) = f(ze,p), (13) Let us choose the structure
0
where p € R™ encompasses uncertain parametersy(,. — Vn(z(t + V(6. z(t). 2(t + 6). p)do
This system is supplemented by a set of equalities and( 2 o((®).p) —r 16, 2(8), 2( )»)
inequalities of the form 0 rt (a( \dcdo 17)
+/ / Va(x(C), p)d¢de, 17
ai, (xr,p) < 0, fori; =1,..., Ny, (14) —rJt+o 2((0). p)dC

bi,(zr,p) = 0, forig =1,..., No, (15) whereV; are polynomials in their arguments. Then we



can write: for j =1,...,n with v a positive number and;; > 0.
Proposition 5: Consider the system given by (13) To impose the condition® € [—r, 0] and the inequalities
under the constraints (14-15). Suppose that there ethat arise from constraining the state-space, we use a
ist polynomialsVy(z(t),p), V1(0,z(t), z(t + 0),p) and process similar to the S-procedure. For example, the

Va(x(¢),p) and a positive definite functiop(x(t)) such  polynomial a1 (0, z(t),z(t + 0)) is required to be a

that the following conditions hold for allz, p) € € Sum of Squares only wheh = 6(0 + 7) < 0 and
1) Vo(z(t),p) — (z(t)) > 0, the inequaliti_e_Sai and equalitie_sbi are ;atisfied. We
2) Vi(0,z(t),z(t +6),p) >0V 0 € [-7,0], therefore adjoin these constraints g in the same
3) Va(zx ( 0),p) >0, manner that was done in Theorem 4 using instead
4) V1(0 2(t),x(t),p) — Vi(—7,z(t), ( 7),p) + of constant positive multlpl!ers (S-'procedure.), Sum of
&L t o rVa(z(t),p) — T‘/Q( (t + 0),p) + Squares multipliers for the inequality constraihtand

a; and polynomial multipliers for the equality constraints
Taac(f)f o Wl <0,V 8e[-70] b; [14]. Then the four conditions in Proposition 5 will
Then the equﬂlbrlunﬁ of the system given by (13-15) be four SOS constraints in a relevant Sum of Squares
is robustly stable programme which can be solved using SOSTOOLS [17].
Proof: Conditions (1-3) in the Proposition above In a similar manner, other Lyapunov functional struc-
require thatV (z;,p) > ¢(z(t)) > 0 in €, so the first tures can be used other than (17), as we will see in the
Lyapunov condition is satisfied. The derivative Bf examples to follow. See also [12]. Moreover if asymp-

along the system'’s trajectories is totic stability is required, condition (4) in Proposition 5
] 8VO can be made negative definite by constructing a positive
V(ze,p) = Dt )f + V1(0,z(t), z(t), p) definite(z(¢)) and imposing a similar condition to (1)

in Proposition 5, as required by Theorem 3.

%! %
~Vilma®), 2t —m).p) + ,/4 (ax( - 7) d0 IV. STABILITY OF INTERNET CONGESTION CONTROL

0 SCHEMES
+ [T (Va(2(t), p) = Vala(t +0),p)) df In this section we analyze the stability properties of
Lo [ Va0, a(t). x(0).p) + Do f 47 2 f the two congestion control schemes that were described
—— / Vi (=7, 2(t), 2(t — ), p) — Ti in Section Il in simple network topologies.
T +rVa(e(t), p) — TVa(a(t + 6), ) A. Analysis of instances for the dual control law

The kernel of this is non-positive by condition (4), hence 1) A single source, single bottleneckiere we con-
V(xt, p) <0in Q) and the equilibrium is robustly stable. sider a single source and single bottleneck,S.e: L =

—ag

B 1, R =1 which setsc = 1. Underz = zp.xe™ —1,
To check the above conditions in an algorithmic way we&ve have:

can use the Sum of Squares (SOS) decomposition and . «
semidefinite programming (Linear Matrix Inequalities), (1) = _;[z(t) +1]z(t =), (19)
as it was done in the ODE case [14]. A detailedyhere—1 < 2(t) < —1 + Zax
description about SOS and its algorithmic Verlflablllty We assume thaﬁmax > ¢, i.e. the link is a bottleneck.
can be found in [16]. For this the vector field has to inearisation about the zero equilibrium givegt) =
be rendered polynomial in the variables!), x(t —7) 2t — r) and so stability is retained locally for
as described in [15] Construction of the Semldeflnlt%é < 77/2 [9] For the nonlinear version, we attempt to
programme can be cumbersome when the degree of thgnstruct the following L-K functional:
polynomials is high. For this reason, conversion of SOS
conditions to the corresponding semidefinite programme V(=) :0 Vo Oz(t))+
has been automated in SOSTOOLS [17], a software +/ / Vi (0,€, 2
developed for this purpose. This software package was T
used for solving all the examples in this paper. 0

We now describe how Proposition 5 can be used in +/,T Hg%(z(q))dgdtﬂf,T Hé%(z(@)dgdg'
practice. We first construct the polynomidlg, ; and
V5 in SOSTOOLS (respecting the symmetric structure
if there should be one). We construgtxz(¢)) > 0 as

(), z(t + 0), z(t + £)) dOdE+

0 t

For a = 1 we can construct thid” for |z;| = 0.42
Qvhen the order ol andV; is 2 andV; is 4 andV; is
not a function off, £. Lyapunov functionals with better
n m/2 m/2 properties can be constructed when the kernels are also
2(t) =Y > ez, > e; >, (18) made functions of and, with higher order kernels. In
j=1 i=1 i=1 particular, a/ was constructed with-0.99 < z, < 1.



Remark 6:(19) is Hutchinson’s Equation a well i=1 =2 A
known FDE [21]. It models single species growth strug-
gling for a common food. This reveals an interesting =1 =2
connection between competition models in ecology and =3 Y
network congestion control. The nonlinear equation (19)
has been analyzed in [21] wheiglobal stability is
proven fora < 37/24 = 1.5417 andz, > —1, by using
properties of the solution (non Lyapunov method).
2) Single bottleneck, many sourcéﬂeretwe perform
the change of coordinates(t) = MT'”@%() — 3; with
B; =1/5 to get:

Fig. 2. A simple network.

values of the delay size. Fan, = 0.2 and» = 0.3,
we can construct thi$” with second ordef, V; and

. L8 4th orderVayy, Voo for @ = 1 and |z;,| = 0.44. When

« « i

Zi(t) = — 2 [zi(t) + =|p(t) = ——[zi(t)+—]§ a(t-m) = 0.1 and 72 = 0.3, we can construct thi$” for
T o i s = a=1and—0.49 < z, < 0.61.

for —% < z(t) < —% + #mi Note that this transfor- ~ More complicated topologies can also be analyzed.
mation puts al-D system in anS-D formulation. There
are S — 1 equality constraints that have to be imposed

of the form B. Analysis of simple cases for the primal-dual control
(Sz:(t) + 1) = (Sz;(H) + 1), Vi j€S. law
In the case of two heterogeneous sources, we have: 1) Single source single link case€onsider the case

) « of a single link and flow. The system equations can be

Z1(t) = —?I[Z1(t) +0.5][z1(t — 71) + 22(t — T2)], simplified to the following:

. a _

29(t) = _E[ZQ(t) +0.5][z1(t = 71) + 22(t — 72)], i(t) = KTﬁ _ gq(t)x(t) _ % (a:(t)a:(ctf) — x(t)>
(221(t) + 1)™ = (22(t) +1)™ ot — 1)

where—0.5 < z;(t) < —0.54+*" In case of general q(t) = c -1

. e .
and 7, we approximateZl by a rational number whose The equilibrium for this system isy = ¢ and gy = £

numerator and denominator are small integers, and covgt i nymerical ill-conditioning when is large we

the rest in the uncertainty framework developed earlier, . c
. : ; . ; . ~scale the state. Defing = z/c—1 andz; = £q—1

This avoids high order terms in the equality constralntto get: K

For the linearisation of these equations about the '

equilibrium z; = z, = 0 we have the system 4= 7%(212,2 4ot 2) — %(zl(t)zl(t — )t a(t—7)

(6% (6%

2(t) = —2—7_12(15 —7) — 2—7_2,2(15 —12), (200 ,, _ %21(15 7

wherez = z; for which we recall the following result: For the analysis we use= 40, a = 1,7 = 0.2, 3 = 3.2
Proposition 7: [9] The trivial solution of 2(¢) = and K = 20. We can construct a Lyapunov functional

—ar1z(t — 1) — asz(t — 12) is asymptotically stable if of the form

a1y + asTe < /2. 0t

Therefore a stability condition for the system given by Vi(z:) = Vo(z1(t), 22(t)) +/ Va(21(€))d¢do

(20) isa < /2. —T 4o

0

We now analyze the nonlinear case using SOS- +/ Vi(z1(t), 21 (t+ 0), z0(t))dO (1)
TOOLS. Since we have a system with two delays, we —r
have to use a different functional. We choose, denotingyan, 21| < y,20 > —1for @ =1 andvy, = 0.75
z(t) = [21(t), 22 (D)), with the polynomialsV,, and V; second order and’,

2 00 gt 4th order. When their degree is increased by 2, then
Vize) = Vo(z(t)) + Z/ Vai(2(€))d¢do; these become-1 < z;, <3.4,20 > —1.
. i=1 7 T A 2) A simple network exampleConsider the network
+/ / Vi(2(8), 2(t + 01), 2(t + 02))d01 5. shown in Figure 2, for which
J—11 J -T2

1 0 1
In this case the stability analysis was tested for various R= { 0 1 1 ] '



We assumer;; < 7/2 wherer is a delay overbound.

We let s, = ﬂg = f3/2 =7, all thecl =candq; = a. [1]
K\ +K K:
equilibrium for th|s system is
~ -~ K1 K )
21,0, 2.0, 23,05 1,0, = (cK1,cKy, cKy, —, =2 [2
(1,0, 2,0, 3,0, 1,0, 42,0) ( 1,cK1,cKs . ok

We can perform the same manipulation to the closeds;
loop system as before, to get
) [4]

a0 = ( Klﬁl Lz1(1) + 2a(t) + 21 () 2a(0)]
[Zl( ) + 1“K2Z3(t —7)+ f(lzl(t — 7]

= TERZERO+50+20n0H 5]
[22 +1}[K223(t77') + Kiza(t — 7)) [6]
ﬁ?’ —[(2324 + 23 + 24) K1 + (2325 + 23 + 25) K2]
—5=lza(t) +1] [7]
><[21 t — T)Kl + Zz(t — T)K1 + 223(t — T)KQ]
24(t)=K7 Kiz1(t — 7) + Kaz3(t — 7)) (8]
s5(t) = Kf((m T Ka)a(t — 7) + Kaza(t = 7)) [
We use the same values feta,7 as before We
calculate 8 = % and we letK; = 15, (10]
20, K3 = 25. We can construct a similar Lyapunov
functional to (21) with all polynomial$;, V; of second [11]
order andV, of order 4 for
0 S X1, S 2.3.’13170, 0 S xro, S 2.31‘2,0, [12]
0<ux3 <23x30, @1>0, ¢2>0. [13]
V. CONCLUDING REMARKS [14]

We presented a methodology to construct Lyapunov-
Krasovskii functionals for time delay systems based oR®!
the Sum of Squares decomposition. The construction is
entirely algorithmic and is done through the solutior16]
of Linear Matrix Inequalities (LMIs). The nonlinear
stability of simple topologies of networks employlng[17]
different congestion control algorithms was analyzed in
this way, taking account of the delays present in thﬁs
feedback mechanism. !

This method can be extended to discrete systems with
delays and systems with time-varying delays. These two®
cases have interesting applications to network conges-
tion control. A judicious choice for the structure of the[20]
Lyapunov functional would still be required.

Invariant sets in the regiorn@ constructed above can [21]
also be identified using the Sum of Squares decomp05|-
tion, as maximal level sets of the Lyapunov functionald??!
that were constructed using SOSTOOLS.

] Z. Wang and F. Paganini.
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