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Abstract

We demonstrate that the dynamic behavior of queue and average window is determined
predominantly by the stability of TCP/RED, not by AIMD probing nor noise traffic. We develop
a general multi-link multi-source model for TCP/RED and derive a local stability condition in
the case of a single link with heterogeneous sources. We validate our model with simulations
and illustrate the stability region of TCP/RED. These results suggest that TCP/RED becomes
unstable when delay increases, or more strikingly, when link capacity increases. The analysis
illustrates the difficulty of setting RED parameters to stabilize TCP: they can be tuned to
improve stability, but only at the cost of large queues even when they are dynamically adjusted.
Finally, we present a simple distributed congestion control algorithm that maintains stability
for arbitrary network delay, capacity, load and topology.

1 Introduction

It is well known that TCP/RED can oscillate wildly and it is extremely hard to reduce the oscillation
by tuning RED parameters, e.g., [14, 4]. The additive-increase-multiplicative-decrease (AIMD)
strategy employed by TCP Reno (and its variants such as NewReno and SACK) and noise-like
traffic that are not effectively controlled by TCP no doubt contribute to this oscillation. Recent
models e.g., [6, 8], imply however that oscillation is an inevitable outcome of the protocol itself.
We present more evidence to support this view (Section 2). We argue that TCP/RED oscillates
not only because of its AIMD probing, and not only because of noise traffic (e.g., short lived TCP
connections), but more fundamentally, it is due to instability1. We illustrate using ns-2 simulations
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1By this, we mean that even if window is not adjusted on each acknowledgment arrival or loss event, but is
adjusted periodically by the same average amount AIMD would over the same period, the oscillation persists.
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that, after smoothing out the AIMD component of the oscillation, the average behavior can either
be steady with small random fluctuations (when the protocol is stable), or exhibit limit cycles of
amplitude much larger than random fluctuations (when it is unstable). Moreover, this qualitative
behavior persists even when a large amount of noise traffic is introduced, and even when sources
have different delays. We conclude that it is stability that largely determines the dynamics of
TCP/RED.

This motivates the stability characterization of TCP/RED. In Section 3 we develop a general
nonlinear model of TCP/RED. The equilibrium structure of this model is analyzed in [12] by
interpreting various TCP/AQM as carrying out distributed primal-dual algorithms over the Internet
to maximize aggregate source utility in the form of congestion control. Here, we study local
stability by linearizing the model around the equilibrium. The linear model generalizes the single-
link identical-source model of [8]. We validate our model with simulation results and illustrate
the stability region of TCP/RED. We derive a sufficient stability condition for the special case of
a single link with heterogeneous sources. It shows that TCP/RED becomes unstable when delay
increases, or more strikingly, when link capacity increases!

The gain introduced by TCP increases rapidly with delay and link capacity. This induces
instability and makes compensation by RED extremely difficult. In particular, RED parameters
can be tuned to improve stability, but only at the cost of a large queue, even when they are
dynamically adjusted.

This suggests that the current protocol is ill-suited for future networks where capacity will be
large. In Section 6 we present a simple congestion control algorithm, developed in [15], that can
be implemented in a decentralized manner by sources and links, and that maintains linear stability
for arbitrary delay, capacity, load and routing. Moreover, it achieves high network utilization
in equilibrium with negligible queues. It demonstrates that it may be unnecessary to sacrifice
stability for performance. Extensions of this algortihm to achieve arbitrary fairness, implementation
strategies and simulation results can be found in [16].

2 Why does TCP/RED oscillate?

What is the effect of AIMD, noise traffic, and heterogeneity of delays have on average window and
instantaneous queue? In this section, we show that their effect pales in comparison with that of
protocol instability.

We simulate in ns-2 a single bottleneck link with capacity 9 pkts/ms (constant packet size =
1000bytes). The link runs RED with ECN marking in ‘byte’ mode (i.e., acknowledgment packets
are marked with negligible probability). The RED parameters are max p = 0.1, min th = 50 pkts,
max th = 550 pkts, and weight for queue averaging α = 10−4. The link is shared by 50 persistent
FTP sources. We have run simulations with both one-way and two-way traffic, and the behavior
is very similar. The results in Figures 1 and 2 are for two-way traffic, and those in Figure 3 are for
one-way traffic. Of the measurements from live Internet in [1], 85% have round trip times between
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15-500ms. We perform simulations within this range of delays.
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(a) Window (delay = 40ms)
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(b) Queue (delay = 40ms)
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(c) Window (delay = 200ms)
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(d) Queue (delay = 200ms)

Figure 1: Window and queue traces without noise traffic. Simulation parameters: 50 sources,
capacity = 9 pkts/ms, RED = (0.1, 50, 550, 10−4), marking with ‘byte’ mode; two-way traffic.

Figure 1 gives the result of two cases where connections have identical round trip propagation
delay and generate traffic in both directions. Figure 1(a) shows an individual window (light curve)
and the average window (dark curve), averaged over all 50 sources, both as a function of time. They
are typical traces when round trip propagation delay is small (40ms in this case). Oscillations due
to Reno’s AIMD are prominent in the individual window, but disappear in the average window.
As one would expect, since the queue averages individual windows, it also displays a smooth trace
with small random fluctuations, as shown in Figure 1(b). We consider the average behavior of the
protocol stable (non-oscillatory) in this case.

Figures 1(c) and (d) show the corresponding windows and queue when round trip propagation
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delay is increased to 200ms. Not only does the individual window oscillate with a larger amplitude,
more importantly, its average displays a deterministic limit cycle. This also shows up in the queue
trace. We say the protocol is in an unstable regime.

What is the effect of noise-like mice traffics that are not effectively controlled by TCP/RED? To
get a qualitative understanding, we add short http sources to the 50 persistent bi-directional FTP
connections. Each http source sends a single-packet request to its destination, which then replies
with a file of size that is exponentially distributed with a mean of 12 1KB-packets. After the source
completely receives the data, it waits for a random time that is exponentially distributed with a
mean of 500 msec, and repeats the process. Both the request and the response are carried over
TCP connections. Two sets of simulations are conducted, the first with 60 http sources generating
10% noise (i.e., persistent FTP sources occupied 90% of bottleneck link capacity), and the second
set with 180 http sources generating 30% noise. The queue traces when propagation delay is 40ms
(stable) and 200ms (unstable), respectively, are shown in Figures 2(a) and (b) for a noise intensity
of 10%, and in Figure 2(c) and (d) for a noise intensity of 30%. The behavior of the queue and
average window (not shown here) is dominated by the stability of the protocol, not by noise-like
mice traffic (compare with Figures 1(b) and (d)). In the stable regime (40ms delay), the noise traffic
increases the average queue length slightly. This increases the marking probability and reduces the
average window of the FTP sources.

All our previous simulations are for sources with identical propagation delay. Will the dynamic
behavior be very different when sources have different delays? We repeat the previous experiments,
without noise, with 50 persistent uni-directional connections having delays ranging from 40ms to
64ms at 1ms increment, with 2 sources to each delay value. We study their dynamic behavior when
all delays are scaled up, or down, over a wide range. The behavior is qualitatively similar to the
case of identical delay, with more severe queue oscillation. Figure 3(a) shows the instantaneous
queue when the scaling factor is 0.3 (delays range from 0.3(40)ms to 0.3(64)ms), with an average
delay of 15.6ms, averaged over all sources. Figure 3(b) shows the queue when the scaling factor is
4, with an average delay of 208ms.

Hence it is protocol stability that largely determines the dynamics of TCP/RED. We now
characterize when TCP/RED is stable.

3 Dynamic model

In this section we develop a model of TCP/RED and use it to predict the onset of instability.
We start with a nonlinear model, make a few remarks about its equilibrium properties, and then
linearize the model around the equilibrium. We validate our linear model with ns-2 simulations,
and illustrate the stability region of TCP/RED. Finally we derive a stability condition for the
special case of a single link with heterogeneous sources.
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3.1 Nonlinear model of TCP/RED

A network is modeled as a set of L links (scarce resources) with finite capacities c = (c l, l ∈ L).
They are shared by a set of N sources indexed by i in set I. Each source i uses a set Li ⊆ L of
links. The sets Li define an L × N routing matrix

Rli =

{

1 if l ∈ Li

0 otherwise

Associated with each link l is its marking probability2 pl(t) at time t, and with each source s
its window wi(t) at time t. TCP Reno prescribes how wi(t) is adjusted and AQM prescribes how
pl(t) is updated. Together they form a delayed feedback system and can be interpreted as carrying
out a distributed primal-dual algorithm to solve a welfare maximization problem over the Internet
[12, 13].

Define the round trip time τi(t) of source i at time t by:

τi(t) = di +
∑

l

Rli

bl(t)

cl

(1)

where di is the round trip propagation delay and bl(t) is the backlog at link l at time t.3 Define
source i’s rate xi(t) at time t as:

xi(t) :=
wi(t)

τi(t)
(2)

The aggregate flow rate at link l is

yl(t) =
∑

i

Rlixi(t − τ f
li(t)) (3)

where τ f
li(t) is the forward delay from source i to link l. The end-to-end marking probability

observed at source i is qi(t) = 1 −∏l∈Li
(1 − pl(t − τ b

li(t))) where τ b
li(t) is the backward delay from

link l to source i. We assume that pl(t) are small for all t so that, approximately, the end-to-end
probability is

qi(t) :=
∑

l

Rlipl(t − τ b
li(t)) (4)

2By ‘marking’, we mean either dropping a packet or setting an ECN (Explicit Congestion Notification) bit in the
packet.

3This is generally not the round trip time experienced by a packet, which visits different links in its path at
different times and hence experiences queueing delays of various links at different times. This expression however
sums the queueing delay of different links at the same time t.
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a sum of delayed link probabilities. The forward and backward delays are related to the round trip
time through:

τi(t) = τ f
li(t) + τ b

li(t)

for all l ∈ Li.
We now model TCP Reno and RED. We focus on the AIMD algorithm of TCP Reno (and

its variants such as NewReno and SACK). At time t, source i transmits at rate xi(t) packets/sec;
hence, it receives acknowledgments at rate xi(t− τi(t)), assuming every packet is acknowledged. A
fraction (1 − qi(t)) of these acknowledgments are positive, each incrementing the window wi(t) by
1/wi(t); hence the window wi(t) increases, on average, at the rate of xi(t − τi(t))(1 − qi(t))/wi(t).
Similarly negative acknowledgments are received at an average rate of xi(t−τi(t))qi(t), each halving
the window, and hence the window wi(t) decreases at a rate of xi(t− τi(t))qi(t)wi(t)/2. Hence, the
window evolves under Reno according to

ẇi(t) = xi(t − τi(t))(1 − qi(t))
1

wi(t)

− xi(t − τi(t))qi(t)
wi(t)

2
(5)

where qi(t) is given by (4).
To model RED, let bl(t) denote the instantaneous queue length at time t that evolves according

to, when bl(t) > 0,

ḃl(t) = yl(t) − cl (6)

where yl(t) is the flow rate given by (3) and cl is the link capacity. Define the average queue length
as rl(t). It is updated according to:

ṙl(t) = −αlcl (rl(t) − bl(t)) (7)

for some constant 0 < αl < 1. Given the average queue length rl(t), the marking probability is
given by

pl(t) =



















0 rl(t) ≤ bl

ρlrl(t) − ρlbl bl < rl(t) < bl

ηlrl(t) − (1 − 2pl) bl ≤ rl(t) < 2bl

1 rl(t) ≥ 2bl

(8)

where bl, bl, and pl are RED parameters, and

ρl :=
pl

bl − bl

and ηl :=
1 − pl

bl
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In summary, TCP/RED is modeled by (5–8) and their interconnection through the network is
modeled by (3–4).

Remarks:

1. In [12, 13], we interpret the TCP/RED model (5)–(8) and other TCP/AQM models as car-
rying out distributed primal-dual algorithms to maximize aggregate source utility over the
Internet. We regard source rates xi(t) as primal variables iterated by TCP, and marking
probabilities pl(t) as dual variables (Lagrange multipliers) iterated by AQM. Different pro-
tocols correspond to different update rules and they maximize different utility functions U .
The utility function of TCP Reno is derived to be:

Ui(xi) =

√
2

τi

tan−1
(

τixi√
2

)

whereas that of TCP Vegas [3] is:

Ui(xi) = α log xi

Given any network topology R, link capacities c, and TCP utility Ui, we can determine
any equilibrium properties of interest by solving a simple convex program. These include
throughput, loss, delay, interaction of different TCP protocols and fairness of their equilibrium
rate allocation.

2. Many implementations of Reno, or its variants, halves its window at most once in each round
trip time (so does ns-2). In this case, the multiplicative decrease term in (5) should be
replaced by −qi(t)wi(t)/2τi(t). For all simulations in this paper, the marking probability is
so small that the probability of having multiple marks in a round trip time is negligible. Hence
the difference between the two models of multiplicative decrease is negligible, as confirmed
by the validation simulations below.

3.2 Linear model of TCP/RED

We linearize the TCP/RED equations (5-8) to study its stability around equilibrium. We make
several simplifying assumptions. First we assume that the routing matrix R has full row rank so
there is a unique equilibrium loss probability vector p (Lagrange multiplier). Second we assume
that only bottleneck links, whose equilibrium marking probability is strictly positive, are included
in the model. Moreover we assume that the system operates in the region bl < rl(t) < bl, so that
the marking probability is affine in the average queue length, pl(t) = ρl(rl(t)−bl). Finally, we make
a key assumption on the time-varying round trip delay.

Round trip delay appears in two places: first, in the relation between window wi(t) and rate
xi(t), as expressed in (2), and second, in the time argument of flow rate yl(t), as expressed in (3), and
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the end-to-end marking probability qi(t), as expressed in (4). Inclusion of instantaneous queueing
delay in the first place yields a qualitatively different model than if queueing delay is ignored
or assumed constant. It means that the queue is not an integrator but has a more complicated
dynamics; see (11) below. As the proof of Theorem 2 shows, this dynamic is critical to the stability
of TCP/RED. The resulting linear model matches simulations significantly better than if queueing
delay is assumed constant. Time-varying delay in the second place makes linearization difficult, and
we replace it by its (constant) equilibrium value (including equilibrium queueing delay). Hence,

we use the time-varying delay (1) in (2), but approximate the delays τi(t), τ f
li(t), τ b

li(t) by their
equilibrium values in (3) and (4).

With these assumptions, we linearize Reno/RED around the unique equilibrium. From (5),
Reno becomes:

ẇi(t) =

(

1 −
∑

l

Rlipl(t − τ b
li)

)

wi(t − τi)

τi(t − τi)

1

wi(t)

− 1

2

∑

l

Rlipl(t − τ b
li)

wi(t − τi)wi(t)

τi(t − τi)

Let w∗
i , p

∗
l , . . . denote equilibrium quantities and δwi(t) = wi(t) − w∗

i , δpl(t) = pl(t) − p∗l , . . ..
Linearization then yields:

δẇi(t) = − 1

τiq
∗
i

∑

l

Rliδpl(t − τ b
li) − q∗i w

∗
i

τi

δwi(t)

where q∗i =
∑

l Rlip
∗
l is the equilibrium end-to-end probability, and w∗

i = x∗
i τi is the equilibrium

window.
Around the equilibrium, the buffer process under RED evolves according to:

ḃl(t) =
∑

l

Rli

wi(t − τ f
li)

τi(t − τ f
li)

− cl

=
∑

l

Rli

wi(t − τ f
li)

di +
∑

k Rkibk(t − τ f
li)/ck

− cl

Let τi = di +
∑

k Rkib
∗
k/ck be the equilibrium round trip time (including queueing delay). Lineariz-

ing, we have

δḃl(t) =
∑

i

Rli

δwi(t − τ f
li)

τi

−
∑

k

∑

i

RliRki

w∗
i

τ2
i ck

δbk(t − τ f
li)

The second term above is ignored if we have neglected or assumed constant the queueing delay in
round trip time. The double summation sums over all links k that share any source i with link
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l. It says that the link dynamics in the network is coupled through shared sources. The term
w∗

i

τick
δbk(t − τ f

li) is roughly the backlog at link k due to packets of source i, under FIFO queueing.
Hence the backlog bl(t) at link l decreases at a rate that is proportional to the backlog of this
shared source i at another link k. This is because backlog in the path of source i reduces the rate
at which source i packets arrive at link l, decreasing bl(t).

Putting everything together, Reno/RED is described by, in Laplace domain,

δw(s) = −(sI + D1)
−1D2R

T
b (s)δp(s)

δp(s) = (sI + D3)
−1D4δb(s)

δb(s) = (sI + Rf (s)D5R
T D6)

−1Rf (s)D7δw(s)

where the diagonal matrices are D1 = diag
(

q∗
i
w∗

i

τi

)

, D2 = diag
(

1
τiq

∗
i

)

, D3 = diag (αlcl), D4 =

diag (αlclρl), D5 = diag

(

w∗
i

τ2

i

)

, D6 = diag
(

1
cl

)

, D7 = diag
(

1
τi

)

, and Rf (s) and Rb(s) are delayed

forward and backward routing matrices, defined as:

[Rf (s)]
li

=

{

e−τ
f

li
s if l ∈ Li

0 otherwise
(9)

[Rb(s)]li =

{

e−τb
li

s if l ∈ Li

0 otherwise
(10)

This model generalizes the single-link identical-source model of [8] to multiple links with heteroge-
neous sources.

3.3 Validation and stability region

We present a series of experiments to validate our linear model when the system is stable or barely
unstable, and to illustrate numerically the stability region.

We consider a single link of capacity c pkts/ms shared by N sources with identical round trip
propagation delay d ms. For N = 20, 30, . . . , 60 sources, capacity c = 8, 9, . . . , 15 pkts/ms, and
propagation delay d = 50, 55, . . . , 100 ms, we examine the Nyquist plot of the loop gain of the
feedback system (L(jω) in (11) below). For each (N, c) pair, we determine the delay dm(N, c), at
5ms increment, at which the smallest intercept of the Nyquist plot with the real axis is closest to
−1. This is the delay at which the system (N, c) transits from stability to instability according to
the linear model. For this delay, we compute the critical frequency fm(N, c) at which the phase of
L(jω) is −π. Note that the computation of L(jω) requires equilibrium round trip time τ , the sum
of propagation delay dm(N, c) and equilibrium queueing delay. The queueing delay is calculated
from the duality model [12]. Hence, for each (N, c) pair that becomes barely unstable at a delay
between 50ms and 100ms, we obtain the critical (propagation) delay dm(N, c) and the critical
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frequency fm(N, c) from the analytical model. For all experiments, we have fixed the parameters
at α = 10−4, ρ = 0.1/(540 − 40) = 0.0002, and β = 0.5.

We repeat these experiments in ns-2, using persistent FTP sources and RED with ECN marking.
The RED parameters are (0.1, 40pkts, 540pkts, 10−4), corresponding to the α and ρ values in the
model. For each (N, c) pair, we examine the queue and window trajectories to determine the
critical delay dns(N, c) when the system transits from stability to instability. We measure the
critical frequency fns(N, c), the fundamental frequency of queue oscillation, from the FFT of the
queue trajectory. Thus, corresponding to the linear model, we obtain the critical delay dns(N, c)
and frequency fns(N, c) from simulations.

We compare model prediction with simulation. Figure 4(a) plots the critical delay dns(N, c)
from ns-2 simulations versus the critical delay dm(N, c) computed from the linear model. Each
data point corresponds to a particular (N, c) pair. The dashed line is where all points should lie if
the linear model agrees perfectly with the simulation. Figure 4(b) gives the corresponding plot for
critical frequencies fns(N, c) versus fm(N, c). The agreement between model and simulation seems
quite reasonable (recall that delay values have a resolution of 5ms).

Consider a static link model where marking probability is a function of link flow rate:

pl(t) = fl(yl(t))

Then the linearized model is

δpl(t) = f ′
l (y

∗
l ) δyl(t)

where f ′
l (y

∗
l ) is the derivative of fl evaluated at equilibrium. Also shown in Figure 4(b) are critical

frequency predicted from this static-link model (with f ′
l (y

∗
l ) = ρ = 0.0002; this does not affect

the critical frequency), using the same Nyquist plot method described above. It shows that queue
dynamics is significant at the time-scale of interest.

Figure 5 illustrates the stability region implied by the linear model. For each N , it plots the
critical delay dm(N, c) versus capacity c. The curve separates stable (below) from unstable regions
(above). The negative slope shows that TCP/RED becomes unstable when delay or capacity is
large. As N increases, the stability region expands, i.e., small load induces instability. Intuitively,
a larger delay or capacity, or a smaller load, leads to a larger equilibrium window; this confirms the
folklore that TCP behaves poorly at large window size.

4 Linear stability: single-link heterogeneous sources

We now characterize the stability region in the case of a single link with N heterogeneous sources.
Writing forward delay as a fraction βi ∈ (0, 1) of round trip time, τ f

i = βiτi, and dropping link
subscript l, the loop gain is

L(s) = Rf (s)D7(sI + D1)
−1D2R

T
b (s)(sI + D3)

−1D4(sI + Rf (s)D5R
T D6)

−1
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=
∑

i

1

τip∗(τis + p∗w∗
i )

· αcρ

s + αc
· 1

s + 1
c

∑

n
x∗

n

τn
e−βiτns

· e−τis (11)

The first term on the right-hand side describes TCP dynamics, the second term RED averaging,
the third term buffer process, and the last term network delay. The special case where all sources
have identical round trip times, τi = τ , and forward delays are zero, βi = 0, is analyzed in [8]. They
provide sufficient conditions for closed-loop stability and use them to tune RED parameters α and
ρ.

We start with a lemma that collects some equilibrium properties we use below. It can be proved

directly from the fixed point of (5)–(8); or see [12]. Let τ := maxi τi, τ := mini τi, τ̂ :=
(

∑

i
1
τi

)−1
,

and β := maxi βi. Recall the RED parameters: α is weight in queue averaging and ρ is the slope
of marking probability.

Lemma 1 Let p∗ be the equilibrium loss probability, w∗
i and x∗

i be the equilibrium window and rate
respectively. Then p∗ = 2/(2 + (cτ̂ )2), w∗

i = cτ̂ for all sources i, x∗
i = w∗

i /τi and
∑

i x∗
i /c = 1.

Let

θ := π − arctan
π(1 − β)

2β
∈

(

π

2
, π

)

(12)

Theorem 2 The closed-loop system described by (11) is stable if

ρ
τ2

τ̂ τp∗2w∗
1

(

1 +
1

cτα
+

1

p∗w∗
1

)

<
π(1 − β)2

√

4β
2
+ π2(1 − β)2

Proof. The closed-loop system is stable if L(s) does not pass through (−1, 0) in the complex plane
as s = jω traverses the Nyquist contour for ω = 0 to ∞. the right-half plane. To show this, re-write
(11) as

L(s) =
c2αρ

p∗

∑

i

w∗
i /τi

c

zi(s)

w∗
i

where

zi(s) =
e−τis

(s + αc)(τis + p∗w∗
i )

· 1

(s +
∑

n
x∗

n

cτn
e−βnτns)

(13)
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Lemma 1 implies that (since w∗
i are equal for all i)

L(jω) =
cαρ

τ̂p∗

∑

i

x∗
i

c
zi(jω) (14)

i.e., L(jω) lies in the convex hull defined by the N points zi(jω) in the complex plane. We will
prove that this convex hull is bounded away from (−1, 0), through Lemmas 3–5 whose proofs are
relegated to the Appendix.

Lemma 3 For all ω ≥ 0,

L(jω) ∈ cτ 2αρ

τ̂p∗(1 − β)
· co

{

r(ω)e−jφ(ω) · e−jθ : 0 ≤ θ ≤ θ, ω ≥ 0
}

where coA is the convex hull of set A, θ is defined in (12), and

r(ω)e−jφ(ω) :=
e−jω

ω(jω + αcτ )(jω + p∗w∗
1)

Since r(ω) is decreasing in ω, we can ignore ω for which φ(ω)+ θ < θ, because the points in the
left-half plane where the set in Lemma 3 crosses the real axis are contained in the set

A1 :=
cτ2αρ

τ̂p∗(1 − β)
· co

{

r(ω)e−jφ(ω) · e−jθ : 0 ≤ θ ≤ θ, φ(ω) + θ ≥ θ
}

The next lemma says that we can further simplify this set by focusing on just the Nyquist trajectory
for θ = θ.

Lemma 4

A1 ⊆ cτ2αρ

τ̂p∗(1 − β)
· co

{

r(ω)e−jφ(ω) · e−jθ : ω ≥ 0
}

=: A2

The next lemma bounds the set A2 in a half plane.

Lemma 5

A2 ⊆ cτ2αρ

τ̂p∗(1 − β)
·
{

η e−jθ : Im{η} ≥ −λ
}

where

λ :=
1

αcτp∗w∗
1

(

1 +
1

αcτ
+

1

p∗w∗
1

)

(15)

12



The half plane in Lemma 5 is shown in Figure 6. From the figure, the set, and hence L(jω), is
to the left of (−1, 0) if

1 >
cτ 2αρ

τ̂p∗(1 − β)
· λ

sin(π − θ)

Substituting (12), the condition becomes

cτ2αρ

τ̂p∗
· λ <

π(1 − β)2
√

4β
2
+ π2(1 − β)2

Substituting λ in (15) yields the theorem.

The left-hand side of the (sufficient) stability condition depends on network parameters (c and
τi) as well as RED parameters (α and ρ). The right-hand side is a property of the network node
that is independent of these parameters. For stability, the left-hand side must be small. This
requires small capacity c and delays τi and large N , confirming the simulation results of the last
section. To understand this, note that cτ̂ is the equilibrium window size of all sources. Assuming
w∗

1 = cτ̂ � 2 so that p = 2/w∗2
1 , then the stability condition can be re-written as

ρ
w∗3

1 N

4

(

w∗
1

2
+ 1 +

N

w∗
1α

)

<
π(1 − β)2

√

4β
2
+ π2(1 − β)2

This suggests that the system becomes unstable (oscillatory) when window size w∗
1 becomes large,

agreeing with our empirical experience that TCP behaves poorly at large window size. Roughly,
when c doubles, the equilibrium rate doubles, and hence window is halved with twice the magnitude
at twice the frequency, resulting in a quadratic increase in control gain and pushing the system
into instability.

The dependence of the stability condition on c, τ , and N is most clearly exhibited in the case
of identical sources, with τ = τi = τ = τ = Nτ̂ .

Corollary 6 Suppose p = 2/w∗2
1 . Then the stability condition in Theorem 2 becomes

ρ
c3τ3

4N2

(

cτ

2N
+ 1 +

1

αcτ

)

<
π(1 − β)2

√

4β
2
+ π2(1 − β)2

The stability condition also suggests that a smaller ρ and a larger α enhance stability. A
smaller ρ implies a larger equilibrium queue length [12]. A larger α incorporates the current queue
length into the marking probability more quickly. If queue averaging is completely removed and
the marking probabilty is proportional to instantaneous queue, p(t) = ρbl(t), then Lemma 5 is
modified to

A2 ⊆ τρ

τ̂p∗(1 − β)
·
{

η e−jθ : Im{η} ≥ −λ
}

13



where

λ :=
1 + p∗w∗

1

(p∗w∗
1)

2

and the stability condition becomes

τρ

τ̂p∗
· 1 + p∗w∗

1

(p∗w∗
1)

2
<

π(1 − β)2
√

4β
2
+ π2(1 − β)2

In the case of identical sources (assuming w∗
1 � 2), it becomes

ρ · c3τ3

N3

(

cτ + N

2

)

<
π(1 − β)2

√

4β
2
+ π2(1 − β)2

5 RED parameter setting

It is suggested in [5] that the RED parameter max p be dynamically adjusted: reduce max p as
N decreases and raise it otherwise. Raising max p, or reducing max th - min th, is equivalent to
increasing ρ ( = max p/(max th-min th)) in the direction consistent with the stability condition in
Theorem 2. Theorem 2 sets an upper bound on ρ, given N, c, τ (and α), and hence a lower bound
on equilibrium queue length, to ensure stability. Adapting RED parameters cannot prevent the
inevitable choice between stability and performance: either ρ is set small to stabilize the queue,
around a large value, or, alternatively, it is set large to reduce the queue, at the risk of violent
oscillation. What adaptation can hope to achieve is to dynamically find a good compromise when
network condition changes.

The same stability analysis can also be applied to other AQMs, such as Virtual Queue [7, 9, 10]
and REM/PI [2, 8], and clarifies the role of AQM. The stability proof relies on bounding a set of
the form

K · co{h(v, θ)}

to the right of (−1, 0). The gain K and the trajectory h depend on TCP as well as AQM. For
instance, for the case of a single link with capacity c shared by N identical sources with delay τ ,
TCP and network delay contribute a factor

htcp =
e−jv

jv + p∗w∗
1

to the trajectory h and a factor

Ktcp =
c2τ2

2N
(16)
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to the gain K, assuming equilibrium window is large so that p∗ = 2/w2
i = 2N/cτ . AQM com-

pensates for the high gain introduced by TCP by shaping h and reducing K. With RED, for
instance,

h(v, θ) =
1

jv + αcτ

e−jθ

v
· htcp

K =
cταρ

1 − β
· Ktcp

The first term in h is due to RED averaging, the second term is due to queue dynamics that also
bounds θ ≤ θ0. Hence both the queue and RED add phase lag to h. More importantly, RED adds
another cτ to the gain K, necessitating a small αρ for stability and leading to sluggish response
and large equilibrium queue. The factor τ/(1 − β) in K comes from the queue.

The high gain Ktcp in (16) is mainly responsible for instability at high delay, high capacity or
low load. It makes it difficult for any AQM algorithm to stabilize the current TCP.

6 A scalable control

Delay can be large in the current Internet (according to [1], 85% of the round trip time measurements
range in 15–500 ms), a fact that is to some degree inevitable because of geographical distance. As
network capacity scales up, the current TCP protocol will be made to operate with high window
sizes; the results in the previous sections suggest that it may be ill-suited for such an environment.

It also seems difficult to design effective AQM to compensate for the high gain introduced by
the current TCP. However, as we argue in this section, the problem of TCP/AQM design is not
hopeless: indeed, there is enough structure for the design of simple algorithms that can maintain
both linear stability and good performance. We demonstrate this by presenting an algorithm,
developed in [15], that can be implemented in a decentralized way by sources and links, and that
is scalable: it maintains linear stability for arbitrary delay, capacity, load and routing. Moreover,
it achieves high network utilization in equilibrium with small queues. See [17, 16] for extensions
to achieve arbitrary fairness, in addition to stability and performance, and for implementation
strategies and simulation results.

The congestion control algorithm of [15] consists of a static source algorithm and a first-order
dynamic link algorithm. The key idea is to compensate for delay at sources by scaling down the
gain on rates by their individual round trip times, and to compensate for loop gain introduced by
capacity and routing by scaling down the control gain at links by their capacities and scaling it up
at sources by their current rates. In other words, a source reacts more slowly if its round trip delay
is large or if its rate is small; a link updates its congestion measure (called ‘price’) more slowly if
it has a larger capacity. Note that network delay is the only open-loop parameter not under our
control, and it should set the time-scale of the system response.

Consider the network model described in Section 3.1. Let pl(t) be the price at link l at time t
and cl be a virtual capacity that is strictly less than real link capacity. Each link l adjusts its price

15



using the aggregate input rate yl(t) =
∑

s Rlsxs(t):

ṗl(t) =

{

yl−cl

cl
if pl > 0;

max{0, yl−cl

cl
} if pl(t) = 0

(17)

Therefore prices integrate excess capacity in a normalized way, and are saturated to be always non-
negative. At equilibrium, bottlenecks with nonzero price will have y∗

l = cl, giving high utilization.
Non-bottlenecks with y∗

l < cl will have zero price. Since cl is less than real capacity, queue is
negligible in equilibrium. If cl were the real capacity, pl(t) would be the real queueing delay, a
congestion signal used in TCP Vegas [13].

Let xi(t) be the rate of source i at time t, τi its round trip time (assumed constant), and Mi the
number of congested links in its path (or an upper bound). Given aggregate price qi(t) =

∑

l Rlipl(t),
source i sets its rate to be exponential in qi(t):

xi(t) = xmax,i e
−αiqi(t)

Miτi (18)

Here xmax,i is a maximum rate parameter, and α ∈ (0, 1). The utility function corresponding to
the source control is

Ui(x) =
Miτi

αi

x

[

1 − log

(

x

xmax,i

)]

, for x ≤ xmax,i;

Suppose the routing matrix R has full row rank. Then there is a unique equilibrium rate and
price vector (x∗, p∗). The linearized system around the equilibrium is described by:

δṗl(t) =
δyl(t)

cl

, for all l (19)

δxi(t) = −αix
∗
i

Miτi

δqi(t), for all s (20)

where the source rates δx(t) and link prices δp(t) are interconnected by the delayed routing matrices
defined in (9–10).

The following theorem, proved in [15], guarantees the stability of the algorithm when the network
scales up arbitrarily in delay, capacity and load.

Theorem 7 ([15]) Suppose all links included in R are bottlenecks, i.e., c = Rx∗ in equilibrium,
and R has full row rank. Then the closed-loop system described by (19–20) and (9–10) is linearly
stable for arbitrary delays τi and link capacities cl.
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7 Conclusion

We have presented simulation results to demonstrate that it is protocol stability more than other
factors that determines the dynamics of TCP/RED. We have developed a multi-link multi-source
model that can be used to study the stability of general TCP/AQM. We have presented a sufficient
stability condition for the case of a single link with heterogeneous sources, and illustrated the form
of TCP/RED’s stability region. It implies that TCP/RED becomes unstable when the network
scales up in delay or capacity. Our analysis indicates the role, and the difficulty, of RED in
stabilizing TCP. We have demonstrated that it is possible to maintain both local stability and
good performance, such as high utilization and low queue, for arbitrary delay, capacity, load and
routing.

We close by commenting on the importance of protocol stability. There is currently no theory
to understand the behavior of a distributed nonlinear feedback system with delay when the system
loses stability. It is therefore undesirable to operate in unstable regime, and unnecessary if stability
can be maintained without sacrificing performance. In fact, instability can cause three problems.
First, it increases jitters in source rate and delay and can be detrimental to some applications.
Second, it subjects short-duration connections, that are typically delay and loss sensitive, to un-
necessary delay and loss. Finally, it can lead to under-utilization of network links if queues jump
between empty and full.

8 Appendix: Proofs

8.1 Proof of Lemma 3

Let the denominator of the last term in (13) at s = jω be:

λ(jω) := jω +
∑

n

x∗
n

c

e−jβnτnω

τn

= jω

(

1 + β

(

∑

n

βi

β

x∗
n

c

e−jβnτnω

jβnτnω
+

(

1 −
∑

n

βi

β

x∗
n

c

)

· 0
))

i.e., λ(jω) is a convex sum of the N points e−jβnτnω/jβnτnω and the origin. Since the origin is also
on the line e−jv/jv at v = ∞, we have

λ(jω)

ω
∈

{

j(1 + βζ) : ζ ∈ co

{

e−jv

jv
: v ≥ 0

} }

where coA is the convex hull of set A. For v ≥ 0, let

ζ(v) =
e−jv

jv
= −sin v

v
− j

cos v

v
=: a(v) + jb(v) (21)
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The real part of ζ is bounded by −1 ≤ a(v) < 1/π; the imaginary part of ζ is bounded by
b(v) < 2/π. Hence

co

{

e−jv

jv
: v ≥ 0

}

⊆ {a + jb : −1 ≤ a ≤ 1/π, b ≤ 2/π}

and

(

λ(jω)

ω

)−1

∈
{

1

−βb + j(1 + βa)
: −1 ≤ a ≤ 1/π, b ≤ 2/π

}

(22)

Since 1 − β > 0, we can bound its magnitude and phase:

∣

∣

∣

∣

(

λ(jω)
ω

)−1
∣

∣

∣

∣

≤ 1

1 − β
(23)

0 ≤ 6

(

λ(jω)
ω

)−1
≤ θ (24)

where θ is defined in (12).
From (13), for all i,

zi(jω) =
τ2
i e−jτiω

τiω(jτiω + αcτi)(jτiω + p∗w∗
i )

·
(

λ(jω)

ω

)−1

(25)

From (14), we have

L(jω) ∈ cαρ

τ̂p∗
· co{zi(jω), i = 1, . . . , N}

Since zi(jω) is the origin at ω = ∞ and that w∗
i = w∗

1 for all i, it can be shown that the above
convex set is contained in the following larger set, obtained by replacing τi by τ := maxi τi in the
numerator and by τ := mini τi in the denominator in (25) and using (23–24):

L(jω) ∈ cτ 2αρ

τ̂p∗(1 − β)
· co

{

r(ω)e−jφ(ω) · e−jθ : 0 ≤ θ ≤ θ, ω ≥ 0
}

where r(ω)e−jφ(ω) is defined in the lemma.

8.2 Proof of Lemma 4

Fix any point η =
∑

i aiηi in A1, where ai ≥ 0,
∑

i ai = 1, and where ηi := r(ωi)e
−jφ(ωi) · e−jθi

are points on the Nyquist trajectory N(θi) defined by θi. We will show that η is a convex sum of
points on the Nyquist trajectory N(θ) defined by θ and hence is in the right hand side.
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For each θi, define ω̂i by φ(ω̂i) + θ = φ(ωi) + θi. Then 0 ≤ ω̂i ≤ ωi since φ(ω) is increasing
in ω. Since r(ω) is decreasing in ω, the point ηi lies on the line segment from the origin to

η̂i := r(ω̂i)e
−jφ(ω̂i) · e−jθ. Both the origin and η̂ are on the Nyquist trajectory N(θ) and hence

ηi = biη̂i for some 0 ≤ bi ≤ 1. Hence

η =
∑

i

aibiη̂i + (1 −
∑

i

aibi) · 0

i.e., η is a convex sum of points on N(θ), proving the lemma.

8.3 Proof of Lemma 5

First note that if

η(jω) =
e−jω

ω(jω + a1)(jω + a2)

then for all ω

Im{η(jω)} ≥ − 1

a1a2

(

1 +
1

a1
+

1

a2

)

with equality at ω = 0. To see this, we have

Im{η(jω)} ≥ − (a1 + a2)ω cos ω + (a1a2 − ω2) sinω

ω(ω2 + a2
1)(ω

2 + a2
2)

= −
(

(a1 + a2) cos ω

(ω2 + a2
1)(ω

2 + a2
2)

+
(a1a2 − ω2)

(ω2 + a2
1)(ω

2 + a2
2)

· sinω

ω

)

≥ − 1

a1a2

(

1 +
1

a1
+

1

a2

)

with equality at ω = 0. Then, the assertion follows from the definition of A2 in Lemma 4
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(a) Queue (delay = 40ms, 10% noise)
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(b) Queue (delay = 200ms, 10% noise)
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(c) Queue (delay = 40ms, 30% noise)

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

In
sta

ne
ou

s q
ue

ue
 (p

kts
)

time(s)

(d) Queue (delay = 200ms, 30% noise)

Figure 2: Queue traces with noise traffic. Simulation parameters: 50 sources, capacity = 9 pkts/ms,
RED = (0.1, 50, 550, 10−4), marking with ‘byte’ mode; two-way traffic.
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(a) Queue (delays from 12ms to 19ms)
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(b) Queue (delays from 160ms to 254ms)

Figure 3: Queue traces with heterogeneous delays. Simulation parameters: 50 sources, capacity =
9 pkts/ms, RED = (0.1, 50, 550, 10−4), marking with ‘byte’ mode; one-way traffic.
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Figure 4: Validation.
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Figure 5: Stability region: for each N , the region above the curve is unstable and that below is
stable.
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Figure 6: Proof of Theorem 2 with λ′ = λ · cτ2αρ/τ̂p∗(1 − β).
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