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Abstract— The simplest adequate models for congestion
control for the Internet are in the form of deterministic
nonlinear delay differential equations. However the ab-
sence of efficient, algorithmic methodologies to analyze
them at this modelling level usually results in the in-
vestigation of their linearizations including delays; or in
the analysis of nonlinear yet undelayed models. In this
paper we present an algorithmic methodology for efficient
stability analysis of network congestion control schemes at
the nonlinear delay-differential equation model level, using
the Sum of Squares decomposition and SOSTOOLS.

I. INTRODUCTION

Internet congestion control is an algorithm to allocate
available resources to competing sources efficiently so
as to avoid congestion collapse. The simplest adequate
models are in the form of deterministic nonlinear delay-
differential equations [18], [8] but their analysis is
difficult and researchers are constrained to the inves-
tigation of the properties of their nonlinear undelayed
versions, or the linearised delayed ones. Analysis of
the linearizations is usually misleading: any result is
local as nonlinear phenomena are ignored. Also analysis
of linearized undelayed versions may result in major
pitfalls, as delays are known to usually cause degradation
of performance and instabilities. No analysis attempt
through exhaustive simulations of the nonlinear models
with delays can ever provide aproof of the functionality
of the protocol.

Stability analysis of time-delay systems (TDS) has
been under intense research in the past years [9], [5]
and algorithmic analysis procedures were developed
for linear TDSs. As far as time-domain procedures
are concerned, there are two Lyapunov-based method-
ologies: using Lyapunov-Krasovskii (L-K) functionals
and Lyapunov-Razumikhin (L-R) functions. These Lya-
punov certificates are constructed through the solution
of Linear Matrix Inequalities — LMIs [2]. Lyapunov-
Razumikhin LMI criteria are in general more conserva-
tive than the Lyapunov-Krasovskii ones [5].
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Most results on nonlinear stability analysis concen-
trate on handcrafted Lyapunov-Razumikhin functions, a
procedure that was followed in most of the analyses of
congestion control schemes for simple network topolo-
gies restricted to single bottlenecks [3], [7], [19], [20].

Even in the case of systems described by ODEs,
stability analysis has always been a challenging task. An
algorithmic methodology was proposed recently [16],
[14] that allows analysis of such systems by algorithmi-
cally constructing aLyapunov functionas a certificate
for stability of the zero equilibrium using the Sum of
Squares decomposition and SOSTOOLS [17].

This methodology can be extended to the construction
of Lyapunov-Krasovskii functionals for nonlinear TDSs
and the analysis of network congestion control models
algorithmically. The functionals that we use have struc-
tures that are similar to the complete functionals used for
stability analysis of linear TDSs but they have kernels
that arepolynomials. This allows the use of the Sum of
Squares decomposition to check the resulting stability
conditions through the solution of LMIs.

In Section II of this paper we present the unified
model framework used in congestion control, and the
congestion control schemes we wish to analyze. In
Section III we present key results on functional differen-
tial equations and develop the algorithmic methodology
that we propose to use. In Section IV we apply the
theory developed to the stability analysis of the network
congestion control schemes presented in Section II.

Notation is standard [6].Rn is an n-dimensional real
Euclidean space with norm| · |. For b > a denoteCn =
C([a, b], Rn) the Banach space of continuous functions
mapping the interval[a, b] into R

n with the topology
of uniform convergence. Forφ ∈ Cn the norm ofφ is
defined as‖φ‖ = supa≤θ≤b |φ(θ)|, where|·| is a norm in
R

n. We also denote byCn
γ the set{φ ∈ Cn : ‖φ‖ < γ}.

II. CONGESTION CONTROL

Consider a network ofL communication links shared
by S sources. Define the routing matrixR by:

Rli =

{

1 if sourcei uses linkl
0 otherwise (1)

Associated with each sourcei is a transmission rate
xi. All sources whose flow passes through resourcel
contribute to theaggregate rateyl, the rates being added
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Fig. 1. The internet as an interconnection of sources and links through
delays.

with forward time delaysτf
i,l:

yl(t) =

S
∑

i=1

Rlixi(t − τf
i,l) , rf (xi, τ

f
i,l) (2)

The resourcesl react to the aggregate rateyl by setting a
price pl. This is the Active Queue Management (AQM)
part of the algorithm. The prices of all the links that
sourcei uses are added to formqi, the aggregate price
for sourcei, again through a delayτ b

i,l:

qi(t) =

L
∑

l=1

Rlipl(t − τ b
i,l) , rb(pl, τ

b
i,l) (3)

The pricesqi can then be used to set the ratexi of source
i. This is the Transmission Control Protocol (TCP) part
of the algorithm, which completes the picture shown in
Figure 1. The capacity of linkl is denoted bycl. The
forward and backward delays can be combined to yield
the Round Trip Time (RTT) for sourcei, τi:

τi = τf
i,l + τ b

i,l (4)

This setting isuniversal, and what needs to be specified
are two control laws that describe how theith source
reacts to the price signalqi that it sees

ẋi = fi(xi, qi, τi), (5)

and how thelth router reacts to the signalyl it observes

ṗl = gl(yl, pl, cl). (6)

Here fi models TCP algorithms (e.g. Reno or Vegas)
andgl models AQM algorithms (e.g. RED, REM).

We will be concerned with two congestion control
schemes, a dual [11] (i.e. with dynamics only at the
links) and a primal-dual [10] (i.e. with dynamics at both
sources and links).

A. The dual congestion control scheme

For this congestion control algorithm we have [10]:

ṗl(t) =

{ yl−cl

cl
if pl(t) > 0;

max{0, yl−cl

cl
} if pl(t) = 0.

, gl(yl, cl)

(7)

xi(t) = xmax,ie
−αiqi(t)

Miτi , fi(qi, τi) (8)

whereMi is an upper bound on the number of bottleneck
links that sourcei sees in its path,αi are (positive)
source gains, andxmax,i are source constants. Com-
bining (2–8) the system has the following closed loop
dynamics:

ṗl(t) =

(
SX

i=1

Rli

cl

xmax,ie

−αi
PL

m=1 Rmipm(t−τ
f
i,l

−τb
i,m

)

Miτi − 1

)
(9)

for pl > 0, and ṗl is equal to the positive projection of
the right hand side of (9) ifpl = 0. For the linearisation
of system (9) we have:

Theorem 1: [10] If the matrix R obtained from
eliminating non-bottleneck elements fromR is full row
rank andαi < π/2 then the system described by (1–4)
and (7–8) is linearly stable for arbitrary delays and link
capacities.

B. The Primal-Dual congestion control scheme

The drawback of the dual control law is that it puts a
restriction on the sources’ demand curves, as the source
law is static. A primal-dual congestion control scheme,
developed in [11], alleviates this problem. Apart from
qi, yl andpl given by (3), (2) and (7) respectively,

xi(t) = xm,ie
ξie

−αiqi(t)

Miτi (10)

ξ̇i(t) =
βi

τi
[U ′

i(xi(t)) − qi(t)] (11)

whereUi(xi) is the utility function of sourcei andβi is a
parameter. We have the following result for the stability
of the linearised system:

Theorem 2: [11] Assume that for every sourcei,
τi ≤ τ . Then the system described by 1–4), (7) and (10–
11), with αi < π/2 and z = βiMi

αi
= η

τ for η ∈ (0, 1)
small enough depending onα ≥ αi the closed loop
system is linearly stable.

III. STABILITY ANALYSIS

Global nonlinear stability analysis of the above net-
work congestion control schemes was performed in [19],
[20] in the single bottleneck case based on Lyapunov-
Razumikhin (L-R) functions. Other attempts to analyze
stability of time delay systems arising from network
congestion control include a passivity approach in [4].



Attempts to construct L-R functions for general topol-
ogy networks can be found in [1], [22]. A Lyapunov-
Krasovskii approach can be found in [13].

Here we will be concerned with autonomous Retarded
Functional Differential Equations (RFDEs) given by

ẋ(t) = f(xt). (12)

wheref : Ω → R
n, Ω ⊂ Cn, ‘ ˙ ’ represents the right-

hand derivative andxt ∈ Ω, xt(θ) = x(t + θ), θ ∈
[−τ, 0]. Stability definitions for the equilibriumx∗ of
this system satisfyingf(x∗) = 0, can be found in [6].

Assessing the equilibrium stability properties of
(12) can be done usingtime-domain (Lyapunov-
based) methodologies. From the two equally im-
portant Lyapunov-based procedures, Razumikhin and
Krasovskii, we will concentrate on the latter. The L-K
theorem can be seen as a generalization of the Lyapunov
theorem for systems described by ODEs, in which the
existence of a positive definite functionV (x) defined in
a region of the zero equilibrium with a negative definite
derivative proves its asymptotic stability.

More specifically letΩ ⊂ Cn
γ , defineV : Ω → R a

continuous functional and leṫV denote theright upper
Dini Derivative. Then we have the following theorem:

Theorem 3:(Lyapunov-Krasovskii) [6] SupposeV :
Ω → R is continuous and there exist nonnegative
functions ϕ(s), and ϑ(s) such thatϕ(s) → ∞ as
s → ∞, ϕ(0) = ϑ(0) = 0 and

ϕ(|φ(0)|) ≤ V (φ), V̇ (φ) ≤ −ϑ(|φ(0)|) for all φ ∈ Ω.

Then the solutionx = 0 of (12) is stable. If, in addition,
ϑ(s) is positive definite, then the solutionx = 0 of (12)
is asymptotically stable.
The functionϕ(s) makes the Lyapunov functionalposi-
tive definitein Ω. We define the regionΩ = Cn

γ for some
γ > 0. From this condition, a number of constraints can
be written onxit

; for example, one can write

g1i , (xi(t + θ) − γ)(xi(t + θ) + γ) ≤ 0,

whereθ ∈ [−τ, 0], whose by-products are:

g2i , (xi(t) − γ)(xi(t) + γ) ≤ 0

g3i , (xi(t − τ) − γ)(xi(t − τ) + γ) ≤ 0

Consider now a time-delay system of the form (12):

ẋ(t) = f(xt, p), (13)

where p ∈ R
m encompasses uncertain parameters.

This system is supplemented by a set of equalities and
inequalities of the form

ai1(xt, p) ≤ 0, for i1 = 1, ..., N1, (14)

bi2(xt, p) = 0, for i2 = 1, ..., N2, (15)

We assume thatai1 andbi2 andf(xt, p) are polynomial
functions in their arguments for alli1 andi2. We further
require thatf(xt, p) has no singularity iñΩ ⊂ Cn×R

m,
defined as follows:

Ω̃ = {(xt, p) ∈ Cn × R
m | ai1(xt, p) ≤ 0, bi2(xt, p) = 0,

for all i1 and i2}.

The inequalitiesai1 can be used to construct̃Ω or
define the parametric uncertainty region in thep’s. The
equalitiesbi2 may result from a change of coordinates,
to ensure that the equilibrium is at the origin as the
parametersp vary. Without loss of generality, it is
assumed thatf(xt, p) = 0 for xt = 0 andp ∈ P , where

P = {p ∈ R
m|(0, p) ∈ Ω̃}.

We have the following extension of the Lyapunov-
Krasovskii stability theorem:

Theorem 4:Suppose that for the system (13–15)
there exists a functionalV (xt, p), polynomialsui1(xt, p)
and wi2(xt, p) ≥ 0 defined inΩ̃ such thatV (xt, p) is
positive definite inΩ̃. Then

− V̇ (xt, p) +
∑

ui1(xt, p)ai1(xt, p)+

+
∑

wi2(xt, p)bi2(xt, p) ≥ 0 (16)

will guarantee that the origin of the state space is a
stable equilibrium of the system. Requiring positive
definiteness of (16) yields uniform asymptotic stability
of the equilibrium.

Proof: The first Lyapunov condition is satisfied, as
V (xt, p) is positive definite iñΩ. The second Lyapunov
condition is also satisfied, as

− V̇ (xt, p) ≥ −
∑

ui1(xt, p)ai1(xt, p)

−
∑

wi2(xt, p)bi2(xt, p) ≥ 0

by virtue of the fact that inΩ̃ we havebi2 = 0 and
ai1 ≥ 0, and we have chosenui1 ≥ 0. Hence the
equilibrium of the system is stable. If Condition (16) is
made positive definite, then uniform asymptotic stability
of the equilibrium follows.

To use the above theorem, one has to choose a
structure for the functionalV (xt) and then construct
appropriate Lyapunov conditions. Here we concentrate
on functionals of integral form with polynomial kernels.
Let us choose the structure

V (xt, p) = V0(x(t), p) +

∫ 0

−τ

V1(θ, x(t), x(t + θ), p)dθ

+

∫ 0

−τ

∫ t

t+θ

V2(x(ζ), p)dζdθ, (17)

whereVi are polynomials in their arguments. Then we



can write:
Proposition 5: Consider the system given by (13)

under the constraints (14–15). Suppose that there ex-
ist polynomialsV0(x(t), p), V1(θ, x(t), x(t + θ), p) and
V2(x(ζ), p) and a positive definite functionϕ(x(t)) such
that the following conditions hold for all(xt, p) ∈ Ω̃:

1) V0(x(t), p) − ϕ(x(t)) ≥ 0,
2) V1(θ, x(t), x(t + θ), p) ≥ 0 ∀ θ ∈ [−τ, 0],
3) V2(x(ζ), p) ≥ 0,
4) V1(0, x(t), x(t), p) − V1(−τ, x(t), x(t − τ), p) +

∂V0

∂x(t)f + τV2(x(t), p) − τV2(x(t + θ), p) +

τ ∂V1

∂x(t)f − τ ∂V1

∂θ ≤ 0, ∀ θ ∈ [−τ, 0].

Then the equilibrium0 of the system given by (13–15)
is robustly stable.

Proof: Conditions (1-3) in the Proposition above
require thatV (xt, p) ≥ ϕ(x(t)) > 0 in Ω̃, so the first
Lyapunov condition is satisfied. The derivative ofV
along the system’s trajectories is

V̇ (xt, p) =
∂V0

∂x(t)
f + V1(0, x(t), x(t), p)

− V1(−τ, x(t), x(t − τ), p) +

Z 0

−τ

�
∂V1

∂x(t)
f −

∂V1

∂θ

�
dθ

+

Z 0

−τ

(V2(x(t), p) − V2(x(t + θ), p)) dθ

=
1

τ

Z 0

−τ

0� V1(0, x(t), x(t), p) + ∂V0
∂x(t)

f + τ ∂V1
∂x(t)

f

−V1(−τ, x(t), x(t − τ), p) − τ ∂V1
∂θ

+τV2(x(t), p) − τV2(x(t + θ), p)

1A dθ

The kernel of this is non-positive by condition (4), hence
V̇ (xt, p) ≤ 0 in Ω̃ and the equilibrium is robustly stable.

To check the above conditions in an algorithmic way we
can use the Sum of Squares (SOS) decomposition and
semidefinite programming (Linear Matrix Inequalities),
as it was done in the ODE case [14]. A detailed
description about SOS and its algorithmic verifiability
can be found in [16]. For this the vector field has to
be rendered polynomial in the variablesx(t), x(t − τ)
as described in [15]. Construction of the semidefinite
programme can be cumbersome when the degree of the
polynomials is high. For this reason, conversion of SOS
conditions to the corresponding semidefinite programme
has been automated in SOSTOOLS [17], a software
developed for this purpose. This software package was
used for solving all the examples in this paper.

We now describe how Proposition 5 can be used in
practice. We first construct the polynomialsV0, V1 and
V2 in SOSTOOLS (respecting the symmetric structure,
if there should be one). We constructϕ(x(t)) > 0 as

ϕ(x(t)) =

n
∑

j=1

m/2
∑

i=1

ǫijxj(t)
2i,

m/2
∑

i=1

ǫij ≥ γ, (18)

for j = 1, . . . , n with γ a positive number andǫij ≥ 0.
To impose the conditionsθ ∈ [−τ, 0] and the inequalities
that arise from constraining the state-space, we use a
process similar to the S-procedure. For example, the
polynomial a1(θ, x(t), x(t + θ)) is required to be a
Sum of Squares only whenh = θ(θ + τ) ≤ 0 and
the inequalitiesai and equalitiesbi are satisfied. We
therefore adjoin these constraints toV1 in the same
manner that was done in Theorem 4 using instead
of constant positive multipliers (S-procedure), Sum of
Squares multipliers for the inequality constraintsh and
ai and polynomial multipliers for the equality constraints
bi [14]. Then the four conditions in Proposition 5 will
be four SOS constraints in a relevant Sum of Squares
programme which can be solved using SOSTOOLS [17].

In a similar manner, other Lyapunov functional struc-
tures can be used other than (17), as we will see in the
examples to follow. See also [12]. Moreover if asymp-
totic stability is required, condition (4) in Proposition 5
can be made negative definite by constructing a positive
definiteϑ(x(t)) and imposing a similar condition to (1)
in Proposition 5, as required by Theorem 3.

IV. STABILITY OF INTERNET CONGESTION CONTROL

SCHEMES

In this section we analyze the stability properties of
the two congestion control schemes that were described
in Section II in simple network topologies.

A. Analysis of instances for the dual control law

1) A single source, single bottleneck:Here we con-
sider a single source and single bottleneck, i.e.S = L =
1, R = 1 which setsc = 1. Underz = xmaxe

−αq
τ − 1,

we have:

ż(t) = −
α

τ
[z(t) + 1]z(t − τ), (19)

where−1 ≤ z(t) ≤ −1 + xmax.
We assume thatxmax > c, i.e. the link is a bottleneck.

Linearisation about the zero equilibrium givesż(t) =
−α

τ z(t − τ) and so stability is retained locally for
α < π/2 [9]. For the nonlinear version, we attempt to
construct the following L-K functional:

V (zt) = V0(z(t))+

+

Z 0

−τ

Z 0

−τ

V1 (θ, ξ, z(t), z(t + θ), z(t + ξ)) dθdξ+

+

Z 0

−τ

Z t

t+θ

V2(z(ζ))dζdθ +

Z 0

−τ

Z t

t+ξ

V2(z(ζ))dζdξ.

For α = 1 we can construct thisV for |zt| = 0.42
when the order ofV0 andV1 is 2 andV2 is 4 andV1 is
not a function ofθ, ξ. Lyapunov functionals with better
properties can be constructed when the kernels are also
made functions ofθ andξ, with higher order kernels. In
particular, aV was constructed with−0.99 ≤ zt ≤ 1.



Remark 6: (19) is Hutchinson’s Equation, a well
known FDE [21]. It models single species growth strug-
gling for a common food. This reveals an interesting
connection between competition models in ecology and
network congestion control. The nonlinear equation (19)
has been analyzed in [21] whereglobal stability is
proven forα < 37/24 = 1.5417 andzt > −1, by using
properties of the solution (non Lyapunov method).

2) Single bottleneck, many sources:Here we perform

the change of coordinateszi(t) = xmax,i

c e
−αp(t)

τi −βi with
βi = 1/S to get:

żi(t) = −
α

τi

[zi(t) +
1

S
]ṗ(t) = −

α

τi

[zi(t) +
1

S
]

SX
i=1

zi(t− τi)

for − 1
S ≤ zi(t) ≤ − 1

S + xmax,i

c . Note that this transfor-
mation puts a1-D system in anS-D formulation. There
are S − 1 equality constraints that have to be imposed
of the form

(Szi(t) + 1)
τi = (Szj(t) + 1)

τj , ∀ i, j ∈ S.

In the case of two heterogeneous sources, we have:

ż1(t) = −
α

τ1
[z1(t) + 0.5][z1(t − τ1) + z2(t − τ2)],

ż2(t) = −
α

τ2
[z2(t) + 0.5][z1(t − τ1) + z2(t − τ2)],

(2z1(t) + 1)τ1 = (2z2(t) + 1)τ2

where−0.5 ≤ zi(t) ≤ −0.5+ xmax,i

c . In case of generalτ1

andτ2 we approximateτ1

τ2
by a rational number whose

numerator and denominator are small integers, and cover
the rest in the uncertainty framework developed earlier.
This avoids high order terms in the equality constraint.

For the linearisation of these equations about the
equilibrium z1 = z2 = 0 we have the system

ż(t) = −
α

2τ1
z(t − τ1) −

α

2τ2
z(t − τ2), (20)

wherez = z1 for which we recall the following result:
Proposition 7: [9] The trivial solution of ẋ(t) =

−a1x(t − τ1) − a2x(t − τ2) is asymptotically stable if
a1τ1 + a2τ2 < π/2.
Therefore a stability condition for the system given by
(20) is α < π/2.

We now analyze the nonlinear case using SOS-
TOOLS. Since we have a system with two delays, we
have to use a different functional. We choose, denoting
z(t) = [z1(t), z2(t)],

V (zt) = V0(z(t)) +
2

∑

i=1

∫ 0

−τi

∫ t

t+θi

V2i(z(ζ))dζdθi

+

∫ 0

−τ1

∫ 0

−τ2

V1(z(t), z(t + θ1), z(t + θ2))dθ1dθ2.

In this case the stability analysis was tested for various

i = 1 i = 2

i = 3

l = 1 l = 2

Fig. 2. A simple network.

values of the delay size. Forτ1 = 0.2 and τ2 = 0.3,
we can construct thisV with second orderV0, V1 and
4th orderV21, V22 for α = 1 and |zit

| = 0.44. When
τ1 = 0.1 and τ2 = 0.3, we can construct thisV for
α = 1 and−0.49 ≤ zit

≤ 0.61.
More complicated topologies can also be analyzed.

B. Analysis of simple cases for the primal-dual control
law

1) Single source single link case:Consider the case
of a single link and flow. The system equations can be
simplified to the following:

ẋ(t) =
Kβ

τ
−

β

τ
q(t)x(t) −

α

τ

(

x(t)x(t − τ)

c
− x(t)

)

q̇(t) =
x(t − τ)

c
− 1

The equilibrium for this system isx0 = c andq0 = K
c .

To avoid numerical ill-conditioning whenc is large we
scale the state. Definez1 = x/c − 1 and z2 = c

K q − 1
to get:

ż1 = −
Kβ

τc
(z1z2 + z1 + z2) −

α

τ
(z1(t)z1(t − τ) + z1(t − τ))

ż2 =
c

K
z1(t − τ)

For the analysis we usec = 40, α = 1, τ = 0.2, β = 3.2
and K = 20. We can construct a Lyapunov functional
of the form

V1(zt) = V0(z1(t), z2(t)) +

∫ 0

−τ

∫ t

t+θ

V2(z1(ζ))dζdθ

+

∫ 0

−τ

V1(z1(t), z1(t + θ), z2(t))dθ (21)

when |z1t
| ≤ γ1, z2 > −1 for α = 1 and γ1 = 0.75

with the polynomialsV0 and V1 second order andV2

4th order. When their degree is increased by 2, then
these become−1 ≤ z1t

≤ 3.4, z2 > −1.

2) A simple network example:Consider the network
shown in Figure 2, for which

R =

[

1 0 1
0 1 1

]

.



We assumeτij ≤ τ/2 whereτ is a delay overbound.
We letβ1 = β2 = β3/2 = β, all thecl = c andαi = α.
DenoteK̃1 = K1+K2

K1+K2+K3
and K̃2 = K3

K1+K2+K3
. The

equilibrium for this system is

(x1,0, x2,0, x3,0, q1,0, q2,0) =

�
cK̃1, cK̃1, cK̃2,

K1

cK̃1

,
K2

cK̃1

�
We can perform the same manipulation to the closed
loop system as before, to get

ż1(t) =

 
−

K1β1

K̃1cτ
[z1(t) + z4(t) + z1(t)z4(t)]

−
α
τ

[z1(t) + 1][K̃2z3(t − τ) + K̃1z1(t − τ)]

!
ż2(t) =

 
−

K2β2

K̃1cτ
[z2(t) + z5(t) + z2(t)z5(t)]+

−
α
τ

[z2(t) + 1][K̃2z3(t − τ) + K̃1z2(t − τ)]

!
ż3(t) =

0B� −
β3

K̃1cτ
[(z3z4 + z3 + z4)K1 + (z3z5 + z3 + z5)K2]

−
α
2τ

[z3(t) + 1]

×[z1(t − τ)K̃1 + z2(t − τ)K̃1 + 2z3(t − τ)K̃2]

1CA
ż4(t) =

K̃1c

K1
(K̃1z1(t − τ) + K̃2z3(t − τ))

ż5(t) =
K̃1c

K2
((K1 + K2)z2(t − τ) + K3z3(t − τ))

We use the same values forc, α, τ as before. We
calculate β = 0.64α

τMi
and we let K1 = 15, K2 =

20, K3 = 25. We can construct a similar Lyapunov
functional to (21) with all polynomialsV0, V1 of second
order andV2 of order 4 for

0 ≤ x1t
≤ 2.3x1,0, 0 ≤ x2t

≤ 2.3x2,0,

0 ≤ x3t
≤ 2.3x3,0, q1 > 0, q2 > 0.

V. CONCLUDING REMARKS

We presented a methodology to construct Lyapunov-
Krasovskii functionals for time delay systems based on
the Sum of Squares decomposition. The construction is
entirely algorithmic and is done through the solution
of Linear Matrix Inequalities (LMIs). The nonlinear
stability of simple topologies of networks employing
different congestion control algorithms was analyzed in
this way, taking account of the delays present in the
feedback mechanism.

This method can be extended to discrete systems with
delays and systems with time-varying delays. These two
cases have interesting applications to network conges-
tion control. A judicious choice for the structure of the
Lyapunov functional would still be required.

Invariant sets in the regionsΩ constructed above can
also be identified using the Sum of Squares decomposi-
tion, as maximal level sets of the Lyapunov functionals
that were constructed using SOSTOOLS.
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