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Implications for
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Translation: Amino acids
polymerized into proteins
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Organisms differ in
the proportion of

ribosomal protein RNA transc,” rRNA
vs rRNA

Ribosomes are made
of proteins and rRNA
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Complexity of control is huge

and poorly studied.
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<10% of most
bacterial genomes
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Precursors

* Complex machines
— Polymerization
— Complex assembly

* General enzymes

* Regulated recruitment

* Slow, efficient control

* Quantized, digital

* Building blocks
— Scavenge
— Recycle
— Biosynthesis
* Special enzymes
* Allostery, Fast
* Expensive control
* Analog

et e e
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Lower layer autocatalysis
Macromolecules making ...

Enzymes

Three lower .
layers? Yes: AA [ transl. Proteins
* Translation
P Ribosome

* Transcription
* Replication RNA  [transc. ) xRNA

RNAp
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Tradeoffs
TP redrawn

Some caveats

* This is focused on short time scales

» Expensive/cheap = metabolic overhead to do control
In this layer, a very subtle concept

 Slow/fast = latency to do control, a crucial feature in
performance

* There are many more dimensions to these tradeoffs,
especially on longer time scales

« We'll try to capture this with how reprogrammable
control is In different layers

* There is a good story here, but it is hard to tell

g
fast slow
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* The layer names are an attempt to
bridge to traditional terms

* Which arose in the “pathway” view,
before layering

* 3 layers?: protein, RNA, and DNA

* 4 layers?: metabolism, translation,
transcription, replication

* Named for the macromolecules that
are catalysts or “instructions” for their
layers, or the process

fast
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» Fastest allosteric control

« Complex special proteins
« High metabolic overhead

- Hard to reprogram

 Layer of “action”
« Sensing and actuation in this layer

fast
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Initiation codon

transl.

* Fast translation
control

« Complex RNAs

« General polymerases
« Medium metabolic
overhead?

* Highly
reprogrammable?

* Lots of control happens here
* This is the “heart” and “brain”

of the cell
 Complexity and
Importance is underrated
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RNA

 Slowest transcription control
« Complex transcription factors
« General polymerases
 Lowest metabolic overhead

Gene

- Easily reprogrammed




4 expensive
Replication layer

 Amount of control here extremely underrated

e Getting better

* Bacterial genome is highly dynamic

* Source of astonishing evolvability

* Note: horizontal gene transfer works because of
whole “protocol stack” not just shared codons

DNA Gene
cheap DNAp

fast slow




Architecture Bacterial biosphere
e carriers: ATP, NADH, etc

= protocols
’ _ * Precursors, ...
= “constraints  Enzymes
that * Translation Protocols
deconstrain” * Transcription

* Replication

* Horizontal gene transfer works because of
whole “protocol stack” not just shared codons

DNA Gene

DNAp



* Fastest allosteric feedback control lBS—TrRP

TYR

« Complex specialized proteins . Ys
« High metabolic overhead LY

« Hard to reprogram P\ ’E\ésﬁ'

GLN
GLU

« Fast translation control
* Complex RNAs

 Med. metabolic overhead
 Highly reprogrammable?

Initiation codon

Enzymes

* Slowest transcription control |/ - L X
« Complex transcription factors - @

» Lowest metabolic overhead
 Easily reprogrammed

Gene
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* Fastest allosteric feedback control &

LI « Complex specialized proteins . R
i P~ 1 * High metabolic overhead e
4 . \___ASN
_ Hard to reprogram o
This is hard to explain. Reprogramming the protein layer 2

iInvolves changing the genome, so they are in some sense
“the same,” but...

What | mean specifically, is that it is easier to change control
of transcription than to change control in protein interaction
circuits. This needs lots of details to make clear.

. Enzymes
» Slowest transcription control | - L X
« Complex transcription factors [BaNA @

* Lowest metabolic overhead
« Easily reprogrammed

Gene
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» Fastest allosteric feedback control

| © Complex specialized proteins
I ad » High metabolic overhead

* Hard to reprogram

Catabolism
Precursors

AA

» There are lots of architectural mechanisms that makes this
surprisingly reprogrammable, e.g. see the discussion on two-
component signal transduction.... Nevertheless...

»... changes here require changes in protein function (in
addition to sequence), which is complicated difficult.

« Changing the allosteric properties of proteins is really hard
 E.g. synthetic biology barely touches this because relation
between sequence and function is complex

* Here the distinction (a la Ptashne) of allostery versus
regulated recruitment is also essential (again illustrated by
2comp signal transduction, but also transcription control)



« Control in RNA is underrated, but getting more attention
* RNA polymers are versatile

« Can interact with all layers

» Control is fast and cheap

* Even greater use in higher eukaryotes

Any mRNA
x%f <

« Fast translation control

* Complex RNAs

 Med. metabolic overhead
 Highly reprogrammable?

Initiation codon

« General polymerases




« As reprogrammable as everything else is, this part is the
most reprogrammable.

« All transcription control is regulated recruitment, and
promoter regions are easily mutated to new function since
the relation between sequence and function is direct

« Horizontal gene transfer means this can also be changed
by large amounts that are nevertheless functional

* The extent to which microbial genomes are actively
controlled is underrated but evidence is growing.

 Slowest transcription control A
« Complex transcription factors Repl. | Gene | i Ap

* Lowest metabolic overhead
* Easily reprogrammed
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What makes the bacterial
biosphere so adaptable?

< Environment
Deconstrained Action >

Core conserved
constraints facilitate
tradeoffs

ki ks - s
A ~
o = _
4

Active control of
the genome
(facilitated
variation)

Deconstrained
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 Highly organized

« Naming and addressing
* Prices? Duality?

* Minimal case study?
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Upper megalayer/metalayer performs all cell
functions, behaviors, scope is functional,
distributed

Signal
transduction and
transcription

> N o factors do

name/address
=uE T

translation
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Genome is physical,
scope Is location
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« ~50 such “two component” systems in E. Coli
* All use the same protocol
- Histidine autokinase transmitter
- Aspartyl phospho-acceptor receiver
* Huge variety of receptors and responses
« Also multistage (phosphorelay) versions

\

. O - ,
] Variety of = 2 Variet
_ > y of
SI g N al II:\)lgandtS & § § responses
. eceptors ©
transduction = F



Variety of
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Transmitter

Receiver

Variety of
responses
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More necessity and robustness

 [ntegral feedback and signal transduction (bacterial
chemotaxis, G protein) (Y1, Huang, Simon)

* Example of “exploratory process”

ligand A
binding
v mot




Bacterial chemotaxis

Random walk




Ligand <: Motion <:: Motor

CheY

Signal
Transduction

Biased random walk
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Ligand <,: Motion <,: Motor

CheY

Signal
Transduction

Component of feedback controller
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Receptor Response
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Common
energy carrier

variety of ‘ carrier
receptors/
ligands G

CHEMOTAXIS

cytoplasmic

domains

Mannose

PTS TAXIS

From Taylor, Zhulin, Johnson
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Main feedback
CM’

Receptor S Response

Integral feedback
Internal to signaling
network
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Ligand <: Motion <:: Motor

CheY

Signal
Transduction

Biased random walk
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Perfect adaptation Is
necessary ...
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Perfect adaptation is Tumbling
necessary ... bias

...to keep CheYp in the
responsive range of the
motor.

ligand \ \\

TKT
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« =50 such “two component” systems in E. Coli
 All use the same protocol

- Histidine autokinase transmitter

- Aspartyl phospho-acceptor receiver
* Huge variety of receptors and responses
 Also multistage (phosphorelay) versions

\ -

S o L.
- Variety of £ 9 Variety of
S | g N al IF_nganctIs & g S responses
- eceptors S [
transduction =



Flow of “signal” Shared

5 : protocols
Ligands & & 2 Responses
Receptors = &J

— ™
Recognition,
specificity

* “Name resolution” within signal transduction
* Transmitter must locate “cognate” receiver
and avoid non-cognate receivers

 Global search by rapid, local diffusion
 Limited to very small volumes



Flow of “signal” Shared

5 : protocols
Ligands & & @ Responses
Receptors ¢ l' Q
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Recognition,
specificity
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Huge variety

« Combinatorial
* Aimost digital
Recognition, * Easily reprog_rammed
specificity * Located by diffusion

Variety of
Ligands &
Receptc

responses




Flow of “signal”

< 5 Limited variety
£ = e Fast, analog (via #)
= S - Hard to change
S ks ar g
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Reusable in

different pathways

Transmitter
Recelver



Flow of “signal”

. Shared
| = g protocols
Ligands & = 8 Responses
Receptors ¢ l' D

S 14

— -

Recognition,

specificity

Flow of packets
Note: Any P
wireless system - .
O )

and the Internet U = S Internet
to which it is SerS 5 g  sites

Recognition,
Specificity (MAC)

connected work
the same way.
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conserved residues of
Interaction surface with
phosphotransferase
domains

highly variable amino acids

of the interaction surface
Invariant that are responsible for
active-site specificity of the
residues Interaction

Currard Qpmion in Pharmasology
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(a)

« Automobiles: Keys
provide specificity but no
other function. Other
function conserved,
driver/vehicle interface
protocol 1s “universal.”

e Ethernet cables:
Specificity via MAC
addresses, function via
standardized protocols.

conserved functional

domains
invariant ~highly
active-site variability for
residues specificity of the
Interaction

BN

MAC



http://www.gifart.com/cgi-bin/affiliate/clickthru.cgi/directory
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Response
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Transmitter
..I
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“Name” recognition

= molecular recognition
= |localized functionally
= global spatially

Transcription factors
do “name” to “address”
translation



Ligands &

Response
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Transmitter
..I
Rece

“Name” recognition
= molecular recognition
= |localized functionally

Transcription factors
do “name” to “address”
translation

DNA



Ligands &
Receptors

Transmitter

“Name” recognition
= molecular recognition
= |localized functionally

Transcription factors
do “name” to “address”
Rece translation

0 .

D “Addressing”

2 = molecular recognition
Both are 7 = localized spatially
« Almost digital 1
 Highly "

programmable

DNA



There are simpler
transcription
factors for sensing
Internal states

o .

Ligands &

Respons
Receptors P

Transmitter
Receé:\;g

eedback contro

2CST systems provide

speed, flexibility, ) @ ﬁ

external sensing, Rece

computation, impedance
match, more feedback,
but

greater complexity and
overhead

’esuodsea
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There are simpler
transcription
factors for sensing
Internal states
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Domains can
be evolved
iIndependently

or coordinated.

Highly
evolvable
architecture.

Sensor domains

DNA and RNAp
binding domains

RNAp
~DNA

There are simpler
transcription
factors for sensing
Internal states

Application
layer cannot
access DNA

directly.



Sensing the

Sensor domains demand of the

This is like a application
“name to layer
address”
translation.
DNA and RNAp
binding domains o
Initiating
the change
In supply

RNAp
~DNA



Any Any Sensing the

input other demand of the
-\ / Sensor _\lnput/_ application

domains
“ layer

DNA and RNAp

DNA and RNAp binding domains
binding domains

« Sensor sides attach to metabolites or other proteins
 This causes an allosteric (shape) change

* (Sensing is largely analog (# of bound proteins))

« Effecting the DNA/RNAp binding domains

* Protein and DNA/RNAp recognition is more digital

» Extensively discussed in both Ptashne and Alon



“Cross talk” can be
finely controlled

omains

 Application layer signals can be integrated or not

* Huge combinatorial space of (mis)matching shapes
* A functionally meaningful “name space”

* Highly adaptable architecture

* Interactions are fast (but expensive)

* Return to this issue in “signal transduction”




“Name” recognition
= molecular recognition %
= |localized functionally *

= global spatially
Transcription factors

~ do “name” to “address”

translation

Both are
* AlImost dlgltal
 Highly
programmable

\ “Addressing”
= molecular recognition
= localized spatially

DNA




Can activate Anc
Of repress comp
com

RNAp

work In
ex logical
pinations

romoter Genel

Gene2

* Both protein and DNA sides have sequence/shape

* Huge combinatorial space of

“addresses’

* Modest amount of “logic” can be done at promoter
 Transcription is very noise (but efficient)
« Extremely adaptable architecture
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(almost analog)
rate determined
by relative copy
number

Binding
recognition

nearly digital

Promoter

Geneb

Geneb




Recall: can work by
pulse code
modulation so for
small copy number
does digital to
analog conversion

rate (almost analog)
determined by copy number

| Promoter | GeNeS | Geneb




No crossing layers
 Highly structured interactions
 Transcription factor proteins
control all cross-layer interactions
* DNA layer details hidden from
application layer

* Robust and evolvable
 Functional (and global) demand
mapped logically to local supply

chain processes “

\ 4

Promoter Genel Gene2
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/ R-%t\,é Cross-layer control
ecC

 Highly organized

« Naming and addressing
* Prices? Duality?

* Minimal case study?
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This architecture has limited scalability:

1) Fast diffusion can

only work in small

volumes
2) The number of

proteins required
for control grows
superlinearly with
the number of

enzymes (Mattick)



http://www.biomedcentral.com/1471-2105/5/199/figure/F1
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http://www.biomedcentral.com/1471-2105/5/199/figure/F1
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Note: all feedback in this picture has been
removed in two ways:

1) There are self-loops
where an operon is
controlled by one it’s
own genes

2) All the real complex
control is in the
protein interactions
not shown (e.g. see
heat shock detalls)

These are not really
control systems,
they just initiate
manufacturing
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This architecture has limited scalability:

1) Fast diffusion can

only work in small

volumes
2) The number of

proteins required
for control grows
superlinearly with
the number of

enzymes (Mattick)
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» Fastest allosteric feedback control
« Complex proteins
* High metabolic overhead

* Hard to reprogram
) S————

Any mRNA
%f

Initiation codon

- P LYS

)
NS

« Fast translation control
« Complex RNAs
 Medium metabolic overhead
 Highly reprogrammable?

Any

.. Enzymes
 Slowest transcription control ®_e@

. "ugy @
« Complex transcription factors - ® o®
» Lowest metabolic overhead
 Easily reprogrammed

Gene



Catabolism

Precursors v

Crosslayer
autocatalysis

Inside every cell
AP

Enzymes




Eukaryotes have lots more bowties

More elaborate organization at every level

Surprise: stoichiometry Is not that much
more complicated

But complexity of regulation appears almost
arbitrarily greater

Analogous to analog versus digital control
systems? (e.g. from hundreds to billions of
transistors?)

GPCRs and NFxB are extreme and
extremely important examples
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Speed, adaptation,

\g In 1! : : -
GT& Integration, evolvability

N4

Robustness | [ou matching:

L Independent of
L‘@) GTP

AG of Inputs and
outputs
P w
Signal integration:

/TN

7

High “fan 1in” and
“fan out”




/

Robust and Fragile
highly < and hard
evolvable to change



Fragility?

* A huge variety of pathogens
attack and hijack GTPases.

* A huge variety of cancers are
assoclated with altered (hijacked)
GTPase pathways.

« The GTPases may be the least
evolvable elements in signaling
pathways, In part because they
facilitate evolvability elsewhere

[ |

GEF

GTP

GDI
GDP) GTP

Out

7

<

GAP

L |
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Ga Ga
GDP  YGTP

By

C-AM

S

T

Cholera toxin

Hijacking

Cholera toxins hijack
the signal transduction
by blocking a GTPase
activity.



Bacterial virulence factors targeting Rho
GTPases: parasitism or symbiosis?

Patrice Boquet and Emmanuel Lemichez

Mbarnbrane

Inflamrmation and caed death acthation'deactiviadion indeced by bactaria

Transeripdional condrol of apoplasis modutalors and inflamrsaiory rmedalons /\‘
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ROK mDia | Bacteria destruction |
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Toxin and virnlence factors | Biochemieal activity Cellular targets/effects Pathogens’
Toxins
Toxin A UDP-glucosyl transferase | Rho, Rac, Cde42, RhoG, TCI10 inactivation | C diffieile
Toxin B UDP-glucosyl transferase  Rho, Rac. Cdec42, RhoG, C difficile
TC10 inactivation
Toxin B-1470 UDP-glucosyl ransferase  Racl, Ral, Rapl, Ras, C difficile
Cde42, Rho(, TC10
inactivation
Lethal toxin UDP-glucosyl ransferase  Racl, Ral, Rapl, C sordellii
Ras, RhoG. TC10
inactivation
Hemorrhagic toxin UDP- glucosyl transferase  Rho, Rac, Cded? inactiva- C sordellii
tion
o toxin UDP-N-acetyl- Rho. Rac, Cdc42 inactiva- C novyi
gluocosamine  transferase  tion
CNF1 and CNF 2, CNFY Glutamine deamidase Rho, Rac, Cded2 activa- E.Y
tion/ degradation
DNT Glutamine deamidase/ Rho, Rac, Cdcd2 activa- Bo
transglutaminase tion/ (degradation?)

Virulence factors with unknown
C3 transferase

C3-related transferase

C3related transferase

EDIN

Stauy

CDT

type of translocation

ADP-ribosyl transferase
ADP-ribosyl transferase
ADP-ribosyl transferase
ADP-ribosyl transferase
ADP-ribosyl transferase

ADP-ribosyl transferase

| RhoA, B, C inactivation

RhoA, B, C inactivation
RhoA. B, C inactivation
RhoA, B, C inactivation
RhoA, B, C, End3 inactiva-
tion

RhoA. B, C inactivation

C botulinum
C limosum
B. cereus

St

St

C difficile



Type 3 translocated virnlence faciors

SopE and SopE2
SpiP

YopT
YopE
YpkA/YopO

IpaC
ExoS

ExoT

SopB/Sigh

GDP-GTF exchange factor
GTPase activaling protein

(N-ter)

Phosphatase (C-ter)
Cysteine protease

G'TPase activating protein

Ser/Thr kinase RhoA and
Cde42 binding

Unknown

G'TPase activating profein
(N-ter)
ADP-ribosyltransferase
(C-ter)

G'TPase activating protein
(N-ter)
ADP-ribosyltransferase
{C-ter)

PtdIns(4,5)F; phosphatase

Type 4 secretory mechanism and bacterial adhesions

CagA pathogenicity island (PAT)
Opacity proteins (Opa 52)

Type IV pilus
Type 1 (FimH adhesin)

Unknown

Activation of Racl wvia
Hek/Fgr  kinase stimula-
tion

Receptor clustering?
Receptor clustering?

| Cded2, Rac activation

Cded2, Rac inactivation.
No activity on small GT-
Pases

Rho. Rac, Cdcd2 inactiva-
tion

Rho, Rac, Cdc42 inactiva-
tiom

RhoA and Cdcd2 (activity
unknown)

Rac, Cded? activation
RhoA. Cdc42, Rapl inacti-
vation

Ras, Rapl, Rap2, Ral,
Racl. RhoA, Cded2 in-
activation

Rho, Rac, Cdc42

Mo activity on small GT-
Pases tested

Cded?2

Indirect activation?

- Rael, Cded 2 activation

Racl activation

Rho, Cde42 activation
Rho, Rac, Cdc4?2 activation

| Sa
Sa

Sa




Signal

Variety of 2 Variety of
- Ligands & o responses
transduction o s N

» Ubiquitous protocol
* “Robust yet fragile”
* Robust & evolvable

* Fragile to “hijacking”
« Manages extreme heterogeneity
with selected homogeneity

Accigent or necessity? RVERENEe;
Ligands &
Receptors

G
proteins

Variety of
responses



Fast Gallistel and King
Inflexible
‘ Motor,
Striatum
Flexible Te—c—
Vi Reflex Computational Brain

Why Cognitive Science Will Transform Neuroscience

$WILEY-BLACKWELL

Sensori-motor memory potential = «
Limits are on speed of
— nerve propagation delays
— learning
But control is never centralized
Where Is R/W random access memory (RAM)?



Fast

- Gallistel and King
Inflexible |22, — N

C.R. Gallistel and
Adam Philio Kina

Memory and the
Computational Brain

- .
I I eXI b I e Why Cognitive Science Will Transform Neuroscience

$WILEY-BLACKWELL

Slow

Genome memory potential ~ o«

Limits are on speed of control and learning
Control is highly decentralized

There is a huge slow read/write RAM
Sophisticated naming and addressing



selection + drift + mutation + gene flow
+ facilitated variation

large
functional
changes in
genomes

HGT
= horizontal
gene transfer




natural selection + genetic drift + mutation + gene flow
+ facilitated variation

Genome can have large changes




natural selection + genetic drift + mutation + gene flow
+ facilitated variation

Small gene change can have large but
functional phenotype change




natural selection + genetic drift + mutation + gene flow
+ facilitated variation

Only possible because of shared,
layered, network architecture




Standard theory:
natural selection + genetic drift
+ mutation + gene flow

Greatly abridged cartoon here

Gene ]
Selection
alleles

Shapiro explains well what this is and why it’s
incomplete (but Koonin is more mainstream)




Standard theory:
selection + drift + mutation + gene flow

AT

/ N
\ .
/'Pheno- + { Selection
- type
N
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Gene

alleles



Standard theory:
selection + drift + mutation + gene flow

Selection

No new laws.
No architecture.
No biology.




selection +

drift +
mutation +
gene flow
All complexity is
emergent from
random ensembles
. with minimal tuning .
- Pheno- 1 Selection 8
~ type
SsL e No new laws.
P No gap.
Gene No architecture.

alleles



The battleground

-~
=~ V7 s
-~ 1 I
7 N \

~'Pheno-

. \ | Huge gap.
© type ./ o= Bap
- L Need

No gap. supernatural

Just physics.
Gene

alleles



What they agree on

No new laws.
No architecture.
No biology.

PN N Huge
- Pheno- gap.
- type
P No gap. o
Gene - )
. Genes .
alleles : \



Depends
crucially on
layered
architecture

Strigtum ~ A

@ Horizontal

Meme
Transfer
Horizontal
App

Transfer

Horizontal Amazingly
Gene Flexible/
Transfer Adaptable




Putting biology back
into evolution

vour INNER FISH

Marc W. Ku—schner and John C GerhaA
Htustrated by Jobn N

wTHE &

PLy USIBFLITY ’

AQCENDI\IG

TEN GREAT INVENTIONS
r ENOLUTION

NICK LANE

BRLESOLVING DARWIN'S DILEMMA
- “u



IAMES A. SHAPIRD

e pAPLICIT
GENOME

EOOED &Y .
LYNN HELENA CAPORALE

volut@o

A VIEW FROM THE 215T CENTURY ASCENDING

TEN GREAT INVENTIHONS
o ENOLUTION

NICK LANE

The heresies

* Many mechanisms for “horizontal” gene transfer

* Many mechanisms to create large, functional mutations

* At highly variable rate, can be huge, global

* Selection alone is a very limited filtering mechanism

- Mutations can be “targeted” within the genomes

 Can coordinate DNA change w/ useful adaptive needs

* VViruses can induce DNA change giving heritable resistance
* Still myopic about future, still produces the grotesque
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Going beyond black box: control is
decentralized with internal delays.

A

Huge theory progress in last
decade, year, mo., ...

2"d hour (after break)

- Andy Lamperski

- Nikolai Matni ) ‘—\\l1
N ” N




Wolpert, Grafton, etc

Brain as_ostimal controller

« Automate




Going beyond black box: control is
decentralized with internal delays.

Slow
Flexible

Mammal NS |
seems organized

to reduce delays §

IN motor control

Striatum

/

Reflex

nnnnnnnnn



* Act

Same actuators
Delay iIs limiting

- MoVve
hand

¢iseH

Slow> Act




