
  

Rant on Turing 
John Doyle 

 

Motivation 
 
Nature just had a special issue with essays on Turing and most of them were awful (but short, so I 
recommend reading them anyway).  Sydney Brenner’s was good though.  Anyway, what can be done to fix 
this and write a better paper or collection of papers using Turing as a starting point?  The immediate target 
audience would be roughly typical Nature readers, but this would hopefully be relevant to teaching systems 
theory in engineering (and physics and biology) in a more integrated way to a younger (e.g. early undergrad) 
audience.  This is somewhat motivated by Turing’s 100

th
 birthday, but I think it might be natural anyway. 

 
So here is a high level summary of what I have in mind, with some explanatory background that can hopefully 
be pointed to elsewhere…   
 
What I basically want to explain (and need serious help on as I have major holes in my understanding) is  

 what Turing was really about beginning with the 1936 paper but continuing thru all his work,  

 what engineers and mathematicians take too for granted about Turing’s ideas, and don’t explain 

 and scientists completely miss (see Nature),  

 with particular focus on the relevance these ideas have for a more integrated theory of “complex 
systems” and systems biology and neuroscience  

 
Other directions not adequately discussed here but which are priorities (and will be discussed in the first 213 
class).  To repeat a familiar platitude, we need a fundamental redo of engineering systems theory (comp, 
comms, control), but this, time, seriously do it.  Starting from Turing we can go in a few orthogonal directions 
that start showing what the space looks like: 

1. redo Bode and Shannon to look more like Turing (this is pretty standard) 
2. redo Shannon as stochastic relaxation of intractable comms (Kolmogorov) problems (also standard) 
3. put together clearly all the mixes of Bode, Shannon, and Turing that have been done so far, highlighting 

current holes that might be closeable 
4. redo stat mech using this style (mostly done but needs exposition, QM needs lots of work) 

 
For purely pedagogical reasons, using Turing more directly might be useful: 

5. see how much of control theory can be done with automata and TMs and then transition to Bode 
6. see how much of statistical physics can be done with automata and TMs and motivated by analog to 

digital, and then down via active to passive to lossless to distributed to quantum. 
7. Then see if we can tie these together, perhaps only in their automata versions?  The automata angle is 

only for pedagogical value, so not the highest priority.   
 

 A current challenge is that each subdiscipline (computing, controls, comms, physics etc) tends to make 
assumptions about their models and architectures that are incompatible, and progress on “hybrid” theories 
have been slow, though as mentioned in 3 there are some results.  Hopefully this is not something 
impossible to overcome, and I’ll try to address this in another rant and in class. 

 

The longer term goal for which this would be a first baby step: 
 
 Starting with Turing, we would do a thorough rethinking, refactoring, and ultimate integration for a new 
theoretical foundation of complex systems that are now fragmented and stovepiped in computing, 
communications, controls, OR, and statistical physics (and various application domains such as networking, 
biology, neuroscience, medicine, economics, etc).  The idea would be to go back to Turing and rethink it all in 
light of what we now know.  Hopefully the reason for starting with Turing will become clearer, beyond this 
being his 100

th
 birthday.   

I was originally hoping that we could take the stovepipes and somehow integrate them directly, but 
unfortunately that seems impossible.  The stovepipes are too rigid and assume incompatible architectures.  
The good news is that there seems to be a finer level of granularity that could be used to build a new more 
coherent foundation, but this will take much more than a simple union, but a lot of basic research on what 
amounts to almost a whole new subject.  Experts in existing stovepipes might initially resist even temporary 
reconfiguring of their subjects, but my experience so far has been encouraging, as the need for greater 
integration and the failures of direct approaches is now obvious to almost everyone. 

A bigger problem is that much of what has been done in “new sciences” of complexity and networks has 
been worse than nothing in muddying the waters.  Hopefully we can learn from the mistakes made and avoid 
them in the next attempt.  Recent progress here too has been very encouraging.  But now for a step back to 
the 1930s… 



  

 

Background to put what follows in context 
  
The standard account of Turing’s contributions, which I hope I can mostly take for granted, a subset of which 
is: 
1. Theory (1936): Turing machine (TM), computability, (un)decidability, universal machine (UTM)  
2. Practical design (early 1940s): code-breaking, including the design of code-breaking machines  
3. Practical design (late 1940s): general purpose digital computers and software, layered architecture  
4. Theory (1950): Turing test for machine intelligence  
5. Theory (1952): Reaction diffusion model of morphogenesis, plus practical use of digital computers to 

simulate biochemical reactions  
 
(Ignoring here the precursors of neural nets, presumably they will be highlighted by someone). 
 
In all cases he was ahead of his time, and produced results of both immediate and lasting value, deep but 
with broad impact.  In breadth, depth, impact, significance, lasting value, this (arguably) is collectively the 
most significant collection of achievements of the 20

th
 century, maybe since Newton, maybe ever.   (He was 

also a world-class marathon runner, and a man of the highest integrity. Ironically, he was not just the 
smartest, but in some sense one of our age’s most heroic and moral.) 

In our fragmented and siloed world, these achievements are poorly understood, but the standard accounts 
certainly capture his astonishing accomplishments, if in a somewhat fragmented way. 

What I claim is missing is an appreciation of the unity and continuity of the work, the deep connections 
between the theory and the practical, the computational and the biological.  Perhaps only in the last 10 years 
have we finally fleshed out the theory, technology, and biology sufficiently that the rest of us can finally see 
what Turing was really getting at all along, and restart a more coherent research program along the lines that I 
think he would suggest now. 

Put less euphemistically, we mostly still don’t “get” Turing, but now could.  For engineers and 
mathematicians, he is so deeply and pervasively embedded in the complex fabric of math and technology that 
he is taken for granted like no one else. For most scientists, e.g. readers/authors of Nature, they don’t 
understand either the math core of the theory, or the case studies in (decades of) technology and (very 
recently) biology that now confirm his insights about complex systems.  Plus to the extent they think about 
complexity at all, they have been fed a view of (the “new sciences” of) complexity that is in direct conflict with 
Turing’s insights and the attention to these unrewarding views of complexity has distracted many fields from 
appreciating Turing’s work. 

Turing died just when it is likely he would have started putting a coherent picture together, blending the 
progress in molecular biology, neuroscience, and particularly technology, and drawing them together, even as 
they were fragmenting into reductionist stovepipes.  He likely would have also integrated the works of 
Shannon, Bode, Wiener, the AI community, the OR community, etc… which were briefly in contact in the 
1950s mostly under the banner of cybernetics but shattered into fragments by 1960 (another tragedy different 
in detail from Turing’s but similar in its unfortunate blending of private and public), and have only begun to 
come together in the last decade in the context of theories of the Internet and systems biology. Engineers 
coped with this fragmentation by building highly modular systems that needed only a few systems architects 
to pull the whole systems together.  This approach delivered dramatic performance and features but 
fundamentally unsustainable infrastructure, while scientists spiraled off into “new sciences” of complexity and 
networks, which are at best, misguided. For some background on this see: 
 Alderson DL, Doyle JC (2010) Contrasting views of complexity and their implications for network-centric 

infrastructures. IEEE Trans Systems Man Cybernetics—Part A: Syst Humans 40:839-852.  

 
Turing, chaos, and complexity 

It is interesting to note that Turing dismissed the centrality of chaos to a theory of complexity (even though it 
was not called “chaos” in 1950…): 
 

“… quite small errors in the initial conditions can have an overwhelming effect at a later time. The 
displacement of a single electron by a billionth of a centimetre at one moment might make the difference 
between a man being killed by an avalanche a year later, or escaping. It is an essential property of the 
mechanical systems which we have called 'discrete state machines' that this phenomenon does not occur. 
Even when we consider the actual physical machines instead of the idealised machines, reasonably 
accurate knowledge of the state at one moment yields reasonably accurate knowledge any number of steps 
later.”  
Turing, 1950, Computing Machinery and Intelligence, Mind 

 
Ironically, since Turing, within science “nonlinear dynamics” has become essentially synonymous with “chaos” 
and thus ‘unpredictability’, whereas to Turing and all engineers since, nonlinear dynamics are absolutely 
essential elements in building the (almost) perfectly predictable and repeatable “discrete state machines” (e.g. 



  

digital hardware) from the potentially chaotic analog electronic substrate.  Indeed, it is the creation of 
sufficiently nonlinear active devices that is always at the heart of digital design, no matter what the physical 
substrate.  The vacuum tube and transistor are only the most familiar examples.  This issue will pop up again 
when we reconsider the 1952 paper. 
 
Importantly, this quote dismissing chaos as irrelevant connects to both the 1936 and 1952 papers: 

 Turing machines and their implementation depends on “this phenomenon” (of chaos) not occurring and 
perfect (if necessary after suitable error correction) repeatability of the machine dynamics 

 Turing patterns (1952) can be viewed as a very first cut in how to achieve this using the physical substrate 
of biochemistry instead of electronics. Turing explicitly said that it was the discrete machine not the 
electronics that were essential, particularly in his 1947 lecture to the LMS, quoted here: 

 
1947 Lecture to LMS: 
 

“… being digital should be of greater interest than that of being electronic. That it is electronic is certainly 
important because these machines owe their high speed to this… But this is virtually all that there is to be 
said on that subject. That the machine is digital however has more subtle significance. … One can therefore 
work to any desired degree of accuracy. This accuracy is not obtained by more careful machining of parts, 
control of temperature variations, and such means, but by a slight increase in the amount of equipment in 
the machine.” 
 

These two quotes are significant:  

 The complexity (“amount of equipment”) in the implementation of digital hardware is to create their near 
perfect repeatability that we are all familiar with.  This is a special instance of the general theme that much 
of the complexity in implementations is to create robustness, not minimal functionality.  Here minimal 
functionality is being digital, and robustness is the repeatability and accuracy of this digital “abstraction” (a 
word we will return to) of an underlying analog substrate, despite (possibly substantial) uncertainty in that 
substrate. 

 We don’t have a clean theory of exactly how much increased complexity and energy consumption is 
required to make a robust digital virtual machine out of real analog circuitry.  There is some work, and it 
should connect to error correcting codes.  Need help here. 

 Nonlinear dynamics play an essential role in all implementations of digital logic, electronics being the most 
familiar, and this can be proven to be necessary (this could be made clearer in our work), but chaos per 
se plays no role whatsoever 

 Interestingly, analog circuits implementing digital logic might appear chaotic to a naïve observer unfamiliar 
with their function.  And random analog circuits statistically similar to those implementing digital logic 
probably would be chaotic, and this could be interesting pedagogically. 

 The related idea that functional networks are at the “edge of chaos” is wrong, but nevertheless interesting, 
given its popularity and role as the first “big idea” in “complexity science”… It would be nice to put this all 
in perspective but it is only for pedagogical purposes.   

 There has been some work connecting chaos and undecidability but I don’t know it… something to look 
into perhaps… New book by Chaitin might be relevant. 

 

Some essential observations that need explanation and compression en route to the main 
punchline 
 
There is a style to Turing’s work that has become the paradigm of modern complex systems research in 
engineering and recently in systems biology (but emphatically not yet in science), which doesn’t yet have a 
common set of terminologies, but involves 3-4 “universal” elements: 
0. Virtual machines: Define an abstract model, here the Turing machine, given plausible constraints on 

available or envisioned components and descriptions of system requirements.  The machine is idealized 
so any limits on its capabilities are likely to hold for less idealized machines, but this is a subtle issue. 

1. Universal laws: Hard limits (constraints, laws, tradeoffs) on what is ideally achievable for the virtual 
machines 

2. Universal architectures: Abstract architectures (i.e. protocols, layers, virtualizations, universal machines) 
that achieve these hard limits and allow users of the architecture to find problem-specific, suitable 
tradeoffs, often in highly modular ways 

3. Implementation: Practical, implementable designs that demonstrate the relevance of both the tradeoffs 
and the architectures to real systems 

 
Turing’s early work on computers typifies this (assuming for now that the reader understands or is at least 
somewhat familiar with this, so review it but connect it a bit with modern terminology): 



  

0. The key virtual system is the Turing machine (TM) which is an abstract version of an arbitrary algorithm 
running on arbitrary digital hardware (“discrete state machines”) with an infinite data memory.  Turing for 
the first time clarified what an algorithm was (Gödel’s commentary on this is important).  Don’t need to be 
strictly historical here as modern accounts are more accessible than Turing’s (or Gödel’s).  

1. The theory of (un)decidability sharply distinguishes what can (and cannot) be computed by even idealized 
algorithms and even in principle.  Turing shows that the (un)decidable boundary does not depend on a 
large set of variants of the basic TM, suggesting it is a quite fundamental (i.e. universal) law (constraint, 
hard limit) on computation. (Mathematically, this restated Gödel’s incompleteness theory in a more 
transparent way and showed its relevance to computation.  It also connected back to Cantor via 
computable numbers.  Strangely, Turing, Cantor, and Gödel all appear to have committed suicide.) 

2. The “universal Turing machine” (UTM) and related theory proved that the modern computer architecture 
consisting of a suitable combination of digital hardware (a TM) and software, can actually implement any 
algorithm from 1).  Given a TM and data, both would be put in memory, and the general UTM would then 
emulate the special TM.  In other words, a system with this UTM software/hardware architecture can 
compute all that can (even in principle) be computed on any TM.  This is a new virtual machine with TMs 
in software in a UTM. 

3. Practical designs using existing (analog) electronic components of a general purpose digital computer 
implementing the universal Turing (now misnamed Von Neumann) architecture, as well as early methods 
to develop software 

 
By making an algorithm (the TM) part of the data, Turing “invented” software, which opens up the opportunity 
for further virtualization and layering. (He also was working on practical aspects of software.) That is, 
algorithms can treat other algorithms as data, so operating systems, compilers, interpreters, higher level 
languages, layered networking protocols, etc all become possible by recursively applying the basic initial 
layering (or virtualization) idea of the UTM.  Within computing and networking, this role of layering and 
virtualization has most dramatically proven to be the essence of architecture, but other disciplines, notably 
biology are just starting to see this as well.   An attempt to explain “layered architectures” to nonengineering, 
and particularly neuroscience, audiences is: 
 
 Doyle, ME Csete (2011) Architecture, Constraints, and Behavior, P Natl Acad Sci USA 

 
So a major element of a rethinking of controls and comms theory is to be more explicit about the 3 steps, and 
also to start combining them more into one theory, still iterating on the 3 steps.  This obviously needs a lot 
more explanation.   
 

Universality = deconstraint 
There are also several senses in the word “universal” here.  One is that this 3 step strategy seems like a 

universal approach to systems theory, another is that the first step involves constraints that could be called 
“universal laws,” and the second step involves “universal machines” which is Turing’s main use of universal.  
The third step could also involve universal as well in that some specific architecture (e.g. the bacterial 
biosphere, see below) could become universally shared by all cells. 

The notion of constraints is a convenient way to organize this discussion and make the verbal descriptions 
more naturally map onto the mathematics (see Doyle, Csete 2011).  The universal laws are hard constraints 
that are intrinsic to the problem, the generalization of natural laws such as energy conservation to complex 
systems. The universal architectures are also constraints but are in some sense chosen to achieve this 
universality.  It is necessary for a machine to satisfy these highly restricting constraints only to achieve 
universality, which is a kind of robustness to arbitrary problems.  Successful (e.g. universal) architectural 
constraints are “constraints that deconstrain” (Gerhart and Kirschner) in that adopting the constraints then 
deconstrains what problems can be solved with systems using the architecture.  Universality is the ultimate in 
deconstraint. 
 
Terminology: abstract versus layered, virtual, and universal 

Looking back from our now heavily digital world, the role of the digital “abstraction” is crucial and could be 
the starting point for a more coherent theory of everything from layering to multiscale physics.  But we might 
consider replacing the overarching term “abstract” with “virtual” or “virtual machine” (a la Sloman), and more 
generally with layer, virtual, and universal.  While virtual has many diverse meanings from the narrow use of 
virtual machine in operating systems, to the more slippery use of “virtual reality”, the term abstraction is even 
more heavily overloaded.   

Using virtual (+layer+universal) in the context we have here might help some, but Turing didn’t use this term 
(he only used universal) so it needs some thought.  Systems can be layered with little virtualization and no 
universality.  Concretely, the Internet has a layered architecture, but IP addressing is not virtual (a huge flaw 
given its modern usage).  Many user interfaces involve elements of virtual reality in the sense that they create 
the illusion of the “real world” but are rarely universal in the sense of being able to create any environment 
experienced in the real world.  So layering and virtual and universal all mean slightly different things, and 



  

perhaps the only necessary implication between them is that universal implies virtual.  And I’m not even sure 
of that. 

So I’m suggesting (tentatively) using the term digital virtual machine in place of what we now might call the 
digital abstraction of the underlying analog circuitry.  (Though usually I’ll just refer to these as digital or 
analog.) The notion of virtual machine then recurses naturally (as does abstraction) downward into active 
virtualization of passive circuits, and upward into software/hardware and applications/OS.  We naturally speak 
of software layer on hardware layer, and application versus OS layer, but tend not to say digital layer on/in 
analog.  The latter seems natural, but needs more careful explanation.  Indeed, the exact nature of 
digital/analog and software/hardware is extremely well understood by experts, but this is never explained to 
others, and the virtualization itself makes the hidden workings deliberately cryptic. 

I also want to distinguish between virtual and universal, as it is possible to be the former (e.g. a TM is a 
virtual machine when thought of as a digital virtualization of analog circuitry) without the latter (a UTM is a very 
special kind of TM).  It appears that only virtual machines can be universal but perhaps there are contexts in 
which “universal” in this sense does not depend on virtualization.  In computing and biology, virtualization 
seems to be essential to universality.  I’m not aware of anyone who has addressed this issue. 

So we might rephrase Turing (this needs work) by saying that a TM abstracts what it means to decide 
and/or compute, and that digital logic is a virtualization of analogy circuitry that is universal in the sense of 
able to implement TMs.  The UTM is both a virtualization in software of the TM hardware, and universal in that 
any TM can be implemented as software on a UTM.  (It is thus possible to imagine a VTM that is not a UTM, 
by considering a VTM that virtualizes some subset of TMs but not all TMs.) 
 
Layered architectures 

The implications of layered (e.g. Turing) architectures are so familiar to everyone that they are taken for 
granted, though in different ways by engineers versus users, though part of the architecture is that everyone is 
a user, since designers use computing infrastructure to design new infrastructure.  Though engineers worship 
Turing, they barely know what he actually did, since its success is marked by its pervasiveness.  So much has 
happened since Turing died that we forget how much is due to him. 

But for the user of modern information technology (IT), they can download and immediately run a 
bewildering variety of application software or “apps” with the only compatibility requirement being on the 
operating system (OS) on their smartphone or PC. Different OSes and their hardware platforms are both now 
quite flexible in their internal implementation, but there are only a handful of available alternatives.  These 
OSes can also connect a vast diversity of hardware, again only limited by OS compatibility, an example of an 
“hourglass” layered architecture.   But all the details are hidden or abstracted (this usage seems too 
ambiguous) or virtualized (this is the usage I am advocating), from the user.  The same holds for the layers of 
the Internet architecture. 

For programmers or “app” developers, there are rich sets of tools (e.g. compilers, higher level languages, 
code libraries, application interfaces, etc) that allow them to exploit the layered architectures of modern IT 
systems. Unfortunately, the architecture that promotes all this “plug and play” modularity also is vulnerable to 
viruses and worms in a way that unlayered digital hardware (without software) is not.  Many recent dramatic 
examples. 

Most scientists have used higher level languages or at least domain specific scientific computing software, 
but need to remind them that the ease of all this is only because of the Turing architecture that layers software 
of applications on operating systems, then software on digital hardware, and digital on analog, etc. as well as 
layered network protocols (the Internet protocol stack).   

The divide in understanding between users, even the PhD scientists who are “first adopters” of modern 
technology and the engineers who design it, is unbelievably huge.  (The modern education of engineers is a 
disaster, and creates a collective kind of inarticulateness that makes them apparently incapable of explaining 
how anything really works.  But that too is overly polemical, and at least some of it is probably my fault, and I 
should shut up and fix it rather than whine.  Hence attempts like this need attention.) 

For example, the Internet “architecture” appears to be a source of complete confusion and bewilderment to 
scientists, and Nature (and Science, to be fair) has arguably contributed mightily to this.  Probably best to 
avoid this issue for now, but it eventually needs to be addressed.  Alderson and Doyle (2010) has an overview 
of the ongoing persistent errors and confusion (Nature Physics just had a special issue on complexity that is a 
case study in error and confusion), plus references to the details (appearing in PNAS and Notices of the AMS, 
e.g.) 
 Doyle et al, (2005), The “Robust Yet Fragile” Nature of the Internet, PNAS 102 (41), October 11, 2005  

 Willinger W, Alderson D, and Doyle JC (2009) Mathematics and the internet: A source of enormous confusion and 
great potential. Notices Amer Math Soc 56:586-599.  

 
Persistent errors and confusion 
 There seems to be two opposite misunderstandings of architectures that are layered and/or virtualized.  
One is exemplified by creationism, where the gap between nonlife and life, or between animals and humans, 
(why not transistor and the Internet) seems so vast a gap that only supernatural forces can explain them.  
(This is called the “god(s) of the gaps” and produces a highly time-varying notion of deities as the gaps shift.)  



  

The other extreme is statistical physics and its application to complex systems (SPCS), where the gaps are 
assumed to be so small that they can be covered by largely random ensembles and minimal tuning, as 
exemplified by such concepts and theories as “order for free, edge of chaos, self-organized criticality (SOC), 
scale-free networks” etc etc.  This is most perfectly illustrated by the use of SOC as a model for the brain, with 
the claim being that understanding simple cellular automata models of sandpiles is tantamount to 
understanding the human brain (see Chialvo in Nature Physics).  This almost makes the creationists seem 
sensible. 

I think this "small gap" SPCS prejudice helps drive connectomics and certainly the NetSci approach of 
Bullmore and Sporns.  That understanding the connectivity in any layer will help understand the whole... more 
on that later... 

The gaps between digital/analog, software/hardware, etc are huge but have fairly clear (if wildly 
misunderstood) explanations, so potentially can serve as a starting point for helping scientists understand 
multiscale layered systems in biology and technology.  Creationists seem not to doubt what engineers tell 
them about their PCs and cell phones (but they often doubt mainstream accounts of global warming), whereas 
SPCS has been applied everywhere with almost comical results (until you realize the publications have such 
high impacts, and are now being pursued in medicine and neuroscience with potentially negative 
consequences). 

We have had little success persuading either the creationists or SPCS faithful that the gaps are explainable 
with appropriately conceptualized virtual machines (though the origins of life remain do largely a mystery since 
the evidence was long ago wiped clean, but even here progress is encouraging).  This is unlikely to change 
the minds of the faithful but we can hopefully help the agnostics to better decide what faith to adopt or (better 
yet) avoid.  It is also should help to offer a coherent alternative rather than just saying “it’s more complicated 
than that.” 

While the full story is complicated and a real case study in the psychology and sociology of science, the 
main source of confusion recently in science regarding architecture is that it is synonymous with graph 
topology, and modularity with weakly linked subgraphs that are internally tightly linked. (This is the most 
recent incarnation of the SPCS approach.)  In fact, architecture and modularity are most importantly the 
opposite of this.  (Just as it is true that even mildly nonlinear dynamics can be chaotic and thus unpredictable, 
the most perfectly repeatable systems are necessarily extremely nonlinear, as in the circuitry that implements 
digital logic in CMOS VLSI.) 
 
Ok, back to what topology (whether connectomes at the neural level or Bullmore/Sporns at the higher levels) 
is very unlikely to do... 
 

As a concrete example, an application running on the Internet (e.g. a social network, a hyperlinked 
document browser like the web, etc) is allowed to have an arbitrary topology, and indeed this freedom (this 
“deconstraint”) is exactly the point of a layered architecture. Anything goes. Similarly, the physical hardware 
resources, hidden by OSes and their networking extensions that virtualize the raw hardware resources, have 
the freedom (deconstraint) to have quite arbitrary topologies provided that they suitably implement the 
required protocols.  Thus topologies, whether in software or hardware, are by design the least constrained 
aspects of a system implemented with a layered architecture. So the thing that appears easiest to measure, 
low level neural connectivity, or high level fMRI correlations, are almost certainly the least informative about 
what is most essential to how brain makes mind, which are the hidden intermediate layers (analogous to the 
OS instead of the transistors or the app software). 

Instead it is the layering itself and the protocols that are universal and thus constrained that are the essence 
of architecture.  This has proven almost impossible to explain to scientists generally, though some progress is 
being made.  Engineers take this so for granted they don’t create accessible tutorial material. 

The most important aspect of “modularity” in a Turing-inspired architecture is also the role of layering (and 
virtualization).  Concretely, the most important modularity feature is the split between software and hardware, 
but this split is not at all one of “strong internal, weak external” links between subgraphs.  Again, it is quite the 
opposite.  Software is so deeply intertwined with hardware that it might not be obvious to an observer without 
a priori deep understanding of the architecture, just what the software was.  That is, in a UTM, without expert 
knowledge, you wouldn’t know it wasn’t just any old TM, and would miss the most important idea in 
“modularity” perhaps ever thought up.  The encoding of algorithm plus data just looks like data.  No weakly 
connected subgraphs.  This issue is so embedded in our understanding of software/hardware as well as 
digital/analog, that we seem never to explain it to the scientists. 

So both “architecture” and “modularity” in the modern sense were essentially invented by Turing (though 
building directly on Godel’s theory and lots of engineering for decades or centuries), and have nothing to do 
with what these words mean to scientists.  

This crops up in discussions of the brains modularity.  At the sensorimotor periphery there are obvious 
mappings of fairly nonplastic functionality on the hardware but higher up the functional modularity is less 
mapped onto obvious anatomy, and this is also true of robots, as you get into higher levels of control and 
decision making, it's all in software and doesn't map onto specific hardware, whereas sensorimotor 
peripherals do. 



  

 

The Turing-style notions of architecture and modularity (and nonlinear dynamics)  
 
Unfortunately, a theory of layered (as optimization) architecture  suitable for the Internet architecture has only 
been developed in the last decade, the above Alderson and Doyle paper refers to it, with lots more details in 
references.  The Internet is a case where the practical architecture of step 3 preceded the theory in steps 1 
and 2 by decades.  Indeed, Turing is a remarkable instance of doing the theory first, though technology for 
decades and centuries anticipated his ideas in many ways (that I can’t hope to describe).  Usually engineers 
find solutions that the theorists later formalize and extend, returning to engineers tools that enhance future 
designs.  That is, engineering theory is often first about “reverse engineering” existing systems and 
architectures (step 3 is first) to formalize their essential features, leading to steps 1 and 2, but then another 
round of 3.  Engineers always go beyond the theory, so this process recurses. 

Turing (and to some extent Shannon) are singular counterexamples to this trend.  They did theory without 
first formalizing existing practice.  (Note also that science has always been applications of technology and its 
mathematics to the natural world, not the other way around.   But that’s another long story that is full of 
persistent errors and confusion.) 

What is remarkable is how general (in retrospect) the Turing pattern of research and development is:  
Virtual machines and hard limits on not just computation, but measurement, prediction, communication, 
decision, and control, as well as the underlying physical energy and material conversion mechanism 
necessary to implement these abstract process are at the heart of all modern mathematical theories of 
systems in engineering and science (often associated with names in addition to Turing such as Shannon, 
Poincare, Gödel, Bode, Wiener, Heisenberg, Carnot,…).  They form the foundation for rich and deep subjects 
that are nevertheless now introduced at the undergraduate level.  Unfortunately, these subjects have 
remained largely fragmented and incompatible, even as the tradeoffs between these limits are of growing 
importance in building integrated and sustainable systems.   I think had Turing lived, he would have resisted 
this fragmentation.  We need to “channel” him now. 
 
Recent progress 

An essential research direction that has finally materialized only in the last decade is an increasingly 
integrated theory of hard limits based on optimization that deals systematically with uncertainty, robustness, 
and risk in complex systems.  Basically it is control theorists who have started to incorporate Shannon and 
Turing more explicitly. This has corresponded to a remarkable convergence between our understanding in 
biology and technology of what are the potential universal laws, architecture, and organizational principles. As 
a recent introductory and accessible example, see 

 Chandra F, Buzi G, Doyle JC (2011) Glycolytic oscillations and limits on robust efficiency. Science, Vol 333, pp 
187-192.  

 
This is the tip of the iceberg, as biologists are articulating richly detailed explanations of biological 

complexity, robustness, and evolvability that point to universal principles and architectures that are 
surprisingly familiar even if the terminology is different.   So basically, the biologists (or biology itself) has 
already produced spectacular architectures as in step 3, and we are now reverse engineering these, and this 
Science paper is an example of interpreting existing biology (and a central mystery of biology) in exactly the 
style that Turing used in step 1 (with a bit of step 2). 

Hopefully more theorems and case studies like this are to follow. This is in part just due to increasingly 
detailed description of components but also a growing attention to systems in biology and neuroscience, and 
so the organizational principles of organisms and evolution are becoming increasingly apparent.   

 
In addition, while the components differ and the system processes are far less integrated, advanced 

technology’s complexity is now approaching biology’s so there are striking convergences at the level of 
organization and architecture, and the role of layering, protocols, and feedback control in structuring complex 
multiscale modularity.  As I said, readers are familiar with the symptoms of this but not the causes. Engineers 
understand the details but explain the essence badly.  We still need Turing. 

Determining what is essential about this convergence and what is merely historical accident  requires this 
deeper understanding of architecture — which in general is the most universal, high-level, persistent elements 
of organization, exactly as Turing described (though he doesn’t call it “architecture”) — and protocols. 
Protocols define how diverse modules interact, and architecture defines how sets of protocols are organized.  
The paradigmatic examples of protocols, layering, and architecture begins with the “universal Turing machine” 
of separating software and hardware, and describing protocols that connect a specific algorithm and the 
universal machine.   

The obvious symptoms of all this “architecture” and its supporting theory and methods are the extremely 
evolvable computing and information technology environment we are immersed in, as well as the hidden but 
no less dramatic impact that advanced control systems have had on automating our cyber and physical 
infrastructure and machines.  This needs explaining to highlight the connections with Turing… 

 



  

Architecture in biology, HGT, layering, virtualization, universality 
What has not been explained adequately, and can only be hinted at is the technical details in biology that 

mirror those in technology.  The simplest to explain now is the microbial biosphere, which in the latest view 
involves a complex “Internet-like” (Caporale) orgy of horizontal gene transfer (HGT).  Organisms swap 
everything from genes to whole networks, so that the “tree of life” has been replaced by a “web of life”. 
(Shapiro, Koonin) 

That is, the Chandra et al Science paper does a step 1 of Turing, finding the hard limits that are really 
driving the architecture in biology, which in this case is tradeoffs between robustness and efficiency.  But step 
2 is only minimally addressed.  What is needed next is a full Turing step 2 and an explanation of how the 
whole cell architecture beautifully trades off robustness and efficiency, up against hard limits.  I’ve mostly 
worked all this out and vetted it with biologists in some detail, but it will take a long major effort to write it up in 
an accessible way.  The details are much more complex, not surprisingly, than anything like it that has been 
done before. 

But Turing would have naturally guessed what is necessary to make this HGT world possible: a “universal 
machine” or in modern terminology a universal machine using a layered, virtualized architecture.  Here is it will 
be important to carefully explain the relationships between the terms layer, virtual, and universal. 

 
What does that mean exactly in biology?  First, we don’t know exactly what reactions and networks of 

reactions can be catalyzed by protein enzymes, so we can’t completely finish step 1 yet (I can say more about 
that but want to go on to step 2), but we can say that prokaryotic cells have a universal and virtual and layered 
architecture of replication, transcription, translation, and control (e.g. one, two, and multicomponent signal 
transduction systems) that means that all possible reactions and networks can be implemented with this 
architecture, provided the suitable genes and promoters can be obtained.  Just as the smartphone and PC 
user can download any app compatible with their OS, where there are only a few. Prokaryotes have only one 
shared architecture, though the detailed implementation in various polymerases, ribosomes, and other 
proteins can differ significantly, just as with Turing and modern IT systems. 

Note that we haven’t even gotten to Turing patterns….which is the final punchline…  but apparently nobody 
has noticed that HGT only works with a shared, layered architecture, which Turing pioneered.   It is taken too 
for granted to be noticed.  Let’s stop to distinguish what we mean here by these terms: 
 

Layer:  The overall reactions in the cell can be broken up into replication, transcription, translation, and 
metabolism/control.  This is adapting the existing terminology in biology to describing a layered architecture, 
and the fit is remarkably good.  These are (importantly) virtual layers, in that they are described in terms of 
abstract reactions. 
 
Virtual:  The reactions that make up the layers are virtual, and are implemented by being catalyzed by 
enzymes.  It seems like this issue has never been properly explained.  Need to work on this. Virtual is 
important because there are (an almost infinity of) multiple ways to implement the reactions that define the 
layers and hence the architecture.   
 
Universal laws: See Chandra et al.  Tradeoffs on robust efficiency.  What we need to do is extend the 
analysis to the whole protocol stack.  This is discussed below. 
 
Universal architecture: As a whole the layered architecture is universal in the sense that any set of 
enzymatically catalyzed reactions can be implemented with the appropriate genes, adequate supply of 
energy and raw materials, and the right initial conditions.  All of these are quite intricate and must be finally 
organized and tuned.   
 
Universal implementation: There is another sense in which the virtual, layered architecture is “universal” 
and that is that it is the same for every cell on the planet.  This is a problem because these two notions of 
universal are different and probably should have different names.  I confuse them in my writing all the time. 
 
So the first punch line is that the first known “universal virtual Turing-like machine” is the layered 

architecture of the prokaryote biosphere.  I think this is a huge insight and connection that seems to have 
been completely overlooked.  I’ve been sort of pushing it for a few years but haven’t gotten around to 
explaining all the details.  Hopefully I’ll get to it soon, but the basic idea isn’t that hard to get and can be 
explained minimally as above. 

The much bigger punchline connected to HGT and other mechanisms that cells use to rewrite their 
genomes on the fly, is that the layered architecture of rep, transc, transl, signal transduction provides control 
mechanisms in each layer, and  this allows exquisite tradeoffs between efficiency (e.g. metabolic overhead) 
and robustness (e.g. speed of response).  That is, if speed is of the essence, proteins are all premade and 
ready to go, and controlled allosterically and covalently modified, on millisecond timescales.  At the other 
extreme, just-in-time transcriptional control can make new proteins on demand, but this takes orders of 
magnitude longer but is also much more efficient.  On even longer time scales, cells rewrite their genomes by 



  

HGT and various other mechanisms.  What is new and intriguing is the extent to which control at the RNA 
level is an evolutionary sweet spot for balancing speed and efficiency. 

This is all worked out and doesn’t need anything new really, but will take some time to tell. What is 
unresolved is what “universal laws” exist that constrain these tradeoffs beyond what is in Chandra et al.  But 
it’s the big Turing-like result in biology (at the bacterial level), but will have to wait on a long review … (though 
Nature has never published anything remotely like this, and Science is just starting to, and is encouraging this 
direction, but we’ll see….) 

Aside on proteins: We don’t know in what sense proteins might be universal machines. That is, is there 1) 
a class of reactions that have universal laws in terms of hard limits on how fast, efficiently, and robustly they 
can be catalyzed? And are 2)-3) proteins universally able to catalyze these reactions?  This would be all 3 
steps of the Turing program applied to proteins.  I have no idea how to this but an essential first step seems to 
be to develop a full nonequilibrium thermodynamics and statistical mechanics (physics lacks this despite the 
existence of the terms), which seems doable and is in progress (see IEEE TAC paper by Sandberg, 
Delvenne, and Doyle) 
 
A great starting reference on all this HGT and other mechanisms of natural genetic engineering (but that is 
oblivious to the whole architecture and Turing angle, but lays out the facts) is 

 Shapiro, J.A. 2011. Evolution: A View from the 21st Century. FT Press Science  
 

See also the recent papers above on architecture for some discussion of this, and earlier some high level 
commentary: 

 M. E. Csete and J. C. Doyle. Reverse engineering of biological complexity. Science 295(5560):1664-1669 (2002). 

 Csete M.E. and J.C. Doyle, 2004, Bow ties, metabolism, and disease, Trends in Biotechnology, Vol 22, Issue 9, pg. 

446-450 

 Doyle J, and Csete M, Rules of engagement. NATURE 446 (7138): 860-860 APR 19 2007 
 

The biology last punch line, the 1952 paper 
 
What about the 1952 paper?  It has been systematically misread, so let’s see if we can put it into the 

context of Turing’s overall approach. 
I agree that what the embryology types (Sydney Brenner, Lewis Wolpert, Jani Nusslein-Wolhard, Eric 

Wieschaus) imply when they respond to 'emergence' in horror is something related to the above discussion on 
architecture, modularity, nonlinear dynamics, etc and is indeed first connected to the 1936 paper, but the 1952 
paper took an essential step, and I’ll try to explain what that essential step was (and pattern formation per se 
was not the essential element).  

So I want to finish this story with the 1952 paper and explain that many of the narrow interpretations of 
Turing patterns are now clearly irrelevant to most aspects of development, and this takes many steps, and not 
sure how much we’ll have space for… but here goes…   

The first misreading of Turing was to try to put it within the emergence camp (SPCS, e.g. nonlinear 
dynamics = chaos) whose goal is essentially to explain patterns in nature (fractal mountains and shore lines 
and lung branching, leaf shapes, camouflage, etc) in terms of simple models inspired by statistical physics.   
Turing can certainly be read as epitomizing “emergence”, in that Turing patterns (and hopefully eventually the 
stat phys holy grail of chaos and power laws) can be created with simple fairly homogeneous ensembles of 
interacting chemical species described by simple nonlinear equations. 

It’s very unlikely that patterns per se were ever Turing’s ultimate goal and it is now clear that for real biology 
they are never ends in themselves (except perhaps in camouflage) but are intermediate readouts of 
components in complex control systems. Turing knew, even if he never stated it explicitly, that in order to build 
robust predictable repeatable machines that are also flexible, adaptive, and evolvable (and development is a 
striking example of such machines, as is the whole bacterial biosphere) you needed a physical substrate that 
could be made into 'discrete state machines' or something equivalent.  Since biologists tend to talk about cell 
types as consisting of discrete types, even if this is an approximation, Turing would have been naturally 
looking for ways that chemistry (rather than electronics) could implement the essential digital nature that 
underlies Turing machines. 

I think if he were to have lived he might have shifted his focus to bacteria and internal cell control 
mechanisms, and the role of the obviously digital nature of DNA and RNA and protein sequence, in the 
ultimately analog control of the cell… but in 1952 the most obvious question for Turing was how could 
morphogenesis implement a very rudimentary kind of machine.  So Turing was doing some speculative 
reverse engineering based on a very abstract view of biochemistry, with few facts to go on, and what he 
accomplished was, particularly with our modern view, pretty astonishing.  That it has been so badly misread is 
sad but not surprising.  Almost everything that touches on architecture is wrong. 

And I hope Turing would have been happy with the layered architectural view of the cell sketched above.  
We now have the facts and biochemical mechanisms to flesh out what sort of UTM the cell actually is.  But 
there’s more… 

 

http://shapiro.bsd.uchicago.edu/evolution21.shtml


  

… the idea of morphogens as the communication method between cells which are implementing layered 
virtualized Turing-like universal architectures fits the latest developments in development perfectly.  Turing 
would have naturally come to this eventually as the molecular details unfolded, and likely would have helped 
avoid the many cul de sacs along the way.  We now understand that it is the dynamics of morphogen 
signaling and complex feedbacks with cell surfaces and internal states that is often important, exactly as 
would necessarily be true of any robust communication and control networks between such “universal 
machines” whether implemented electronically, mechanically, or chemically.     

 
Also, the 1952 paper is so modern in its blend of theory and computation, and there is less like it between 

that paper and around 2000, when an interest in dynamics, control, mechanism, etc, resurfaced.  There was a 
huge effort in physiology a la Guyton until 1970s, but after that it was all genomics and computation was 
mostly devoted to bioinformatics. 

The whole EvoDevo story also fits perfectly, though the situation is much more complex and the details are 
not yet as clear as in the bacterial biosphere and the Internet, where the interplay of robustness, evolvability, 
and architecture can be explained (finally) in fair detail… Though obviously for this venue they will have to be 
summarized. 

Many development papers are relevant here, but most important is Kirschner and Gerhart’s work.  G&K are 
referenced heavily in my papers and I need to extract the relevant story about architecture as “constraints that 
deconstrain” that is perfectly compatible with Turing but hasn’t been explained that way. 

So the bottom line is that the relevance of the 1952 paper can only be really understood in the context of 
1936, the cyberwar part of WW2, and Turing’s design of the real general purpose computers.  It has been 
systematically misread and the reactions of the embryologists all along have been instinctively right but would 
have helped greatly to have been informed by Turing’s likely real intent. 

 
What I’m leaving out so far but would like to put in eventually in another venue, the 1950 Turing test 
paper 
 
 `A big piece of the overall story that is really rich but I think has to be triaged in this pass is the connections 
this all has with the 1950 Turing test paper.  The point to be made is that Turing focused on what systems did, 
their external behavior, and recognized that there might be lots of internal implementations that yielded the 
same behavior (the essence of his universality, though here virtualization and layering capture the essence) 
and we might get distracted from the essence of this by focusing on internal states too much.  The Turing test 
has generated perhaps the largest popular literature of anything he has done, and it seems still 
misunderstood (like the 1952 paper) because it isn’t adequately grounded in understanding of his whole 
approach to systems.  It is also clear he is being deliberately whimsical and provocative, to stir up discussion, 
and the literature since proves he was successful. 
 One striking observation is Turing’s whole description of the human mind/brain as a layered onion 
 

“The 'skin of an onion' analogy is also helpful. In considering the functions of the mind or the brain we find 
certain operations which we can explain in purely mechanical terms. This we say does not correspond to 
the real mind: it is a sort of skin which we must strip off if we are to find the real mind. But then in what 
remains we find a further skin to be stripped off, and so on. Proceeding in this way do we ever come to 
the 'real' mind, or do we eventually come to the skin which has nothing in it? In the latter case the whole 
mind is mechanical.” 
 

Wow.  It’s hard to find anything that is a pithier summary of the modern cognitive neuroscience view of the 
brain\mind.  See my 2011 PNAS paper for more details. 
 
This is a huge piece of the “architecture” story, but is hard to fit in with between the 1936 and 1952 papers, 
and not as urgent for me (given the 2011 PNAS paper that gives a start, but doesn’t make the ultimate 
connections) as the layered bacterial biosphere architecture piece or the modern dynamic morphogenesis 
story. 
 
The much bigger picture not included at all 

 
In summary: This new mathematical frameworks for the study of complex networks (that Turing’s 1936 

paper was arguably the canonical precursor) suggests that all this apparent network-level evolutionary 
convergence within/between biology/technology is not accidental, but follows necessarily from their universal 
system (and hard limits) requirements to be fast, efficient, adaptive, evolvable, and most importantly, robust to 
perturbations in their environment and component parts.  The universal hard limits on systems and their 
components have until recently been studied separately in fragmented domains of physics, chemistry, biology, 
communications, computation, and control, but a unified theory is needed and appears feasible.   

We have both the beginnings of the underlying mathematical framework and also a series of case studies in 
classical problems in complexity from statistical mechanics[28], turbulence[27][32] , cell biology 



  

[1][3][5][6][7][10][14][19][20][23][29][30], neuroscience[31], wildfire ecology[17][25], earthquakes[33], and the 
Internet [4][8][9][11][15][18][21]. 
  
Selected references: 
[1] Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral 

feedback control. Proc Natl Acad Sci USA 97:4649-4653.  
[2] Carlson JM, Doyle J, Complexity and robustness, P Natl Acad Sci USA 99: 2538-2545 Suppl. 1 FEB 19 2002 
[3] M. E. Csete and J. C. Doyle. Reverse engineering of biological complexity. Science 295(5560):1664-1669 (2002). 
[4] Low SH, Paganini F, Doyle JC,  Internet congestion control, IEEE Contr Syst Mag  22 (1): 28-43 FEB 2002 
[5] Csete M.E. and J.C. Doyle, 2004, Bow ties, metabolism, and disease, Trends in Biotechnology, Vol 22, Issue 9, pg. 

446-450 
[6] J. Stelling, U. Sauer, Z. Szallasi, F. J. Doyle III, and J. Doyle, 2004, Robustness of cellular functions, Cell, October, 

2004. 
[7] H. El-Samad, H. Kurata, J.C. Doyle , C.A. Gross, and M. Khammash, (2005), Surviving Heat Shock: Control 

Strategies for Robustness and Performance, PNAS 102(8): FEB 22, 2005 
[8] Jin C, Wei D, Low SH, Bunn J, Choe HD, Doyle JC,et al (2005),  FAST TCP: From theory to experiments  IEEE 

NETWORK 19 (1): 4-11 JAN-FEB 2005 
[9] Paganini F, Wang ZK, Doyle JC, et al. Congestion control for high performance, stability, and fairness in general 

networks , IEEE-ACM TRANSACTIONS ON NETWORKING 13 (1): 43-56 FEB 2005 
[10] J.  Doyle and M. Csete (2005). Motifs, stability, and control. PLOS Biology, 3, 2005. 
[11] Wang JT, Li L, Low SH, Doyle JC. (2005) Cross-layer optimization in TCP/IP networks, IEEE-ACM TRANS ON 

NETWORKING 13 (3): 582-595 JUN 2005 
[12] T Brookings, JM Carlson, and J Doyle (2005) Three mechanisms for power laws on the Cayley tree, Phys. Rev. E 72, 

056120  
[13] Manning M, Carlson JM, Doyle J (2005) Highly optimized tolerance and power laws in dense and sparse resource 

regimes PHYSICAL REVIEW E 72 (1): Art. No. 016108 Part 2 JUL 2005 
[14] R. Tanaka, T-M Yi, and J. Doyle (2005) Some protein interaction data do not exhibit power law statistics, FEBS 

letters, 579 (23): 5140-5144 SEP 26 2005 
[15] Doyle et al, (2005), The “Robust Yet Fragile” Nature of the Internet, PNAS 102 (41), October 11, 2005  
[16] Zhou T, Carlson JM, Doyle J (2005) Evolutionary dynamics and highly optimized tolerance, JOURNAL OF 

THEORETICAL BIOLOGY 236 (4): 438-447 OCT 21 2005 

[17] MA Moritz, ME Morais, LA Summerell, JM Carlson, J Doyle (2005) Wildfires, complexity, and highly optimized 
tolerance, PNAS, 102 (50) December 13, 2005; ,  

[18] L Li, D Alderson, JC Doyle, W Willinger (2006) Towards a Theory of Scale-Free Graphs: Definition, Properties, and 
Implications, Internet Math, Vol. 2, No. 4, 2006 

[19] H El-Samad , A Papachristodoulou, S Prajna, J Doyle, and M Khammash (2006),  Advanced Methods and Algorithms 
for Biological Networks Analysis, PROCEEDINGS OF THE IEEE, 94 (4): 832-853 APR 2006 

[20] Kurata, H El-Samad, R Iwasaki, H Ohtake, JC Doyle, et al. (2006) Module-based analysis of robustness tradeoffs in 
the heat shock response system. PLoS Comput Biol 2(7):  July 2006 

[21] M Chiang, SH Low, AR Calderbank, JC. Doyle (2006) Layering As Optimization Decomposition, PROCEEDINGS OF 
THE IEEE, Volume: 95  Issue: 1  Jan 2007 

[22] Martins NC, Dahleh MA, Doyle JC (2007) Fundamental Limitations of Disturbance Attenuation in the Presence of Side 
Information,  IEEE Trans Auto Control, Feb 2007 

[23] Doyle J, and Csete M, Rules of engagement. NATURE 446 (7138): 860-860 APR 19 2007 (PMID: 17443168)  
[24] Willinger W, Alderson D, and Doyle JC (2009) Mathematics and the internet: A source of enormous confusion and 

great potential. Notices Amer Math Soc 56:586-599.  
[25] Bowman, Balch, Artaxo,  Bond, Carlson,  Cochrane, D’Antonio,  DeFries, Doyle, Harrison,  Johnston,. Keeley, 

Krawchuk, Kull,  Marston,  Moritz, Prentice, Roos, Scott, Swetnam, van der Werf, Pyne (2009) Fire in the Earth 
System, Science 24 April 2009: 324 (5926), 481-484.  

[26] Alderson DL, Doyle JC (2010) Contrasting views of complexity and their implications for network-centric 
infrastructures. IEEE Trans Systems Man Cybernetics—Part A: Syst Humans 40:839-852.  

[27] Gayme DF, McKeon BJ, Papachristodoulou P, Bamieh B, Doyle JC (2010) A streamwise constant model of 
turbulence in plane Couette flow, J Fluid Mech, vol 665, pp 99-119 

[28] H. Sandberg, J. C. Delvenne, J. C. Doyle. On Lossless Approximations, the Fluctuation-Dissipation Theorem, and 
Limitations of Measurements, IEEE Trans Auto Control, Feb 2011  

[29] G. Buzi, U. Topcu, J. Doyle. Analysis of autocatalytic networks in biology, Automatica, In Press, Available online 21 

March 2011 http://dx.doi.org/10.1016/j.automatica.2011.02.040 
[30] Chandra F, Buzi G, Doyle JC (2011) Glycolytic oscillations and limits on robust efficiency. Science, Vol 333, pp 187-

192.  
[31] JC Doyle, ME Csete (2011) Architecture, Constraints, and Behavior, P Natl Acad Sci USA, vol. 108, Sup 3 15624-

15630 
[32] Gayme DF, McKeon BJ, Bamieh B, Papachristodoulou P, Doyle JC (2011) Amplification and Nonlinear Mechanisms 

in Plane Couette Flow, Physics of Fluids, in press (published online 17 June 2011) 
[33] Page, M. T., D. Alderson, and J. Doyle (2011), The magnitude distribution of earthquakes near Southern California 

faults, J. Geophys. Res., 116, B12309, doi:10.1029/2010JB007933. 

http://wos.caltech.edu/isi/isicgi/CIW.cgi?PY8ztoPX4bgAAEsytFQ_C21B632E_PY8ztoPX4bgAAEsytFQ-0&Func=Abstract&doc=1/48
http://wos17.isiknowledge.com.clsproxy.library.caltech.edu/CIW.cgi?SID=iGJnkJj9JeA4pG4DdmE&Func=OneClickSearch&field=AU&val=Jin+C&curr_doc=1/33&Form=FullRecordPage&doc=1/33
http://wos17.isiknowledge.com.clsproxy.library.caltech.edu/CIW.cgi?SID=iGJnkJj9JeA4pG4DdmE&Func=OneClickSearch&field=AU&val=Wei+D&curr_doc=1/33&Form=FullRecordPage&doc=1/33
http://wos17.isiknowledge.com.clsproxy.library.caltech.edu/CIW.cgi?SID=iGJnkJj9JeA4pG4DdmE&Func=OneClickSearch&field=AU&val=Low+SH&curr_doc=1/33&Form=FullRecordPage&doc=1/33
http://wos17.isiknowledge.com.clsproxy.library.caltech.edu/CIW.cgi?SID=iGJnkJj9JeA4pG4DdmE&Func=OneClickSearch&field=AU&val=Bunn+J&curr_doc=1/33&Form=FullRecordPage&doc=1/33
http://wos17.isiknowledge.com.clsproxy.library.caltech.edu/CIW.cgi?SID=iGJnkJj9JeA4pG4DdmE&Func=OneClickSearch&field=AU&val=Choe+HD&curr_doc=1/33&Form=FullRecordPage&doc=1/33
http://wos17.isiknowledge.com.clsproxy.library.caltech.edu/CIW.cgi?SID=iGJnkJj9JeA4pG4DdmE&Func=OneClickSearch&field=AU&val=Doyle+JC&curr_doc=1/33&Form=FullRecordPage&doc=1/33
http://wos17.isiknowledge.com.clsproxy.library.caltech.edu/?SID=iGJnkJj9JeA4pG4DdmE&Func=Abstract&doc=1/13
http://wos17.isiknowledge.com.clsproxy.library.caltech.edu/?SID=iGJnkJj9JeA4pG4DdmE&Func=Abstract&doc=1/13
http://wos.isiknowledge.com.clsproxy.library.caltech.edu/?SID=A3o1Jb@M9pfbFc6OjJE&Func=Abstract&doc=1/28
http://scitation.aip.org.clsproxy.library.caltech.edu/vsearch/servlet/VerityServlet?KEY=PLEEE8&possible1=Brookings%2C+Ted&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org.clsproxy.library.caltech.edu/vsearch/servlet/VerityServlet?KEY=PLEEE8&possible1=Carlson%2C+J.+M.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org.clsproxy.library.caltech.edu/vsearch/servlet/VerityServlet?KEY=PLEEE8&possible1=Doyle%2C+John&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org.clsproxy.library.caltech.edu/vsearch/servlet/VerityServlet?KEY=PLEEE8&CURRENT=NO&ONLINE=YES&smode=strresults&sort=rel&maxdisp=25&threshold=0&allprl=1&pjournals=PLEEE8&possible1=carlson&possible1zone=author&bool1=and&possible2=doyle&possible2zone=author&OUTLOG=NO&viewabs=PLEEE8&key=DISPLAY&docID=1&page=1&chapter=0
http://wos17.isiknowledge.com.clsproxy.library.caltech.edu/?SID=A3o1Jb@M9pfbFc6OjJE&Func=Abstract&doc=1/18
http://wos17.isiknowledge.com.clsproxy.library.caltech.edu/?SID=A3o1Jb@M9pfbFc6OjJE&Func=Abstract&doc=1/18
http://wos17.isiknowledge.com.clsproxy.library.caltech.edu/?SID=A3o1Jb@M9pfbFc6OjJE&Func=Abstract&doc=1/13
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V21-52F7FJW-7&_user=10&_coverDate=03%2F21%2F2011&_rdoc=26&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235689%239999%23999999999%2399999%23FLA%23display%23Articles)&_cdi=5689&_sort=d&_docanchor=&_ct=67&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=309ecc4721446d0e040560b98e6f94f6&searchtype=a
http://dx.doi.org/10.1016/j.automatica.2011.02.040

