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Abstract—Recent advances in network coding have shown a session but not the amount of the data sent on each link)
great potential for efficient information multicasting in commu-  and chosen based on general cost criteria that are independent
nication networks, in terms of both network throughput and of flow rates. This is a practical approach; most existing
network management. In this paper, we address the problem of . . ' .
rate control at end-systems for network coding based multicast fQU“”g approachgs specify analogously un-capacitated route;.
flows. We develop two adaptive rate control algorithms for Since each session uses only a limited set of trees, this
the networks with given coding subgraphs and without given approach may give lower rates compared to optimizing over
coding subgraphs, respectively. With random network coding, the entire network, but it is much less complex. We give an
both algorithms can be implemented in a distributed manner, and algorithm that combines rate control at fast timescales and

work at transport layer to adjust source rates and at network . . e .
layer to carry out network coding. We prove that the proposed adaptive traffic shifting at slower timescales based on end-to-

algorithms converge to the globally optimal solutions for intra- €nd congestion feedback in the network. o
session network coding. Some related issues are discussed, and Another approach we consider does not explicitly find

numerical examples are provided to complement our theoretical coding subgraphs, but makes dynamic routing and coding

analysis. decisions based on queue length gradients. This approach,
Index Terms—Rate control, Network coding, Multicast, Cod- termedback-pressurewas first proposed for optimal routing
ing subgraph, Distributed algorithm. and scheduling in [25] and extended to various contexts (e.g.,
[21], [16]) including network coding in [10]; our contribution
I. INTRODUCTION in this part of the paper is to incorporate rate control with

Network coding extends the functionality of network nodesetwork coding.
from storing/forwarding packets to performing algebraic op- Our consideration of rate control uses the framework of
erations on received data. Starting with the work of [1)tility maximization, which can provide the flexibility of
which shows that employing coding at intermediate nodesodelling user application needs or performance objectives
sometimes needed to maximize multicast throughput, varioagd guide the design of distributed algorithms. As shown
potential benefits of network coding have been shown, incluh €.9., [12], [17], [14], TCP congestion control algorithms
ing robustness to link/node failures [13] and packet losses [¢pn be interpreted as distributed primal-dual algorithms over
[18]. Distributed random linear coding schemes, see, e.g., [fe Internet to maximize aggregate utility. We extend the
[3], have made practical implementation of network codingasic utility maximization formulation to incorporate the two
possible. In this paper, we address the problem of rate conthetwork coding approaches described above, and propose two
at end-systems for network coding based multicast flows wigerresponding dual-based adaptive rate control algorithms to
elastic rate demand. meet the new challenges associated with network coding. With

Most existing work on network coding considers codingandom network coding, both algorithms can be implemented
among packets of each multicast session, and assumes itha distributed manner, and work at the transport layer to
the communication rates for each session and the network lidjust source rates and at the network layer to do network
capacities are fixed and known. Given a cost function in terrmeding. We prove that the proposed algorithms converge to the
of the flow on each link, a min-cost flow optimization problenglobally optimal solutions for intra-session network coding.
is obtained and solved to find the optimal coding subgraphs,The main contribution of this paper is to present optimiza-
which specify how much of each session’s data should be séan models and propose adaptive, distributed rate control
on each link, see, e.g., [19], [27], [30]. For this reason, we callgorithms for network coding based multicast flows. Our
coding subgraphs of this kincapacitatedsubgraphs. algorithms are promising in practical implementation, and

However, in many practical networks, traffic is bursty andan be extended to handle different environments such as
elastic with varying rates, and since the network is shared bwltilayer network coding and multirate multicasting.
many users with unknown or changing demands, the available
link capacities are unknown and variable. In such cases, it is Il. RELATED WORK
not practical to solve a min-cost flow optimization to obtain There are several recent works on rate control of multicast
capacitated subgraphs. Also, rate control is needed to make flas, see, e.g., [11], [5], which consider traditional routing-
use of bandwidth while avoiding congestion and maintainirgased multicasting. In contrast, this paper studies rate control
certain fairness among the competing flows in the networkfor network coding based multicasting.

One approach we propose is to use coding subgraphs thatVith network coding, the work that are most similar to
are un-capacitated(i.e., specifying which links are used byour work are [19], [30], [28], [29]. We use a similar model



but without network cost for the networks without giverconstraints can be expressed as
coding subgraphs, see subsection I1I-C. What differentiates our

m i ;o
work from others are the following. First, we use a different Z md Z md _ ixm :; z - flm @
decomposition and obtain a dynamic scheme that uses only Yij 950 = L
§:(i,j)EL §:(j8)EL 0 otherwise

local information, see section V. As an important consequence

of such alternative decomposition, our solution requires the Vd € Dm,

least communication overhead. Our solution can also be ¢/ < i3, VdE Dy, (2)
readily extended to the case with network cost. Second, ou

rate control algorithm is a dual subgradient algorithm whosg .~ °° . o .
dual variables admit concrete and meaningful interpretation eéstlnatlond of sessionn, andf/; gives thephysical flowfor

congestion prices. Third, our work also differs from [19], [30{9590”% Note that the information flow balance equation

in that we do not relax the network constraint (3) but to explo fL) IS fqrmally similar to the physical flow bala_nce eq.uat|on
it to do session scheduling. or routing of data flows in the network. The inequality (2)

The session scheduling component of our algorithm fcr)?fleg:ts the .network' coding condition relating physical rate
. . : L2 and information rate:

the network without given coding subgraphs is similar to the 4

joint network coding and scheduling algorithms in [10] for iy = max{g;i’}, d € D 3)

wired networks. However, our work is different in that we Ei 1 ai | daoted f 11 of a li

also includes the transport layer, and as such, the network will IgurEN kglvesél an E)éaThp €, adapte drom fE o a tI)T

use congestion control to automatically explore the achieva r ”31 Odrz C: €, arll ¢ et colirestrr)]on mglt _OWt \:a:jlaf es

rate region while optimizing some global objective for the en 95,5, 9;.;)- For packet networks, the resuilt is stated for-

USers. mally in Theorem 1 of [19], which we reproduce here, slightly

All existing work on network coding solves for the optimal"j1

coding subgraphs based on a flow model that is similar {8) if and only if there exists a network code that sets up a

multicommodity flow model for routing [6]. However, as . . N

. . ; Lo . . multicast connection at rate arbitrarily closei® from source
discussed in the Introduction, it is often impractical to do oL . o

. . . 8., to destinations in seD,,, and that injects packets at rate

so. In analogy to what happens with routing, we con5|d%i;1bi rarily close tof, ; on each link(i, j)
the case where subgraphs are chosen based on general costt y I bI)

criteria. Thus, we also study rate control for networks with
given coding subgraphs, see sections IlI-B and IV.

Related work also includes [22] that studies congestion con-
trol with adaptive multipath routing using a multi-commaodity
model for the routing. Our model for networks without given
coding subgraphs is also a multi-commodity model but with
the additional constraints from network coding, and moreover,
we propose a different solution approach. For the case with
given coding subgraphs, we use a technique similar to that

from [22], [6].

here for each linki, ), g?';d gives theinformation flowfor

1,

dapted:
Theorem 1:The rate vectorf satisfies the constraints (1)-

111. M ODELS AND PROBLEM FORMULATIONS Fig. 1. An example network coding subgraph with one sour@nd two
destinationsd; and d» (left graph), where linkg(s, u), (u,w) and (u, d2)
A. Network and Coding Model are assumed to have one unit of capacity, and all other links have two units

of capacity; and the corresponding f|0\cllv va;iables (right graph), where each
Consider a network, denoted by a graph= (N, L), with 'Ink (i.7) is marked by the triple fi ;, g; ;. 9;3)-
a setN of nodes and a sdt of directed links. We denote a

link either by a single index or by the directed pai(i,j) For the case of multiple sgssio.ns sharing a network, achiev-
of nodes it connects. Each lirikhas a fixed finite capacity, ing optimal throughput requires in some cases coding across
packets per second. sessions. However, designing such codes is a complex and

Let M denote the set of multicast sessions, indexediby largely open problem. Thus, we limit our consideration to
Each sessionn has one source,, € N and a setD,, c Separate network codes operating within each session, an
N of destinations. Network coding allows flows for differen@PProach referred to as superposition coding [31] or intra-
destinations of a multicast session to share network capadfgsion coding. In this case, the set of feasible flow vectors
by being coded together: for a single multicast sessionf 1S specme_d by combln.lng gonstramtg (1)-(2) folr each session
ratex™, information must flow at rate™ to each destination; 77* € M with the following link capacity constraints:
with coding the actual physical flow on each link need only be m .

g Py y S <ey . V(i.j) €L (4)

the maximum of the individual destination’s flows [1]. These vt

10ur analysis can extend to handle multi-source multicasting in a straight- /N Practice, Fhe. network codes can be designed using the
forward way. approach of distributed random linear network coding, see,



e.g., [7], [3], in which network nodes form output packets byl overlapping segmentsthe more general case where coding
taking random linear combinations of corresponding blocks otcurs only on some overlapping segments admits a similar
bits in input packets. The linear combination corresponding &malysis. Each tre&™, » € R,, contains a sef, C L of
each packet can be specified by a coefficient vector in thieks, which defines &aL| x |R,,| multicast matrixZ™ whose
packet header, updated by applying to the coefficient vectdisr)th entry is given by
the same linear transformations as to the data. If (1)-(2) holds, .

. . . . i . m 1 if Il € L,
each sink receives with high probability a set of packets with H) = .
. . g Lo " 0 otherwise.
linearly independent coefficient vectors, allowing it to decode.
The relative overhead of these coefficient vectors depends ofNote that over each multicast tré¢” the source sends the
parameters of the network code that can be chosen to tradeseffne information flow to each destination; we denote its rate
overhead against performance, and it decreases with the &iyer;". With intra-session network coding, the physical flow
of the packets. See, e.g., [3], [10] for a detailed descriptidate y;" for each multicast sessiom though link[ is ;" =
and discussion of overhead and other practical implementationx, { H;;'z;" }. The link capacity constraints (4) become

issues.
Syt =Y max{Hj'x"} < ¢ Vi€ L (5)

B. Multicast with Given Coding Subgraphs By Theorem 1, conditions (5) are satisfied if and only if
We first consider the network with a given coding subgfaphhere exists a corresponding multicast network code of rate

Gy, for each sessiomn. The subgraphz,, can be viewed grpjtrarily close to>. «™ from sources,, to destinations

as the union of links of a sek,, of possibly overlapping 4 ¢ p, .

multicast trees, each connecting sousgeto all destinations  Fojllowing [12], assume each sessiam attains a utility

d € D,,. Rate control is carried out by adjusting the ﬂOV\Um(xm) when it transmits at a rate™ = >z packets

rate on each tree. Coding is done on overlapping segments,gf second over the coding subgraph. We asslmé.) is

different trees of a session that have disjoint sets of dowgontinuously differentiable, increasing, and strictly concave for

stream destinations. Figure 2 shows an example of muticgsé flows with elastic rate demand. Our objective is to choose

trees that are decomposed from the coding subgraph showRdiyrce rates™ so as to solve the following global problem
Figure 1. In this example, coding on the shared link is possible,
allowing both trees to simultaneously transmit information at P1: maxgm ,m Z Un(2™)
their maximum individual rates. . m
subjectto Hj 'z <y, Vr € Ry, Vme M

lr

> y"<a, V€L

C. Multicast without Given Coding Subgraphs

Since coding subgraphs are not given, we directly use the
network coding flow constraints (1)-(4) and Theorem 1, given
in subsection 1lI-A, to formulate the following optimization
problem which chooses source rais, information rate@fjd

! ) . o and physical flow rateg]” so as to maximize aggregate utility:
Fig. 2. Multicast trees for the example shown in Fig.1. Coding is done on J

the shared link(w, v), which, as part of the left tree, has one downstreanps . max, , Z Um(xm)
m

destinationd2, and, as part of the right tree, has one downstream destination
di. The left tree can support up to two units of information flow and the

right tree can independently support up to one unit of information flow, since subiect to md _ md _ m L d ] m,
coding on link(w, v) allows the two trees to share capacity. ) Z 9i.; Z 95 P07 d,Vd,

J:(i,5)€EL J:(ji)EL
md m
Analogous to practical routing, such coding subgraphs can g5 < [, Yd,m
be chosen in a variety of ways based on combinations of Z i <cij, V(i,j) € L,
different considerations, such as delay, resource usage or com- m

mercial relationships among network providers. For instanGghere ™ = 2™ if i = s,, and2™ = 0 otherwise. Here we

we can use existing multicast tree construction algorithmge not include flow balance equation at destinations, which
or use existing techniques for finding multiple paths to eagh automatically guaranteed by the flow balance at the source
destination and combine appropriate sets of paths that fogRq intermediate nodes.
trees. _ _ Note that in the model®1 and P2, network coding comes

To simplify notation, we consider the case where overlagyto action through the constraints (5) and (3). With Theo-

ping segments of different trees of a session have disjoint Sgdg 1, this gives some form of “separation principle” that
of downstream destinations, thus allowing coding to occur on
3This is the case, for instance, if each session’s trees have been formed by
2In this and the following sections, subgraph refers to “un-capacitateditst finding multiple link-disjoint paths to each destination and then choosing
subgraph. combinations of these paths that form trees.



allows us to separate decisions on resource usage and ratession schedulingRandom linear network coding scheme
control from the design of the actual network codes. is used to code packets from the same multicast session [9].

The system problemB1 and P2 are convex optimization Over link [, send an amount of coded packets for the seésion
problems, and are polynomially solvable if all the utilities andv;(t) = arg max,,, Y. p%.(t) at ratec;. Mathematically, this
constraint information is provided, but this is impractical ifs because the maximization ovéy"} is a linear program-
real networks. Since they are convex optimization problemsing and we can always choose an extreme point solution.
with strong duality, distributed algorithms can be derived bVhis is equivalent to maximizing ovey by the following
formulating and solving corresponding Lagrange dual probssignment
lems, as we will show in the next two sections. . a ifm o= m)

e ={ )

0 ifm # my(t).
V. DISTRIBLCJ;T\I/EENACL:ESmgHs'\t;gE/L\lpEHT;NORKS WITH Defining.D(a,p) — max,., L(a, p,z,y) With S <
¢;, by duality we have (see, e.g., Chapter 5 in [2])

We introduce for each multicast sessiom traffic split ) )
variablesa™ > 0 for each multicast tred™ of the coding Ula) = I;EBD(O‘W) = gEQH;%XL(avp’%y)'
subgraph, such that’, o = 1 andz!" = 2™a!". We see N o
thata,” controls the fraction of the traffic of multicast sessio
m that is sent through the trég™. Instead of solving the
problemP1 directly, we first consider the version of the raté

Jhe dual problemmin, D(«, p) can be solved by using the
subgradient method [24], [2], where the Lagrangian multipliers
re adjusted in the opposite direction to the subgradient

g ) - OpD (v, p).
control problem with the fixed split vectar. P . . . . . .
P P Congestion price updatéEach link! updates its price with
Pla: maxgm,my »_ Un(z™) respect to multicast tre&™, according to
subject to  Hz™a™ < y™ Pt +1) = [P () + w(Hi o 2™ (p(t) — y" ()], (8)
Zyzm <gq. where v, is a positive scalar stepsize, and ‘+' denotes the
m projection onto the sek* of non-negative real numbers. Note

The above problem is a strictly convex and has a unigifédt link I will use capacityy;" to transfer coded packets
solution, with respect to source rate®. Let us denote its for multicast sessiom:, equation (8) says that if the demand

computing of multicast treeT™ exceeds the assigned physical capacity

y", the pricep]” will rise, and decreases otherwise. Also,
Plb: maxazo Ula) note that equation (8) is distributed and can be implemented
subject to Za;” =1. at individual links using only local information.
T The above rate control algorithm (6)-(8) works under the

Note that the above problem is not necessarily convex. But @eésumption that the traffic split vecter remains constant.

will see later that it can still be solved for globally optimalityVVe now discuss how to adjusf to solve the probleni1b,
which we call tree adaptation. We assume that tree adaptation

is much slower so that the minimization @¥(«,p) over p
can be seen as instantaneous.
Consider the Lagrangian of the problédia with respect  |ntuitively, the optimal traffic split vector should strike an
to the constraints due to network coding equilibrium that is similar to Wardrop equilibrium, where for
m O oy m each multicast session the aggregate prices in all multicast
Lia,p,z,y) = Un(@™) = > plh(Ha™ ) — yi). trees actually used are equal Sr?d Igess tr?an those which would
" bmor be experienced by a single packets on any unused tree [26].
Interpretingp;”,. as the “congestion price” at linkfor multicast We gradually update the split vector towards this equilibrium,
tree 7," and maximizing the Lagrangian over and y for as in [6], [22]. At stagen, given split vectora(n), suppose
fixed p, we obtain the following joint rate control and sessioR(n) ¢ argmin, D(a(n),p) is an optimum solution to the
scheduling algorithm: dual problem ofP1a, and letr™(n) = argmin, »_, p;".(n).
Rate control: At time ¢, given congestion price(t), the  Tree adaptationEach sources,, updatesn” according to
sources,, adjusts flow ratezr™ according to the aggregate

A. Two-Timescale Distributed Algorithm

congestion pricé”, H.p". over the multicast tree%™, ap'(n+1) = a(n) + 6;"(n), ©)
with
() = (U) NS ST HRpR (1)), ©) o N N
(6 = @) Q) Hiwli () — mmin{ g (1), o (50, 7 () = S04 Py ()
'f m
Similar to TCP congestion control algorithm where the sousg&(n) = _y ! Téf(n; ), (10)
adjusts its sending rate according to aggregate congestion T’é“"(i}”rr_ T’m(n)

price along its path, this rate control mechanism has the
desired price structure and is an end-to-end congestion contr@{ypen there exists more one session with maximal aggregate congestion
mechanism. price, the tie is broken randomly.



wherek,, is a positive scalar stepsize. It is straightforward to Now we study the convergence of the outer loop algorithm.
verify that For simplicity of the presentation, we consider the continuous
time version of the algorithm (9)-(10), which satisfies
> 6r(n) = 0, (11)

. doar =0, 17)
> o)y pn < 0. 12)
r l

doary oph < 0. (18)
We see thad _, 0, (n) >, p". = 0 only if §;"(n) = 0, which " l

A
o

requires Similarly, we have) ;" >, pf",. = 0 only if &;* = 0, which
happens only if (13) is satisfied. The tree adaptation algorithm
a;”(n)(z () — Zp}j;m(n) (n)) = 0. (13) (9)-(10) can be seen as a specific discrete time implementation
l l

of the adaptation algorithm (17)-(18).
This is exactly the Wardrop equilibrium. Also, note that Theorem 4:The tree adaptation algorithm (17)-(18) con-
equations (11)-(13) are similar to the condition specified f¥erges to the optimal solution of the system problefn

the route adaptation in [6], [22]. Proof: Note that
Ula) = mZ}nD(a,p)
B. Convergence Analysis — min{z U (2™ (p))
The distributed rate control algorithm presented in last P
subsection has embedded loops. In the inner loop (6)-(8), — Z pln(HM 2™ (p) — v (p)}, (19)
which operates at a fast timescale, the network searches for b

optimal source rates and congestion prices for fixed flow sp{ljli'hOI D(a,p) as a function oy includes a smooth term plus

vector. In the outer loop (9)-(10), which operates at a sloy, non-smooth piece-wise linear term. So, the differential of
traffic engineering timescale, the sources adapt the flow SWEQ) can be written as

vector based on the stabilized congestion prices in the network. ( . aD (v, p* + hdp)) - aD(a, p*)

do
h—0t 3p

The tree adaptation algorithm (9)-(10) can be seen as a metligd «) =
for stable traffic engineering based on congestion prices. O

i ) i oD * + hd
We now provide the convergence analysis of thg inner _ ( lim (o, p" + p)> dp — Z 2 HP (p) ] dad,
loop algorithm (6)-(8). DenoteP* as the set of optimal h—0+ dp i
solutions to the dual problemin, D(«, p). Definep(p, S) = (20)

minges |[p " pll as the Euculidean distance of a point where p* = argmin, D(a, p). Sincep* minimizes D(a, p)
to set S. Directly applying the convergence results for the. . dD(a,p” +hdp) tbead t direct
subgradient method [24], we have the following theorem. 9VENa: iMa—o+ ap cannot be a descent direction.

Theorem 2:1f the stepsizesy, satisfy the following condi- SO, <limh,éo+ %jhdm) dp > 0. Hence,

tion
o dU(a) > =) a™H[L(p")]da], (21)
lim v =0, Z% = 00, (14) m,l,r
e =0 ie.,
then the iterative algorithm (8) converges, i.e., Ula) > — Z ZHI (pF )™ G (22)
Jm p(p(t), P) = 0. (15) mbr

Note thatz™ is a continuous function of the congestiorBy (17)-(18), we havé/(a) > 0. So, the tree adaptation algo-
price p;’,.. Let ™ be the optimal solution of the probleRila  rithm (17)-(18) will converge to an equilibrium* such that

By duality, the following result is immediate. U(a*) = 0. However, this only guarantees the convergence

Corollary 3: Under the same condition as in (14), thef the tree adaptation algorithm. Without further elaboration,

iterative algorithm (6)-(8) converges, i.e., we cannot even claim it solves a local optimal of the problem
) . Pib.

Jm [lz(t) —a™|| = 0. (16) Note that, following equations (6) and (13), we obtain at

In practical implementation, a constant stepsize rather thag: (a*), 2(a*))
the diminishing stepsize as in (14) is desired. For a constant

stepsize, the subgradient method may not converge to any/’ (z™) = U (z™) = ZHszfna if 2™ >0, (23)
. . . m 6])"7 ;e r
optimal solution, but can be made to converge within any T !
given small neighborhood around the optimum, by choose ZHlmplm > UL (™), if 2™ =0 (24)
l

sufficiently small constant stepsize (see, e.g., [24] for details).
Since the source rates are continuous function of the cong
tion price, the optimality of the algorithm (6)-(8) is guarantee
with arbitrary precision by appropriately choosing a constap{a*) = arg m%XZ Um(z ™) — Z p (@ H™2™. (25)

glﬁich means that

lr Lirtr

StepSize. v m r m,r,l



Also, we havey(a*) = argmax, melp{f;(a*)ylm. Denote Interpreting pi"¢ as the “congestion price” at nodg for
the Lagrangian of the system probldi with respect to the multicast sessiom: and destinationl € D,,, and maximizing

constraints due to network coding és(sp,x,y). We have the Lagrangian over, g and f for fixed p, we obtain the
X Y - X following joint rate control and session scheduling algorithm:
(w(a®),y(a?)) = argmax L(p(a”), ,y). (26) " Rate control:At time ¢, given congestion price(t), each

Furthermore, by duality between the probl&aand its dual, source nodes,, adjusts its sending rate according to local
congestion price that is generated locally at the source node,

we have
—1 m
3 o () (Ha (@) — g (a%)) = 0. @7) e () = Uy (Y p(1)). (29)
m,l,r deD,,
Combining (26)-(27), we conclude that Note that
m,d md m
~ s.t. gt < fin
> Un(Y_a7(0") = Lip(a"),a(a’),y(a”),  (28) maﬁ%p Zgw Zg g =
which by duality only happens wher{a*) andz!"(«*) solve - m,ax Z gw i 7pi ) st g” = g
the system problen1 and its dual. So, the tree adaptation 0, ; .
algorithm (17)-(18) indeed solves the system problBm = maX Z it = pi.
This also proves that the tree adaptation algorithm solves the i.4,m,d
problemP1b. B Each nodei collects congestion price information from its

Equations (20)-(21) can be seen as a generalized EnvelgRgghbor;, find multicast sessiom; ;(t) such that

Theorem for nonsmooth functions. B («a,p) is a smooth J
function ofp, we haveim,, o+ aD(ag +hdp) aD(aap ) — mi;(t) € argmax Z Py (t) — p )T,
along any directiondp, and thus recover usual Envelope d€Dm

theorem, see [20]. Also, note that the adaptation algorlthgﬁd calculate differential prica _ mi (0 _
(9)-(10) and Theorem 4 can be readily extended to routingm, pricev: ;(t) = Xalpi *)
based multicasting and multipath routing.

Sessmn schedulingDver link (¢, ), a random linear com-
imol . ¢ Price Feedback bination of data of multicast session; ; to all destinations
mplementation of Price Feedbac d such thatp"°(t) —-p;" 3%(4) > 0 is sent at rate;. Math-

Each link I keeps a separate virtual quepgl for each ematically, this is equivalent to solving the primal variaple
multicast tree7)™ of each sessionn which acts as the py the following assignment

congestion price. Each packet’'s header contains the indexes .

information it contai | iy i m=mq(t) & p(n) — pp(E) > 0
of the trees whose information it contains. When a packet ignd(¢) = ©J T i J
received at a node from an incoming lihkf the packet header 0 otherwise. (20)
contains the-th tree index, the queue sizg" is increased by

one; otherwise it is unchanged. Similarly, when a packet is Define

sent by a node on an outgoing lirk if the packet header D(p) = max L(p,z,g,f)
. . . . T, ) i
contains the-th tree index, the queue sigg' is decreased by i ol
one; otherwise it is unchanged. The congestion prices over a subject to g{fljd < fi%, E S

multicast tree are fed back to the source node in the following

way. Each node in the tree will pass the aggregate pric@gain the dual problemmin, D(p) can be solved by using
along the links from the receivers till itself to the upstrearthe subgradient method.

node; (“upstream” is defined as the direction from receivers Congestion price updateEach nodei updates its price

to source node over a multicast tree). In this recursive wayith respect to multicast session and destinationl € D,,,
the source node will get the aggregate congestion prices o¥gtording to

that multicast tree, and adjust the sending rate accordlngly

U1 = [P + e 2 (p(t)) (31)

V. DISTRIBUTED ALGORITHM FORNETWORKS WITHOUT — Z g” (p(t)) + Z g T,
GIVEN CODING SUBGRAPHS j:(i,j)eL §:(Gi)EeL
A. Distributed Algorithm and passes the prigg™? to all its neighbors.

With our algorithm, each source node adjusts its sending
rate according to the local congestion price. Thus, there is
no communication overhead for rate control. The majority of

Now we turn to system problenP2 and consider its
Lagrangian with respect to the flow balance constraints,

L(p,z, g, f) ZU 2™ — Z prd(al communication overhead is for session scheduling, but that
ism.de Dy, only requires nodes to communicate with direct neighbors.
Thus, our design has very low communication overhead,

Z 97”] Z gjv

compared with other schemes with similar models [19], [30],

J:(g)el J@aeL [28], [29]. Note that the above session scheduling component



usesback-pressuréo do optimal scheduling, similarly to [10].
Such dynamic network coding based multicasting offers both
a larger rate region and much lower complexity, as compared
to optimal dynamic routing based multicasting [23].

B. Convergence Analysis

The algorithm (29)-(31) is a subgradient algorithm. Thus,
Theorems 2 and 3 and related discussion apply. Using the same
notation as in subsection 1V-B, we have the following result
regarding the convergence property of the joint rate control
and session scheduling algorithm for multicast without givafig. 3. A simple network with two multicast sessions. The given coding
coding subgraph. subgraphs for sessions 1 and 2 are shown in the middle and right graphs

. ; ; - . respectively. For each session, the first tree is indicated by solid arrows, the
i Theorem 5:If the stepsizesy, satisfy the following condi second by dashed arrows, and the overlapping segments by bold arrows.
on

(oo}
tnm v =0, Z% = 00, A. Muticasting with Given Coding Subgraphs

t=0 We assume that the given coding subgraphs for sessions one
and two are those shown in the middle and right graphs of Fig-

then the iterative algorithm (29)-(31) converges, i.e., : .
¢ (29)-631) g ure 3 respectively. The subgraph for each session decomposes

tlijgo p(p(t), P*) =0, into two multicast trees in the same way as in Figure 2. For
thm |z(t) — z*|| = 0. simplicity, we assume the following link capacities: lifk ¢)
— 00

has 2 units of capacity, link&, z) and (v,y) have 5 units of
capacity, links(s, u), (u,w) and(y, z) have 1 unit of capacity
C. |mp|ementati0n of Price Feedback and all other links have 3 units of capacity.

) ) o Figure 4 shows the evolution of source rates (left panel) ver-
Since the scheme is destination-based, each packet neeg\ 9 the number of iterations of the outer loop tree adaptation

carry a vector of destination identities in the packet header, éTborithm and the evaluation of traffic split vectors (middle
addition to coding vector. chh nodekeep a separate virFuaI panel) with stepsize,, = 0.01. It can be seen from the plots
queuep;"® as congestion price for each multicast session that the source rates are well withifis of their optimal values
and destination < D,,. The arrival and the departure ofafier 10 jterations, and the traffic split vectors are well within
these queues evolve as follows. When a packet is receivedsgt of their optimal values after 15 iterations. The simulation
node, i will check the destination vector in the header ofgsyit also shows that for session one, the traffic is 2 over the
this packet. If this packet is intended for destination the  fist tree and 1 over the second tree, and for session two, the
queue sizep"? will increase by one; Otherwise, the vVirtualyatfic is 3 over the first tree and 1 over the second tree. In this
queue size will remain the same. When a packet is sent @yhylation, the inner loop congestion control algorithm runs
at nodei, ¢ will check the destination vector of this packetsgg jterations before each run of the tree adaptation algorithm.
If this packet is intended for destinatioh, the queue siz€ comparable performance is observed even if the number of

p;"*® will decrease by one; Otherwise, the virtual queue sizgner |oop iterations is as low as 100. So, the convergence of
will remain the same. Note that, here we use back-presswg whole rate control algorithm is very fast.

to do rate control. The source nodesdjust the sending rate | practice, the end users can dynamically control the
according to local congestion prices gtand the congestion nymber of iterations, by monitoring the congestion prices

in the network is propagated to the source node through bagkwe, gifferent multicast trees. The right panel of Figure 4

pressure. shows the evolution of the congestion prices over different
trees versus the number of iterations of the tree adaptation
algorithm. We can, for instance, specify a threshold value and
decide the whole algorithm has converged when the relative

In this section, we provide numerical examples to Comp|§ljfferences in price over different multicast trees are less than
ment the analysis in previous sections. We consider a simfi¢ threshold value. The users can also set the stepsize of
network shown in the left graph in Figure 3. The network ithe tree adaptation algorithm dynamically. When the price
assumed to be undirected and each link has equal capacitiediffgrences over different trees are large, the user can choose
both directions. Assume that there are two multicast sessiofidarge stepsize, and when the differences are small, he can
session one with source nodeand destinations andy and Cchoose a small stepsize.
session two with source nodeand destination: and z, with o ) ] )
the same utilityl,,, (z.,) = log(z.m ). We have chosen such aB. Muticasting without Given Coding Subgraphs
small, simple topology to facilitate detailed discussion of the We now consider the same network but without given cod-
results. ing subgraphs. The distributed algorithm developed in section

VI. NUMERICAL EXAMPLES
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Fig. 4. The evolution of source rates (left panel), the evolution of traffic split vectors (middle panel), and the evolution of congestion prices over different
multicast trees (right panel) versus the number of iterations of the tree adaptation algorithm with stgpsiz@.01 for the example network with given
coding subgraphs.

V will go through the whole network (the undirected graph o€. Comparison of the Two Algorithms
the left side in Figure 3) to find capacitated coding subgraphs
that maximize the aggregate utility. For this example, we To compare the performance of the two rate control algo-
assume the following link capacities: links, ), (¢,x) and rithms, we consider the same network, with 1 unit capacity
(x,v) have 2 units of capacity, link&,w), (w,v) and(v,y) for each link. Figure 6 shows the evolution of the source rates
have 3 units of capacity and all other links have 1 unit afersus the number of iterations of the tree adaptation algorithm
capacity. for the case with given coding subgraphs as shown in the right
Figure 5 shows the evolution of the source rates with tlede graph of Figure 3, and the evolution of the source rates
constant stepsize, = 0.01. We see that the source ratesor the case without given coding subgraphs. We see that the
approach the corresponding stable values 3 and 2 quicklyroughput achieved for the case without given subgraphs is
The simulation result also shows coding occurs over the sataeger than that for the case with given coding subgraphs. This
subgraphs as those in Fig.3: 2 units of traffic of session oiseexpected, since the capacity region for the case with given
is coded over linkw, v) and 2 units of traffic of session twocoding subgraph is a subset of the capacity region with the
is coded over link(v, y). It is not difficult to check that those coding subgraphs unspecified.
are optimal source rates and coding subgraphs. Also, note that
the system converges to within a small neighborhood of the ‘ ‘ ‘
optimal, since we have chosen a constant stepsize. In order \ — Session 1
to study the impact of different choices of the stepsize on the
convergence of the algorithm, we have run simulations with
different stepsizes. We found that the smaller the stepsize, the
slower the convergence and the closer to the optimal, which
is a general characteristic of any gradient based method. So,
there is a tradeoff between convergence speed and optimality.
In practice, the end user can first choose large stepsizes to
ensure fast convergence, and subsequently, the stepsizes can
be reduced once the source rate starts oscillating around some ‘ ‘ ‘ ‘
mean value. 2 Num4t?er of Itereact’ions % 100
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example network without given coding subgraph.
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