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Glycolytic Oscillations and Limits on
Robust Efficiency
Fiona A. Chandra,1* Gentian Buzi,2 John C. Doyle2

Both engineering and evolution are constrained by trade-offs between efficiency and robustness,
but theory that formalizes this fact is limited. For a simple two-state model of glycolysis, we
explicitly derive analytic equations for hard trade-offs between robustness and efficiency with
oscillations as an inevitable side effect. The model describes how the trade-offs arise from
individual parameters, including the interplay of feedback control with autocatalysis of network
products necessary to power and catalyze intermediate reactions. We then use control theory to
prove that the essential features of these hard trade-off “laws” are universal and fundamental, in
that they depend minimally on the details of this system and generalize to the robust efficiency
of any autocatalytic network. The theory also suggests worst-case conditions that are consistent
with initial experiments.

Minimizing waste, resource use, and fra-
gility to perturbations in system com-
ponents, operation, and environment

(1) is crucial to the sustainability of systems ranging
from cells to engineering infrastructure. Hard lim-
its on computation, prediction, energy conversion,
communication, control, and even measurement
are at the heart of modern theories of systems in
engineering and science (2). Unfortunately, lack
of coherence among these subjects makes it dif-
ficult to explore the trade-offs between these
limits, and a more unified theory is needed to
understand and design complex systems. Using
the well-studied problem of glycolytic oscillation
as a case study, we integrate concepts from bio-
chemistry and control theory (3, 4) to explore
the hard limits of robust efficiency.

Glycolytic oscillation, in which the concen-
trations of metabolites fluctuate, has been a clas-
sic case for both theoretical and experimental
study in control and dynamical systems since the
1960s (5–8). Numerousmathematicalmodels have
been developed, from minimal models (9, 10) to
those with extensive mechanistic detail (11). Be-
sides being the most studied control system and
the most common, glycolysis is also conserved
from bacteria to humans and, presumably, has
been under intense evolutionary pressure for ro-
bust efficiency. Thus, new insights are less likely
to be confounded by either gaps in the literature
or evolutionary accidents compared with less well
studied biological circuitry.Nevertheless, the func-
tion of the oscillations, if any, remains a mystery
and one we aim to resolve.

The first step is development of the simplest
possible model of glycolysis that illustrates the

trade-offs caused by autocatalysis. Biologically
motivated minimal models of glycolytic oscilla-
tions exist, but analysis of robustness and effi-
ciency trade-offs has not received much attention.
Such analysis can provide a much deeper under-
standing of the underlying basis of glycolytic os-
cillations as well as illustrate universal laws that
are broadly applicable.

Minimal model of glycolysis. Glycolysis is a
central energy producer in a living cell, consum-
ing glucose to generate adenosine triphosphate
(ATP), which is used throughout the cell. The
first steps of the reaction require ATP, making it
autocatalytic. In early experiments in Saccharo-
myces cerevisiae, investigators observed two syn-
chronized pools of oscillating metabolites (12),
which suggested that a two-state model incorpo-
rating phosphofructokinase (PFK) might capture
some aspects of system dynamics, and indeed,
such simplified models (9, 10) qualitatively repro-
duce the experimental behavior. We propose a
minimal systemwith three reactions (Fig. 1A), for
which we can identify specific mechanisms both
necessary and sufficient for oscillations (Table 1).
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In the first reaction in Eq. 1.1, PFK consumes
q molecules of y (ATP) with allosteric inhibition
by ATP. We lump the intermediate metabolites
into one variable, x. In the second reaction, pyr-

uvate kinase (PK) produces q + 1 molecules of y
for a net (normalized) production of one unit,
which is consumed in a final reaction modeling
the cell’s use of ATP. In glycolysis, two ATP
molecules are consumed upstream and four are
produced downstream, which normalizes to q = 1
(each ymolecule produces two downstream) with
kinetic exponent a = 1. To highlight essential
trade-offs with the simplest possible analysis, we
normalize the concentration such that the un-
perturbed (d ¼ 0) steady states are y ¼ 1 and
x ¼ 1=k [the system can have one additional
steady state, which is unstable when (1, 1/k) is sta-
ble]. [See the supporting online material (SOM)
part I]. The basal rate of the PFK reaction and
the consumption rate have been normalized to
1 (the 2 in the numerator and feedback coeffi-
cients of the reactions come from these normaliza-
tions). Our results hold for more general systems
as discussed below and in SOM, but the analysis
is less transparent.

As most research does, we focus on allosteric
activation of the enzyme PFK by adenosine
monophosphate (AMP) as the main control point
of glycolysis.We assume that the total concentra-
tion of adenosine phosphates, including adenosine
diphosphate (ADP), in the cell [Atot] = [ATP] +
[ADP] + [AMP] remains constant, and the acti-
vating effects of AMP can be modeled as ATP
inhibition. ATP also inhibits PK activity, although
this has been largely ignored in most models [ex-
cept (13, 14)]. We emphasize its importance and
model both inhibitions through exponents h
and g. We use linearization to focus initially on

RESEARCHARTICLES

1Department of Bioengineering, California Institute of Tech-
nology, Pasadena, CA 91125, USA. 2Department of Control
and Dynamical Systems, California Institute of Technology,
Pasadena, CA 91125, USA.

*To whom correspondence should be addressed. E-mail:
fiona@caltech.edu

A B

Fig. 1. (A) Diagram of two-state glycolysis model.
ATP, along with constant glucose input, produce a
pool of intermediate metabolites (phosphorylated
six-carbon sugars), which then produces two ATPs.
ATP inhibits both the first (PFK or PFK-like) and
second (PK or PK-like) reactions. (B) Control theo-
retical diagram of the same system (arrows represent
logical connections, not fluxes). The system without
inhibition or feedback is labeled the “Plant” (P)
[solid box, solid and dotted loop in (A)], whereas the
inhibitory mechanism is considered the “Controller”
(here labeled by its inhibitory strength, H) [dashed
loop in (A) and (B)]. The effect of disturbance d in
ATP demand is modeled as the systemW (see text for
definition).
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steady-state error and instability, while highlight-
ing disturbance and control:
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The first term on the right-hand side (RHS) gives
the dynamics of the “open loop” plant [P, defined
as Eq. 1.2 when there is no control, i.e., h = 0]
(solid and dotted loop in Fig. 1A or solid box in
Fig. 1B) in response to the second term (dis-
turbance in demand); the third term is the control
on PFK (dashed loop in Fig. 1A).

Elementary analysis. The simplest robust
performance requirement (motivated by the need
to maintain high energy charge) is that the
concentration of y remains nearly constant de-
spite fluctuating demand d. In our model, this
requires that the steady-state error ratio be
small. This ratio is computed by solving for
jDy=dj when "

D ẋ
D ẏ

#
¼

"
0
0

#

to be:

�����Dyd
����� ¼

����� 1

h − a

����� ð2:1Þ

This ratio is small when |h − a| is large, and
jDy=dj → 0 if and only if h→∞. One trade-off
is that large h requires either high cooperativity
or very tight ATP-enzyme binding, and the re-
sulting complex enzymes are more costly for
the cell to produce. A more interesting trade-off
arises because Eq. 1.2 is stable (see SOM, part II)
if and only if

0 < h − a <
k þ gð1þ qÞ

q
ð2:2Þ

The left-hand side (LHS) bounds the minimum
feedback strength h required to stabilize the
system, so autocatalysis requires some minimal
enzyme complexity for stability, which is com-
patible with making Eq. 2.1 small. More impor-

tant, combining Eq. 2.1 and Eq. 2.2 constrains
the minimum stable steady-state error to

�����Dyd
����� ¼

����� 1

h − a

����� > q

k þ gð1þ qÞ ð2:3Þ

Equation 2.3 and Fig. 2A [showing the error
bound Eq. 2.3 versus k] illustrate a simple and
elegant trade-off between robustness and effi-
ciency (as measured by complexity and metabol-
ic overhead). Low error requires large h, but to
allow this to be stable, k and/or g must also be
large enough. Large k requires either a more
efficient or a higher level of enzymes, and large g
requires a more complex allosterically controlled
PK enzyme; both would increase the cell’s meta-
bolic load. Thus, fragility directly trades off against
complexity and high metabolic overhead (low
efficiency).

The steady-state error is minimized when h
is chosen so that Eq. 2.3 is an equality, but Eq. 1.1
enters sustained oscillations at this hard limit
(this boundary is called a supercritical Hopf bi-
furcation). Thus, at least in this model, oscil-
lations have no direct purpose but are side effects
of hard trade-offs crucial to the functioning of
the cell and can be avoided at some expense. Note
that robustnessmeansmaking fragility (steady-state
error and oscillations) small, and efficiency means
making metabolic overhead (enzyme amount and
complexity) small.

Hard limits on robust efficiency. Thus far,
we have described simple trade-offs based on
basic biochemical features of a minimal model.
Our elementary analysis of Eq. 1.2 is consistent
with existing literature yet clarifies in Eq. 2.3
how oscillations are the inevitable side effect of
robust efficiency and trade-offs between steady-
state error and stability. An important next step is
to expand to a more detailed and comprehensive
model and also to extend the analysis to study
global nonlinear stability, stochastics, and worst-
case disturbances.We have explored such dimen-
sions, and the results are consistent, although often
less accessible (most additional modeling details
make the trade-offs worse).

A more fundamental direction, however, is to
rigorously prove that the trade-offs suggested by
Eq. 2.3 are unavoidable regardless of these ne-
glected details, depend only on the basic proper-
ties of autocatalytic and control feedbacks, and
are unlikely to be either artifacts of model sim-
plifications or “frozen accidents” of evolution (of
course, in principle, anything is possible because
there is always some gap between models and
reality.) Fortunately, control theory has been de-
veloped precisely to address such questions in
engineering. Unfortunately, although well known
to engineers and mathematicians, control theory
has not been integrated into other fields. A good
background is given in (4).

Control theory focuses our attention on amore
complete picture of the transient response to dis-

Table 1. Description of model variables, parameters, and control theoretic terms.

Model parameters Definition of terms

x Lumped variable of intermediate metabolites P(s) Open loop response (h = 0) in frequency (s) domain
y output, ATP level
k Intermediate reaction rate WS(s) Weighted response to a disturbance d
d Perturbation in ATP consumption WS(s) = W(s)S(s) where W(s) is the weight
q Autocatalytic stoichiometry S(s) Impulse response to a disturbance d
a Cooperativity of ATP binding to PFK z Zero, the solution to P(z) = 0
h Feedback strength of ATP on PFK p Pole, the solution to W (p ) = P (p ) = ∞, or D (p ) = 0
g Feedback strength of ATP on PK

A B

Fig. 2. Trade-offs between waste, fragility, and complexity due to enzyme complexity and amount.
Enzyme amount affects the intermediate reaction rate k (x axis), plotted for g = 0 (solid line) and g = 1
(dashed line). Large k requires high metabolic overhead, and large g requires high enzyme complexity.
Even small g > 0 enhances the trade-offs, particularly at low k. (A) The y axis shows the system’s steady-
state error, and the curves denote the boundary between stable (above) and oscillatory (below) regions.
(B) The y axis shows the lower bound of the hard limits in Eqs. 3.4 and 3.6.
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turbances. Because even temporaryATP depletion
can induce cell death, large amplitude oscillation
can be detrimental (15). Therefore, static steady-

state response alone provides insufficient informa-
tion, and the dynamicsmust be analyzed carefully.
To this end, we reconsider the linearized model

Eq. 1.2 and allow d = d(t) to be an arbitrary func-
tion of time, although the figures only show re-
sponses of the nonlinear system Eq. 1.1 to step
changes in d(t). The theory is most conveniently
written using frequency-domain transforms %yðsÞ ≜
∫
∞

−∞
yðtÞe−stdt, where s ∈ ℂ is the (complex) Laplace

transform variable, and frequency w with s = jw
is the Fourier transform variable. We consider
three cases of control: (i) “wild type” with con-
stant h (the case studied above); (ii) a general case
where h is replaced by a controller H with arbi-
trarily complex internal dynamics, constrained
only to stabilize Eq. 1.2; and (iii) no control (h =
H = 0). H is assumed linear and time invariant,
and we write H = H(s).

The weighted sensitivity transfer function de-
fined asWSðsÞ ≜ %yðsÞ=%dðsÞ is the response from
d to y. Given Eq. 1.2 and controller H, we can
factor WSðsÞ ¼ W ðsÞSðsÞ, where S is called the
sensitivity function andW is the weight, equal to
the uncontrolled (H = h = 0) response from d to y.
For disturbance d, W(s), S(s), and the open-loop
response P(s) (see SOM, part III) are given by

W ðsÞ ¼ sþ k

DðsÞ

SðsÞ≜ 1

1þ PðsÞHðsÞ ¼
DðsÞ

DðsÞ þ HðsÞð−qsþ kÞ

PðsÞ ¼ −qsþ k

DðsÞ ð3:1Þ

where D(s) = s2 + [k + g + q(a + g)]s − ka. With
constant, stabilizingH(s) = h > a, it follows from
Eq. 3.1 and Eq. 2.3 that the response at frequency
w = 0 is equal to the steady-state error ratio:�����Dyd

����� ¼ jWSð0Þj ¼ jW ð0ÞSð0Þj

¼
����� 1a

�����
����� a

h − a

����� ¼
����� 1

h − a

����� > q

k þ gð1þ qÞ

ð3:2Þ

S is the primary robustness measure for feed-
back control (3), and |S(s = jw)| measures how
much a disturbance is attenuated (|S( jw)| < 1) or
amplified (|S( jw)| > 1) at frequency w. SðsÞ ≡ 1
when H(s) = 0. The response of y to any other
disturbance can be treated with the appropriate
weight W.

When there is autocatalysis, we can derive
stricter bounds on the response WS and S using
the maximum modulus theorem from complex
analysis (16). In Eq. 3.1, when q > 0, P(s) has a
zero at z = k/q defined as P(z) = 0, which is
positive real [Re(z) > 0]. When a > 0, both W(s)
andP(s) have an unstable pole ( p > 0), defined as
whereW(p) =P( p) =∞, and can be computed by
solvingD( p) = 0. So for any stabilizingH: S(z) =
1, S( p) = 0, and neither S(s) norWS(s) have poles

Fig. 4. Log sensitivity
log|S( jw)| (left) and step
response of the nonlinear
system in Eq. 1.1 to step
changeindemandd (right).
(A) The two-state glycol-
ysis model allows higher
feedback gain h and bet-
ter performance when
there is anadditional feed-
back loop on PK (g = 1).
h = 4 does not drive the
system into sustained os-
cillation as in the g = 0
case in Fig. 3B. Com-
pared with Fig. 3B, both
the peaks and total area
in log|S(jw)| are lower.
(B) The effects of varying
intermediate reaction rate
k given particular inhibi-
tion strengths (in this case,
h = 3 and g = 1). Lower k
results inbothhigher peak
and area under the curve
(left), which translate to
more oscillatory transients
(right).

Fig. 3. Log sensitivity
log|S( jw)| (left) without
ATP feedback onPK (g=0)
and step response of the
nonlinear system Eq. 1.1
to step change in demand
d (right). The integral of
log|S( jw)| is constrained
by Eq. 3.5 in (A) (left) and
Eq. 3.6 in (B) (left) and is
the same for all h. Only
the shape changes with in-
creasing h. Higher h gives
better steady-state error
with more oscillatory tran-
sient. (A) With no auto-
catalysis (q=0) the system
is stable for all h > 0. (B)
When q = 1, log|S(jw)| is
more severely constrained
by Eq. 3.6 and the system
has sustained oscillations
for large h.
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in Re(s) ≥ 0. Hence, the maximum modulus
theorem holds for WS(s) in the positive real
domain Re(s) ≥ 0 (SOM, part III) and

‖WS‖∞ ≜ max
jw

jWSð jwÞj

¼ max
ReðsÞ≥0

jWSðsÞj ≥ jW ðzÞSðzÞj

¼ q

k þ qg ð3:3Þ

‖S‖∞ ≜ max
jw

jSð jwÞj ¼ ‖ sþ p

s − p
S‖∞ ≥

����� zþ p

z − p

�����
ð3:4Þ

The norm ‖WS‖∞ has a variety of interpretations
(3), the simplest of which is the maximum
sinusoidal steady-state response for any frequen-
cy w. Ideally, bothWS and S should be low at all
frequencies, but this contradicts Eq. 3.3 and Eq.
3.4, which hold regardless of the controller used.
The peak ‖WS‖∞ is always larger than the bound
in Eq. 3.3 for any h, and minimizing steady-state
error |WS(0)| leads to‖WS‖∞ →∞ and oscillations
(fig. S2). How the RHS of Eq. 3.4 varies with k
and g is shown in Fig. 2B; both Eq. 3.3 and Eq.
3.4 are aggravated by small k and g. These are
hard constraints on any stabilizing controller from
y to the first enzyme, no matter how complex the
implementation and, thus, are much deeper than
Eq. 2.3, which applies only for constant H = h.

Conditions such as those in Eqs. 3.3 and 3.4
can be applied to other transfer functions and
weights to provide a rich theoretical framework
for exploring additional trade-offs and details,
including the realistic frequency content of d(t),
appropriate error penalties in y(t) and other sig-
nals, and other sources of noise and uncertainty
(3, 4). A complementary focus is on constraints
that are independent of these details, such as
Bode’s integral formula (3)

1

p ∫
∞

0
lnjSð jwÞjdw ≥ 0 ð3:5Þ

which holds for any linear, stabilizing H that is
causal (i.e., H cannot depend on future values of
y(t). H = h depends only on current values). This
“water bed” effect implies that the net disturbance

attenuation (ln|S( jw)| < 0) is at least equaled by
the net amplification (ln|S( jw)| > 0). It is a general
constraint onWS(s) for anyW, which transparent-
ly factors out [lnjWSð jwÞj ¼ lnjW ð jwÞSð jwÞj ¼
lnjW ð jwÞjþ lnjSð jwÞj]. For q = 0, constant con-
trollers H = h achieve Eq. 3.5 with equality, as
illustrated in Fig. 3A. More controller complex-
ity can thus fine-tune the shape of lnjSð jwÞj but
cannot uniformly improve it. Autocatalysis q > 0,
however, makes things worse, because z = k/q is
finite, and Eq. 3.5 can be strengthened to

1

p ∫
∞

0
lnjSð jwÞj z

z2 þ w2

� �
dw ≥

max 0,lnj zþ p

z − p
j( )

ð3:6Þ

with z and p as defined above (for proof, see
SOM, part V). It is easily shown that p > 0 when
a > 0 and, otherwise, Eq. 3.6 is just bounded by
0. Hence, autocatalysis always causes positive z
and p, and the integral in Eq. 3.6 is bounded
similarly to that in Eq. 3.4. The low-pass filter
z/(z2 +w2) constrains thewater bed effect to below-
frequency w = z. Small z = k/q produces a more
severe limitation, because any disturbance at-
tenuationmust be repaid with amplification with-
in a more limited frequency range. The trade-off
in three criteria is shown in Fig. 2B: High k both
stabilizes the system and reduces the bound but
implies high metabolic overhead. How auto-
catalysis and Eq. 3.6 affect dynamics is illustrated
in Fig. 3B. S(0) gives the steady-state error, where-
as the peak in S( jw) corresponds to how “ringy”
the transient y(t) dynamics are at frequency w.
At h = 2, S(0) is large, the peak ‖S‖∞is low, and
y(t) has a large steady-state error, which h = 3
lowers but with more transient fluctuations. At
h= 4, the system oscillates at the frequencywhere
S( jw)→∞. Larger qmakes z smaller and perform-
anceworse (more ringy), as shown in fig. S3.The
trade-off in Eq. 2.3 and the difference between
Eq. 3.5 and Eq. 3.6 disappears with no auto-
catalysis (q→0), because the RHS bound in Eq.
2.3→∞ and in Eq. 3.6→0. Zero steady-state error
with stability is then possible by taking h→∞.

Complexity and robustness. We have taken
PFK feedback as the main controller, but the
often neglected PK feedback increases enzyme

complexity and plays an important, but subtle,
role in robustness. Put most simply, increasing g
uniformly improves the stability bound in Eq.
2.3. From Eq. 2.2, if q = a = 1, then the system is
stable for all k > 0 if and only if 0 < h − 1 < 2g.
Thus g > 0 is necessary to simultaneously main-
tain acceptable steady-state error S(0) = 1/(h − 1)
and stability for all k > 0. Replacing g = 0 (Fig.
3B) with g = 1 (Fig. 4A) does not change S(0),
but yðtÞ is more damped (and the peaks and in-
tegral in Eq. 3.6 are lower). The h = 4 case is
unstable in Fig. 3B but stable in Fig. 4A. The
effect of g > 0 on the robustness versus efficiency
trade-off involving k gives us insight into how the
system is designed. Although a and q are essen-
tially fixed by the network’s autocatalytic struc-
ture, h and g can be tuned on evolutionary time
scales. Thus, 0 < h − 1 < 2g is biologically plau-
sible and, in fact, is consistent with most es-
timates, which ensures stability for all k > 0 (13).
This allows individual cells to further fine-tune
k > 0 through the many mechanisms that control
enzyme levels, but stability for all k > 0 also
provides robustness to unavoidable noise in gene
expression and enzyme levels (17). Quantifying
this effect would require more detailed modeling
and integration of our hard limits on robustness
to external disturbances with those in (17) on
robustness to internal noise in transcription.

From an engineering perspective, this is a
remarkably clever control architecture, and the
presence of g > 0 suggests that, at least in this
case, evolution favors higher complexity in ex-
change for flexibility in k and robustness. Further
insights come from the bound in Eq. 3.6. Because
z = k/q, increasing k improves both sides of Eq.
3.6 and uniformly improves robustness (Fig. 4B),
at the expense of higher enzyme levels. Increas-
ing g decreases p, while leaving z unchanged (the
dependency of p on g is given in equation S3.9),
decreasing ln|(z + p)/(z − p)| (Fig. 2B). This
improves the constraint in Eq. 3.6 and enables
more aggressive controller gains h on PFK. By
itself (when h < a), however, g > 0 cannot stabilize,
and a stabilizing G(s) needs very high complexity
(see SOM, part VI).

Our simple model thus far restricts the con-
troller implementation to ATP inhibition, but other
intermediate metabolites can also have inhibitory
effects. We show in SOM, part VIII, that control

Table 2. Summary of the performance, metabolic overhead, and stability trade-offs in glycolysis. Each parameter in the two-state model presents its
own set of trade-offs.

Parameter Pros Cons

Low q Improves performance limit
Can stabilize the system

Reduces metabolic efficiency

High k Improves performance limit
Can stabilize the system

Increases enzyme complexity
Increases metabolic load

High h Stabilizes the system
Improves steady-state error

Increases enzyme complexity
High h can lead into a limit cycle
Worsens transient oscillations

Additional feedback loop (g > 0) Improves performance limit
Improves stability bounds

Increases pathway complexity
Increases enzyme complexity

8 JULY 2011 VOL 333 SCIENCE www.sciencemag.org190
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by intermediate metabolites can relax stability
and performance constraints at the cost of lower
efficiency. Intermediate inhibition on PFK can
change both the steady-state error and stability
bounds, whereas intermediate activation of PK
can lift performance constraint (ultimately, the
effects of both are limited by enzyme saturation).
Fructose 1,6-bisphosphate (the product of PFK)
has been thought to both inhibit PFK and activate
PK, which also suggests that nature accepts greater
complexity in return for robustness.

Experiments revisited. Our theory shows
both how autocatalysis makes glycolysis more
prone to sustained oscillations and how sufficient-
ly complex feedback control ameliorates this
potential fragility. The trade-offs summarized in
Table 2 suggest that ringy transient dynamics
would be more likely under specific worst-case
conditions that we have attempted to create ex-
perimentally. Small z = k/q has the most obvious
impact on overall fragility, and this occurs at
high autocatalytic stoichiometry q and/or low
k. Thus, to get a worst-case high-q and low-k
condition, wild-type S. cerevisiae cells (strain
W303) were first grown in ethanol and briefly
starved in phosphate-buffered saline, then rapidly
shifted into anaerobic glucose metabolism (18).
Transcription levels of some glycolytic genes are
decreased when S. cerevisiae is grown in ethanol
(19), which could decrease k. Flow cytometry of
fluorescence-tagged proteins indeed shows lower
concentrations of glycolytic enzymes involved in
the intermediate reactions in cells grown in eth-
anol compared with glucose (18).

Our single-cell autofluorescence measure-
ments of the reduced form of nicotinamide ade-
nine dinucleotide (NADH) showed that a portion
of the cells indeed exhibited fluctuating transients
before settling into a higher NADH level (fig. S6),
as expected from a robust controller and roughly
corresponds to 1 ≤ k ≤ 3 in Fig. 4B (right). The
period is in good agreement with the 36-s period
in cell suspensions (20), and this transient does
not occur in cells grown in glucose (fig. S7), also
as expected for high k [e.g., k = 5 in Fig. 4B
(right)]. We observe no sustained oscillation re-
gardless of the experimental perturbations ap-
plied, which suggests that the intact single cell is
indeed rather robust.

In fact, despite intense experimental study,
spontaneous sustained oscillations in yeast have
only been observed in cell-free extracts or in in-
tact cells in dense suspensions but not when iso-
lated (20). Our single-cell model is too simplistic
to be as predictive as the detailed models in the
literature, but because the analysis highlights
fundamental trade-offs, it can give insights into
these different behaviors. For example, in cell-
free extracts, parameters can be pushed into re-
gimes exposing extreme fragilities that wild-type
cells have evolved to avoid. In SOM, part X, we
show that our model and theory are consistent
with observed patterns of oscillations in well-
known extract experiments (5). Of course, the
possibility of single-cell oscillation cannot be

ruled out, and there is much more to be done
theoretically and experimentally to fully resolve
this. The tools and analysis presented here can be
applied tomore complete models and, it is hoped,
can clarify future directions. In SOM, part XI, we
further discuss what is needed to address both
dense cell suspensions and isolated cells.

Discussion. Our analysis illustrates the power
of control theory to clarify biological phenome-
na and biology so as to motivate new theoretical
directions (21). In this simple model of glycoly-
sis, oscillation is neither directly purposeful nor
an evolutionary accident but a necessary conse-
quence of autocatalysis and hard trade-offs be-
tween robustness and efficiency (or fragility and
overhead). Nature has evolved a control structure
finely tuned to effectively manage these trade-
offs with flexibility to adapt to changes in supply
and demand, at the cost of higher enzyme com-
plexity. Consistent with engineering, purposeful
complexity in biology is primarily driven by ro-
bustness, not minimal functionality (1), and there
are hard trade-offs that this complexity mediates.

The theory presented here is consistent
throughout in highlighting hard trade-offs, but
there are important differences in the details. Al-
though Eq. 2.3 is phenomenological and specific
to the model in Eq. 1.2, the theory in Eqs. 3.3 to
3.6 is more complete, holding for all frequencies
and arbitrarily complex causal controllers, and
also applying to other systems. However, Eq. 3.6
still requires substantial phenomenology, because
the formulas for z and p depend on assumptions
about autocatalysis (q and a) and enzyme effi-
ciencies and levels (k). It is hoped that this will
encourage efforts in further unification of con-
trol theory with thermodynamics and statistical
mechanics, and recent progress is encouraging
(22). It also leads to rethinking how biology
overcomes the “causality” limit with various
mechanisms that exploit predictable environ-
mental fluctuations (e.g., circadian rhythms) or
provide remote sensing (e.g., vision and hearing),
both of which can greatlymitigate hard limits such
as Eq. 3.6 (23). In the case of circadian rhythms,
oscillation is not just a side effect but has the
purpose of exploiting predictable periodicity in
the environment.

Although our minimal model has limited
quantitative predictive power, it can still provide
qualitative insights about experiments, such as
which parameters to perturb and why extracts
oscillate more easily than isolated cells (SOM,
parts X and XI). To maximize accessibility, we
used the simplest possible model that captures
the real system’s essential features, yet facilitates
theoretical analysis connecting network structure
with functional trade-offs and allows the results
to be carried out analytically [a model’s scope
and fidelity versus ease of theoretical analysis is
itself an inherent trade-off (24)]. The SOM cov-
ers various extensions to our model, including
a nonlinear model of arbitrary length (SOM, part
XII) (25) and reversible reactions (SOM, part
XIII). The effect of reversibility in the inter-

mediate (PK) reaction depends on PK inhibition
strength g and can either ameliorate performance
limit at the cost of efficiency, or make it worse. The
analysis readily scales to more complex models
with appropriate computer-aided design soft-
ware, but the results are far less accessible.

This research article ultimately raises more
questions than it answers, and there is muchmore
to be done experimentally and theoretically. Tuning
the autocatalytic and control feedbacks via enzyme
mutations to affect robustness is an interesting
direction for future experiments. A relatively easy
theoretical direction that is largely unexplored is to
generalize the bounds in Eqs. 3.3 and 3.4 to
complex multivariable feedback systems involv-
ing more enzymes and metabolites. Control of
additional complex autocatalytic processes, such
as redox balance and biosynthesis of building
blocks and enzymes, is crucial for amore complete
understanding. For example, without aerobic me-
tabolism, NADH is no longer an energy source
but a waste product that must be reduced to nico-
tinamide adenine dinucleotide via other cellular
mechanisms, and then recycled, a potentially
destabilizing autocatalytic loop. The hard limits
can also be generalized to nonlinear systems and
controllers with more complex definitions and
proofs, butmany questions remain open (see SOM,
part XV, and references therein). Finally, auto-
catalytic recycling and control feedbacks must
increase and work together effectively in all hu-
man systems as we seek to be more sustainable,
efficient, and robust.
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The Onset of Turbulence in Pipe Flow
Kerstin Avila,1* David Moxey,2 Alberto de Lozar,1 Marc Avila,1 Dwight Barkley,2,3 Björn Hof1*

Shear flows undergo a sudden transition from laminar to turbulent motion as the velocity
increases, and the onset of turbulence radically changes transport efficiency and mixing
properties. Even for the well-studied case of pipe flow, it has not been possible to determine at
what Reynolds number the motion will be either persistently turbulent or ultimately laminar.
We show that in pipes, turbulence that is transient at low Reynolds numbers becomes sustained
at a distinct critical point. Through extensive experiments and computer simulations, we were able
to identify and characterize the processes ultimately responsible for sustaining turbulence. In
contrast to the classical Landau-Ruelle-Takens view that turbulence arises from an increase in
the temporal complexity of fluid motion, here, spatial proliferation of chaotic domains is the
decisive process and intrinsic to the nature of fluid turbulence.

The seemingly simple question as to when
the flow down an ordinary pipe turns tur-
bulent dates back to the pioneering study

of Osborne Reynolds in the late 19th century (1).
Reynolds proposed that below a critical velocity,
pipe flows are always laminar, whereas above
that critical velocity turbulence prevails, given
the right initial conditions. The observation that
this critical point can be expressed in a dimen-
sionless form was the basis of one of the central
concepts in fluid dynamics: the Reynolds number
(Re = UD/n, where U is the mean velocity, D is
the pipe diameter, and n is the kinematic viscos-
ity). Curiously, although Reynolds similarity has
proved to be valid throughout fluid mechanics
the value of the critical point in pipe flow has been
debated ever since. In an early attempt to deter-
mine its value (2), Reynolds rewrote the equations
of motion, separating quantities into average and
fluctuating parts—a method that is now called the
Reynolds decomposition. This contribution is gen-
erally regarded as the foundation of modern tur-
bulence research, but it has failed to clarify the
value of the critical point in pipe flow. Values
reported in contemporary textbooks and journal

papers vary widely, typically ranging from 1700 to
2300 (3–5), and occasionally even values in
excess of 3000 (6) are quoted.

One circumstance that complicates this prob-
lem is that laminar pipe flow is stable to infin-
itesimal perturbations (7, 8), and therefore in
order to trigger turbulence, a disturbance of finite
amplitude is required (1, 3, 9). What makes mat-
ters even more difficult is that at low Re, tur-
bulence is transient. Here, turbulence occurs in
the form of localized patches called puffs (10)
that are embedded in the surrounding laminar
flow and decay according to a memoryless pro-
cess (that is, independent of their previous history)
(11). The rapid increase in lifetime with Re has led
to various proposed values for a critical point at
which the lifetime would diverge and turbulence
would become sustained (4, 12, 13). However,
more detailed studies (14–18) have shown that
the lifetime of individual puffs remains finite and
only approaches infinity asymptotically with Re.
Qualitatively, this behavior is reminiscent of the
dynamics of a class of model systems called
coupled map lattices (19). Here, individual lattice
points can exhibit transient chaotic dynamics but
eventually settle to a stable laminar fixed point.
Because of the spatial coupling, these systems
exhibit a statistical phase transition as the control
parameter is increased. Below the critical point,
eventually all siteswill end up in the laminar phase,
whereas above there is always a nonzero fraction
of chaotic sites, and with increasing control pa-
rameter the fraction of laminar (nonchaotic) sites
quickly diminishes. Analogies to fluid flows have

been pointed out in a number of studies (20–23)
that indicate the potential relevance of the spatial
dynamics for the long-term behavior in fluid sys-
tems. In a numerical study of pipe flow, Moxey
and Barkley (24) observed that at Re ≈ 2300 tur-
bulent puffs delocalize, and the turbulent fraction
increases, which is in qualitative agreement with
this picture. However, the stochastic nature of the
spatial coupling was not taken into account, and
the extremely long time-scales intrinsic to the flow
could not be resolved in the simulations. In this
work, we determined the critical point in pipe flow
and quantified the relevant process sustaining tur-
bulence in linearly stable shear flows.

Long-pipe experiments. Determining the point
at which the proliferation of turbulence outweighs
its decay and turbulence eventually becomes sus-
tained requires that the time scales of both decay
and spreading processes be captured. Because tur-
bulent puffs move downstream at approximately
the mean flow velocity, a long pipe is required to
observe long time-scales. Using a precision glass
tube with a relatively small diameter (D = 4 T
0.01 mm) and overall length of 15 m, a total di-
mensionless length of 3750D is achieved. The
pipe is composed of 14 sections joined by ma-
chined perspex connectors that provide an ac-
curate fit. A smooth inlet together with careful
alignment of the individual pipe sections allows
the flow to remain laminar up to Re = 4400. De-
viations in Re were kept below T5 throughout
each set of measurements, which extended over
periods of up to 45 hours. This precision was
achieved with stringent control of both the pres-
sure difference driving the flow and the fluid (wa-
ter) temperature (T0.05 K). A detailed description
of the experimental setup can be found in (16).

Starting from a fully developed laminar flow
allows us to induce turbulence in a controlled
manner and quantify the spreading rate at some
downstream position. The experimental proce-
dure is to create a single turbulent puff close to
the pipe inlet and to monitor any changes in the
turbulent fraction at downstream positions. It is
important that a perturbation is chosen that effi-
ciently triggers turbulence. In many earlier studies,
such as (10, 25), turbulence was induced by in-
sertion of a static obstacle close to the pipe inlet.
Such obstacles provide a continuous perturbation,
and at high Reynolds numbers the flow down-
stream is fully turbulent, whereas in the transitional
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