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The 'skin of an onion' analogy is also helpful. In 

considering the functions of the mind or the brain we 

find certain operations which we can explain in 

purely mechanical terms. This we say does not 

correspond to the real mind: it is a sort of skin which 

we must strip off if we are to find the real mind. But 

then in what remains we find a further skin to be 

stripped off, and so on. Proceeding in this way do 

we ever come to the 'real' mind, or do we eventually 

come to the skin which has nothing in it? In the latter 

case the whole mind is mechanical. 

 

1950, Computing Machinery and Intelligence, Mind 

Turing on layering 



“Universal laws and architectures?” 

• Universal “conservation laws” (constraints) 

• Universal architectures (constraints that deconstrain) 

• Mention recent papers* 

• Focus on broader context not in papers 

• Lots of case studies for motivation 

*try to get you 
to read them? 

A rant 



Compute 

Turing (1912-1954) 

• Turing  100th birthday in 2012 

• Turing  

− machine (math, CS) 

− test (AI, neuroscience) 

− pattern (biology) 

• Arguably greatest* 

− all time math/engineering combination 

− WW2 hero 

− “invented” software 

*Also world-class runner. 



Key papers/results 

• Theory (1936): Turing machine (TM), computability, 
(un)decidability, universal machine (UTM)  

• Practical design (early 1940s): code-breaking, including 
the design of code-breaking machines  

• Practical design (late 1940s): general purpose digital 
computers and software, layered architecture  

• Theory (1950): Turing test for machine intelligence  

• Theory (1952): Reaction diffusion model of 
morphogenesis, plus practical use of digital computers 
to simulate biochemical reactions  

 



Control Comms 

Compute Physics 

Shannon Bode 

Turing 

Godel 

Einstein 

Heisenberg 

Carnot 

Boltzmann 

wasteful? 

fragile? 

slow? 

? 

• Each theory  one dimension 

• Tradeoffs across dimensions 

• Assume architectures a priori 

• Progress is encouraging, but… 

• Stovepipes are an obstacle… 



Turing’s 3 step research: 
0.   Virtual (TM) machines 
1. hard limits, (un)decidability 

using standard model (TM) 
2. Universal architecture 

achieving hard limits (UTM) 
3. Practical implementation in 

digital electronics (biology?) 

Essentials: 
0. Model 
1. Universal laws 
2. Universal architecture 
3. Practical implementation 

Software 

Hardware 

Digital 

Analog 

Turing as 
“new” 

starting 
point? 



Turing’s 3 step research: 
0.   Virtual (TM) machines 
1. hard limits, (un)decidability 

using standard model (TM) 
2. Universal architecture 

achieving hard limits (UTM) 
3. Practical implementation in 

digital electronics (biology?) 

Essentials: 
0. Model 
1. Universal laws 
2. Universal architecture 
3. Practical implementation 

TM 
Hardware 

Digital 



• …being digital should be of greater 

interest than that of being electronic. 

That it is electronic is certainly 

important because these machines 

owe their high speed to this… But this 

is virtually all that there is to be said on 

that subject.  

• That the machine is digital however 

has more subtle significance. … One 

can therefore work to any desired 

degree of accuracy.  

 

1947 Lecture to LMS 

Hardware 

Digital 

Analog 



• … digital … of greater interest than 

that of being electronic … 

• …any desired degree of accuracy…  

• This accuracy is not obtained by more 

careful machining of parts, control of 

temperature variations, and such 

means, but by a slight increase in the 

amount of equipment in the machine. 

 

1947 Lecture to LMS 

Hardware 

Digital 

Analog 



• Digital more important than electronic… 

• Robustness: accuracy and repeatability. 

• Achieved more by internal hidden complexity 

than precise components or environments. 

TM 
Hardware 

Digital 

Analog 

Turing Machine (TM) 

• Digital  

• Symbolic 

• Logical 

• Repeatable 



• … quite small errors in the initial conditions 

can have an overwhelming effect at a later time. 

The displacement of a single electron by a 

billionth of a centimetre at one moment might 

make the difference between a man being killed 

by an avalanche a year later, or escaping.  

 

1950, Computing Machinery and Intelligence, 

Mind 

The butterfly effect 

avalanche 



• … quite small errors in the initial conditions can 

have an overwhelming effect at a later time….  

 

• It is an essential property of the mechanical systems 

which we have called 'discrete state machines' that 

this phenomenon does not occur.  

• Even when we consider the actual physical 

machines instead of the idealised machines, 

reasonably accurate knowledge of the state at one 

moment yields reasonably accurate knowledge any 

number of steps later.  

 

1950, Computing Machinery and Intelligence, Mind 



Turing’s 3 step research: 
0.   Virtual (TM) machines 
1. hard limits, (un)decidability 

using standard model (TM) 
2. Universal architecture 

achieving hard limits (UTM) 
3. Practical implementation in 

digital electronics (biology?) 

TM 
Hardware 

Logic 

 memory 



large 

space 

time 

Logic 

 memory 

fast 

slow 

TM has  memory 



large 

space 

time 

Logic 

 memory 

fast 

slow 

TM has  memory 

space is free 



time? 

 
Decidable problem =  algorithm that solves it 

 

Most naively posed problems are undecidable. 

Logic 

 memory 



Turing’s 3 step research: 
0.   Virtual (TM) machines 
1. hard limits, (un)decidability 

using standard model (TM) 
2. Universal architecture 

achieving hard limits (UTM) 
3. Practical implementation in 

digital electronics (biology?) 

 

 

UTM 

data 

program (TM) 



2. Universal architecture 
achieving hard limits (UTM) 

 

 

UTM 

data 

program (TM) 

•  Software: A Turing machine (TM) can be data for 
another Turing machine 
• A Universal Turing Machine can run any TM  
• A UTM is a virtual machine.  
• There are lots of UTMs, differ only (but greatly) in 
speed and programmability (space assumed free) 

Software 

Hardware 



 

 

UTM 

TM  

program HALT 

• Given a TM (i.e. a computer program) 
• Does it halt (or run forever)?   
• Or do more or less anything in particular. 
• Undecidable!  There does not exist a special 
TM that can tell if any other TM halts. 
• i.e. the program HALT does not exist.  

The halting problem 



Thm: TM H=HALT does not exist. 
 
That is, there does not exist a program like this: 

 1 if  halts
( , )

0 otherwise

TM input
H TM input





Proof is by contradiction.  Sorry, don’t 
know any alternative.  And Turing is a god.   



Thm: No such H exists. 
 
Proof: Suppose it does.  Then define 2 more programs: 

 1 if  halts
( , )

0 otherwise

TM input
H TM input





1 if ( , ) 0
'( , )

loop forever otherwise

*( ) '( , )

H TM input
H TM input

H TM H TM TM





Run  * ( *) '( *, *)

halt if * ( *) loops forever

loop forever otherwise

H H H H H

H H




 


Contradiction! 



 

 

UTM 

data 

TM 

Implications 
• TMs and UTMs are perfectly repeatable 
• But perfectly unpredictable 
• Undecidable: Will a TM halt? Is a TM a UTM? Does a 
TM do X (for almost any X)? 
• Easy to make UTMs, but hard to recognize them. 
• Is anything decidable?  Yes, many questions NOT 
about TMs. 
• Large, thin, nonconvex everywhere…  



Issues for engineering 

• Turing remarkably relevant for 76 years 

• UTMs are  implementable  

–  Differ only (but greatly) in speed and programmability 

– Time/speed/delay is most critical resource  

–  Space (memory) almost free for most purposes  

•  Read/write random access memory hierarchies 

•  Further gradations of decidable (P/NP/coNP) 

• Most crucial:  

– UTMs differ vastly in speed, usability, and 

programmability 

– You can fix bugs but it is hard to automate 

finding/avoiding them 

 



Issues for neuroscience 

• Brains and UTMs? 

– Time is most critical resource?  

–  Space (memory) almost free?   

•  Read/write random access 
memory hierarchies? 

• Brain >> UTM? 

Gallistel and King 



Conjecture 

• Memory potential   

• Examples 

– Insects 

– Scrub jays 

– Autistic Savants 

Gallistel and King 

• But why so rare and/or accidental? 

• Large memory, computation of limited value? 

• Selection favors fast robust action?  
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space 

time 

 

 

UTM 

data 

TM 

• Suppose we only care about space? 
• And time is free 
• Bad news: optimal compression is 
undecidable. 
• Shannon: change the problem! 



Shannon’s brilliant insight 
•  Don’t worry about time or delay! 
•  Don’t compress and code files, worry only 
about infinite random ensembles 
• Information theory is most popular and 
accessible topic in systems engineering  
• Fantastic for engineering, almost useless for 
biology (But see Lestas, Vinnicombe, Paulsson) 
• (And largely irrelevant to Internet architecture) 
• Misled and distracted generations of biologists 
and neuroscientists 
• New generation of information theorists are 
putting delay back in.  (Cheer!) 

Communications 

Shannon 



Physics Einstein 

Heisenberg 

Carnot 

Boltzmann 

Delay is 
most 

important 

Delay is 
least 

important 

Control, OR 
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Shannon 

Bode 

Turing 



Software 

Hardware 

Digital 

Analog 

Slow execution 

Flexible reprogramming 

Faster execution 

Less flexible 

Modern technology gives lots 

of intermediate alternatives. 

Software 



Operating  

System Software 

Hardware 

Digital 

Analog 

Applications 

Want to emphasize the differences 

between these two types of layering. 

Control, share, 

virtualize, and 

manage 

resources 

Processing 

Memory 

I/O 
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Garment 
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Thread 

Fiber 

Cloth 

Thread 

Garment 

Operating  

System 

Software 

Hardware 

Digital 

Analog 

Applications The virtual is more 

“real” than the 

implementation 
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Slow 

Flexible 

Fast 

Inflexible 

It will be convenient  later, 

for comparison with 

biology, to flip the picture 

this way to show tradeoffs. 

Software 

Hardware 

Digital 

Analog 



Fast 

Inflexible 

Slow 

Flexible 

Software 

Hardware 

Digital 

Analog 

Slow 

Flexible 

Fast 

Inflexible 

Look 

familiar? 
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Digital 
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Where 
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ultimately 

heading 
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Essentials To Do 

• Reyna/Brainerd: Gist, 

false memory 

• Ashby: Automaticity, 

multiple memory 

systems,… 

• Cosmides/Tooby: Risk, 

uncertainty, cooperation, 

evolution,… 



Plant Act Sense 

Speed and flexibility are crucial to 

implementing robust controllers. 

Software 

Hardware 

Digital 

Analog 

Slow 

Flexible 

Fast 

Inflexible 
Sensory Motor 

Prefrontal 

Striatum 

Reflex 



Plant Act Sense 

Speed and flexibility are crucial to 

implementing robust controllers. 

Wolpert, Grafton, etc 

 

 

Brain as optimal controller 

robust 



Fast 

Inflexible 

Software 

Hardware 

Digital 

Analog 

Slow 

Flexible 

Plant Act Sense 

Essentials (following Turing) 

0. Model 

1. Universal laws 

2. Universal architecture 

3. Practical implementation 

Beyond black boxes: 

Putting brain 

physiology back in the 

picture 
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Flexible 
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Inflexible 

Software 
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Fast 

Inflexible 

Want to make 

these look 

more similar 
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Plant Act Sense Control 
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Delay is 

most 

important 
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Maybe start from here with 
Turing’s 3 step research: 
1. hard limits, (un)decidability 

using standard model (TM) 
2. Universal architecture 

achieving hard limits (UTM) 
3. Practical implementation in 

digital electronics (biology?) 

Essentials: 
0. Model 
1. Universal laws 
2. Universal architecture 
3. Practical implementation 

Software 

Hardware 

Digital 

Analog 

Turing as 
“new” 

starting 
point? 



Control Comms 

Compute Physics 

Shannon Bode 

Turing 

Godel 

Einstein 

Heisenberg 

Carnot 

Boltzmann 

wasteful? 

fragile? 

slow? 

? 

• Each theory  one dimension 

• Tradeoffs across dimensions 

• Assume architectures a priori 

• Progress is encouraging, but… 

• Stovepipes are an obstacle… 
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robust 





1m  

Bacteria 

Phage 

//upload.wikimedia.org/wikipedia/commons/5/52/Phage.jpg


Multiply 

Survive 

Phage lifecycle 

Infect 

Lyse 
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Figure 4. Correlations between Phage Life History 
Traits and Phage Particle Characteristics 
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Mechanism? 

thick capsid 

big genome 

thin capsid 

small genome 
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1m  

Viruses 



1m  

Bacteria 

Phage 

//upload.wikimedia.org/wikipedia/commons/5/52/Phage.jpg


1m  

why computer memory is almost “free” 



5m  

Gallistel: where is our read/write memory? 

Conjecture: it’s digital and much smaller than this. 



1m  



1m  

Bacterium 

(Staph. aureus) 

Bacterium 

(Chlamydia) 

Pox 

virus 

Herpes 

Influenza 

      Polio    



1m  

7500 nucleotides  15kbits 

polio 

1 bit 

//upload.wikimedia.org/wikipedia/commons/7/77/Polio_EM_PHIL_1875_lores.PNG


1m  

7500 nucleotides  15kbits slow 

polio 

1 bit fast 

Memory is (almost) free 

Speed is what matters 

//upload.wikimedia.org/wikipedia/commons/7/77/Polio_EM_PHIL_1875_lores.PNG


Chandra, Buzi, and Doyle 

UG biochem, math, 
control theory 

Most important paper so far. 



K Nielsen, PG Sorensen, F Hynne, H-G 
Busse. Sustained oscillations in glycolysis: 
an experimental and theoretical study of 
chaotic and complex periodic behavior 
and of quenching of simple oscillations. 
Biophys Chem 72:49-62 (1998). 

Experiments 

CSTR, yeast extracts 



Figure S4. Simulation of two state model (S7.1) qualitatively recapitulates 
experimental observation from CSTR studies [5] and [12]. As the flow of material 
in/out of the system is increased, the system enters a limit cycle and then 
stabilizes again. For this simulation, we take q=a=Vm=1, k=0.2, g=1, u=0.01, h=2.5. 
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Figure S4. Simulation of two state model (S7.1) qualitatively recapitulates 
experimental observation from CSTR studies [5] and [12]. As the flow of material 
in/out of the system is increased, the system enters a limit cycle and then 
stabilizes again. For this simulation, we take q=a=Vm=1, k=0.2, g=1, u=0.01, h=2.5. 
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Why? 

Levels of explanation: 

1. Possible 

2. Plausible 

3. Actual 

 

4. Mechanistic 

5. Necessary 

Science 

Engineering 
Medicine 



Glycolytic “circuit” and oscillations 

• Most studied, persistent mystery in cell dynamics 
 

• End of an old story (why oscillations) 
– side effect of hard robustness/efficiency tradeoffs 

– no purpose per se 

– just needed a theorem 

 
• Beginning of a new one  

– robustness/efficiency tradeoffs 

– complexity and architecture 

– need more theorems and applications 
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Robust =  

Maintain energy  

(ATP concentration)  

despite demand fluctuation 

ATP Rest 

of cell 

energy 

x ATP 

h 

g 

control 

Reaction 

2 (“PK”) 

Reaction 

1 (“PFK”) 

disturbance 

control feedback 

Tight control creates “weak linkage” 

between power supply and demand 



Fragile 
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Tight control creates “weak linkage” 

between power supply and demand 

Robust =  

Maintain energy  

(ATP concentration)  

despite demand fluctuation 
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Efficient =  

low metabolic overhead 

 low enzyme amount 

enzymes catalyze 

reactions 
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Maintain 
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ATP 
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? 



ATP 
Rest 
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energy 

x ATP 
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control 
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Reaction 

1 (“PFK”) 

Standard story:  

Autocatalytic plus control feedback 

necessary and sufficient  

for oscillations 

Proof: Dynamical systems model, 

simulation, bifurcation analysis 
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ignore for now 
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Without 
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Fast 

This is why we focus on 
anaerobic glycolysis, to 
maximize the 
autocatalytic feedback. 
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Standard story:  

Autocatalytic plus control feedback 

necessary and sufficient  

for oscillations 

Proof: Dynamical systems model, 

simulation, bifurcation analysis 
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New story: 

Tradeoffs = 

“Universal laws”  

Cheap Expensive 
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Fluorescence histogram (fluorescence vs. cell count) of GFP-tagged 
Glyceraldehyde-3-phosphate dehydrogenase (TDH3). Cells grown in 
ethanol have lower mean and median and higher variability. 

Enzyme amount 

Histogram 
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See Lestas, Vinnicombe, Paulsson,  Nature 

highly variable 

Communicate 

Shannon 

Delay is 

least 

important 

• Transcription is highly variable  

• Even if you allow  delay! 

• So information theory applies 
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What (some) reviewers say 

• “…to establish universality for all biological and 
physiological systems is simply wrong. It cannot be 
done…”   

• “… a mathematical scheme without any real 
connections to biological or medical…”   

• “If such oscillations are indeed optimal, why are they 
not universally present?”  

• “…universality is well justified in physics… for biological 
and physiological systems …a dream that will never be 
realized, due to the vast diversity in such systems.”   

• “…does not seem to understand or appreciate the 
vast diversity of biological and physiological systems…”  

• “…a high degree of abstraction, which …make[s] the 
model useless …”  



Figure S4. Simulation of two state model (S7.1) qualitatively recapitulates 
experimental observation from CSTR studies [5] and [12]. As the flow of material 
in/out of the system is increased, the system enters a limit cycle and then 
stabilizes again. For this simulation, we take q=a=Vm=1, k=0.2, g=1, u=0.01, h=2.5. 
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Supplementary materials has a demo.    

Doyle and Csete, Proc Nat Acad Sci USA, online JULY 25 2011  
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Easy, even with eyes closed 
No matter what the length 

Proof: Standard UG control theory: 
 Easy calculus, easier contour  integral, 
 easiest Poisson Integral formula 
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Next (and last) time 

• Universal laws in more depth 

• Universal architectures revisited/compared 

– Computers and networks 

– Cells 

– Brains and minds 

• Architecture & laws at the extremes  

– evolution 

– eusociality 
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• Minimal case study? 
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Evolution and architecture 

Nothing in biology makes sense except in the light of 
evolution  

Theodosius Dobzhansky 

(see also de Chardin) 
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Putting biology back 
into evolution 



• Many mechanisms for “horizontal” gene transfer 
• Many mechanisms to create large, functional mutations 
• At highly variable rate, can be huge, global 
• Selection alone is a very limited filtering mechanism 
• Mutations can be “targeted” within the genomes 
• Can coordinate DNA change w/ useful adaptive needs 
• Viruses can induce DNA change giving heritable resistance 
• Still myopic about future, still produces the grotesque 

The heresies 



Surprising 
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“conservatives” 

kin selection modern synthesis 
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Reading? 

• See refs in 2011 PNAS paper  but also… 

• Turing: Gallistel  (+ Wolpert on control/bayes) 

• Brain/Mind: Gazzaniga, Kahneman + 

Reyna/Brainerd, Ashby, Cosmides/Tooby,… 

• Evolution: Gerhart & Kirschner, Shapiro, Lane, 

Koonin, Caporale (+ fire + running) 

• Apes: De Waal (Bonobos), Sapolsky (Baboons) 

• Eusociality: Wilson 

• Juarrero 


