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Robust Control of Ill-Conditioned Plants: 
High-Purity Distillation 

A~stract-Ill-eonditioned plants are generally believed to be difficult to 
control. Using a high-punty distillation column as an example, the 
physical reason for the poor conditioning and its implications on control 
system design and performance are explained. It is shown that an 
acceptable performancehobustness trade-off cannot be obtained by 
simple loop-shaping techniques (via singular values) and that a good 
understanding of the model uncertainty is essential for robust control 
system design. Physically motivated uncertainty descriptions (actuator 
uncertainty) are translated into the HJstructured singular value frame- 
work, which is demonstrated to be a powerful tool to analyze and 
understand the complex phenomena. 

I. INTRODUCTION 

T is well known that ill-conditioned plants may cause control I problems [ 11-[5]. By ill-conditioned we mean that the plant gain 
is strongly dependent on the input direction, or equivalently that 
the plant has a high condition number 

Here 6(G) and q(G) denote the maximum and minimum singular 
values of the plant 

)I - 112 denotes the usual Euclidean norm. We also say that an ill- 
conditioned plant is characterized by strong directionality because 
inputs in directions corresponding to high plant gains are strongly 
amplified by the plant, while inputs in directions corresponding to 
low plant gains are not. 

The main reason for the control problems associated with ill- 
conditioned plants is uncertainty. Uncertainty in the plant model 
may have several origins. 

1) There are always parameters in the linear model which are 
only known approximately. 

2) Measurement devices have imperfections. This may give rise 
to uncertainty on the manipulated inputs in distillation columns, 
since they are usually measured and adjusted in a cascade manner. 
In other cases, limited valve resolution may cause input uncer- 
tainty. 

3) At high frequencies even the structure and the model order 
are unknown, and the uncertainty will exceed 100 percent at some 
frequency, 

4) The parameters in the linear model may vary due to 
nonlinearities or changes in the operating conditions. 

Manuscript received December 2, 1986; revised May 19, 1988. Paper 
recommended by Associate Editor, D. Seborg. This work was supported by 
the National Science Foundation and by Norsk Hydro. 

S. Skogestad is with the Department of Chemical Engineering, Norwegian 
Institute of Technology, Trondheim, Norway. 

M. Morari and J. C. Doyle are with the Department of Chemical 
Engineering, California Institute of Technology, Pasadena, CA 91 125. 

IEEE Log Number 8824284. 

For tight control of ill-conditioned plants the controller should 
compensate for the strong directionality by applying large input 
signals in the directions where the plant gain is low; that is, a 
controller similar to G- I in directionality is desirable. However, 
because of uncertainty, the direction of the large input may not 
correspond exactly to the low plant-gain direction, and the 
amplification of these large input signals may be much larger than 
expected from the model. This will result in large values of the 
controlled variables y (Fig. l), leading to poor performance or 
even instability. 

The concept of directionality is clearly unique to multivariable 
systems, and extensions of design methods developed for SISO 
systems are likely to fail for multivariable plants with a high 
degree of directionality. Furthermore, since the problems with ill- 
conditioned plants are closely related to how uncertainty affects 
the particular plant, it is very important to model the uncertainty 
as precisely as possible. Most multivariable design methods 
(LQG, LQG/LTR, DNA/INA, IMC, etc.) do not explicitly take 
uncertainty into account, and these methods will in general not 
yield acceptable designs for ill-conditioned plants. 

A distillation column will be used as an example of an ill- 
conditioned plant. Here the product compositions are very 
sensitive to changes in the external flows (high gain in this 
direction), but quite insensitive to changes in the internal flows 
(low gain in this direction). In this paper the main emphasis is on 
the general properties of ill-conditioned plants, rather than the 
control system design for real distillation columns. We therefore 
choose to use a very simple model of the column where the 
condition number as a function of frequency is constant. The use 
of a more realistic model is discussed by the authors in another 
paper 161. 

The objective of this paper is to demonstrate with a very simple 
simulation example that ill-conditioned plants are potentially 
extremely sensitive to plant uncertainty. Secondly, we show that 
the structured singular value (SSV, usually denoted p )  provides a 
rigorous framework for analyzing and understanding this behav- 
ior. Necessary and sufficient conditions for robust stability and 
robust performance may be formulated in terms of y. The 
frequency domain is used to specify uncertainty and performance. 
These specifications are given in terms of magnitude bounds on 
the H,-norm [supua'( e)] of the uncertainty (A) and the sensitivity 
operator (S = (Z + GC)-'). In this paper the nominal plant 
model (A = 0) is denoted by G, and the perturbed model when 
there is uncertainty is given subscript p (i.e., G,,). We will also 
refer to the Complimentary sensitivity operator H = GC(Z + 
GC)-' = Z - S and to the input sensitivity (SI = (Z + CG)-') 
and input complimentary sensitivity (HI = Z - SI)  operators. 

11. DISTILLATION COLUMN EXAMPLE 

The objective of the distillation column (Fig. 2) is to split the 
feed F, which is a mixture of a light and a heavy component, into 
a distillate product D, which contains most of the light compo- 
nent, and a bottom product B, which contains most of the heavy 
component. The compositions zF, y,, and x, of these streams 
refer to the mole fractions of the light component. Perfect 
separation would be obtained with yo = 1 and xB = 0. The 
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Fig. 1 .  Classical linear feedback structure. 
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Fig. 2. Two-product distillation column. Details of the flows and holdups on 

driving force for this separation is the difference in volatility 
between the light and heavy component. The distillation column in 
Fig. 2 has five controlled variables: 

vapor holdup (expressed by the pressure p )  
liquid holdup in the accumulator (MO) 
liquid holdup in the column base (ME) 
top composition ( y o )  
bottom composition (xE) 

and five manipulated inputs 

distillate flow ( D )  
bottom flow (B)  
reflux ( L )  
boilup (V)  (controlled indirectly by the reboiler duty) 

overhead vapor ( VT) (controlled indirectly by the condenser 

Because the composition dynamics are usually much slower 
than the flow dynamics, we will make the simplifying assumption 
of perfect control of holdup (i.e., p, MO, ME constant) and 
instantaneous flow responses in the column. Different control 
configurations are obtained by choosing different input pairs 
(e.g., L and V )  for composition control; the remaining three 
manipulated inputs are then determined by the requirement of 
keepingp, MO, and ME under perfect control. With the additional 
assumption of constant molar flows this implies that the following 
three relationships must hold: 

dV=dVT, dD= -dB=dV-dL.  (3) 

In this paper we will first consider the L I/-configuration and then 
the D V-configuration. Irrespective of the control configuration, 
the two operating variables corresponding to the high and low 
plant gain are, as we shall see, the external flows and the internal 
flows. The external flows are changed by making changes in the 
product flows B and D (i.e., make a change dD = - d B ) .  The 
internal flows are changed by making simultaneous changes in 
reflux L and boilup Vwhile keeping D and B constant (i.e., make 
a change dL = dV) .  

duty). 

Model of the Distillation Column 

The distillation column described in Table I will be used as an 
example. The overhead composition is to be controlled at YO = 
0.99 and the bottom composition at xE = 0.01. Consider first 
using reflux L and boilup Vas manipulated inputs for composition 
control, i.e., 

This choice is often made since L and I/ have an immediate effect 
on the product compositions. By linearizing the steady-state model 
and assuming that the dynamics may be approximated by a first- 
order response with time constant 7 = 75 min, we derive the 
following linear model: 

) . (4) 
0.878 -0.864 (2)  ='" ($) ' 

This is admittedly a very crude model of this strongly nonlinear 
plant, but the model is simple and displays important features of 
the distillation column behavior. 

Singular Value Analysis of the Model 

The condition number of the plant (4) is y ( G L ~ )  = 141.7 which 
shows a high degree of directionality in the plant. More specific 
information about this directionality is obtained from the singular 
value decomposition (SVD) of the steady-state gain matrix 

G =  UCVH 

or equivalently since V H  = V - '  

GI= 6(G)U, Gu = o ( G ) u  - -  - 

where 

C = diag {a ,  E} = diag { 1.972, 0.01393 

0.707 0.708 
-0.708 0.707 V=(I u ) =  

0.625 0.781 
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TABLE I 
STEADY-STATE DATA FOR DISTILLAT~ON COLUMN EXAMPLE 

Binary separation, constant molar flows, feed liquid. 

Column Data: 

Relative Volatility U = 1.5 

No. of theoretical trays N = 40 

Feed tray (l=reboiler) NF = 21 

Feed composition ZF = 0.5 

Operating variables: 

Y D  = 0.99 

ZB = 0.01 

DIF = 0.500 

LIF = 2.706 

Steady-state gains : 

The large plant gain 6(G) = 1.972 is obtained when the inputs 
are in the direction (:$) = 17 = (YEo8). Since dB = dL - dV 
(3), this physically corresponds to the largest possible change in 
the external flows D and B. From the direction of the output 
vector a = (::$:;), we see that it causes the outputs to move in the 
same direction, that is, mainly affects the average composition 
(YO + XB).  All columns with both products of high purity are 
sensitive to changes in the external flows because the product rate 
D has to be about equal to the amount of light component in the 
feed. Any imbalance leads to large changes in product composi- 
tions [7]. 

The low plant gain a(G) = 0.0139 is obtained for inputs in the 
direct (2:) = U = (::;:;). From (3) we observe that this physically 
corresponds to changing the internal flows only (dB = - dD = 
0) ,  and from the output vector y = (!is&) we see that the effect 
is to move the outputs in different directions, that is, to change yO 
- X B .  Thus, it takes a large control action to move the 
compositions in different directions, that is, to make both products 
purer simultaneously. 

The notion that some changes are more difficult than others is 
important, since it implies that some disturbances may be easier to 
reject than others. Let d represent the effect of the disturbance on 
the outputs (Fig. l) ,  or let d represent a setpoint change. A 
disturbance d ,  which has a direction close to a, is expected to be 
easy to reject since it corresponds to the high plant gain. 
Similarly, a disturbance close to in direction is expected to be 
more difficult. The disturbance condition number yd(G) gives a 
more precise measure of how the disturbance is aligned with the 
plant directions [8]: 

yd(G) ranges in magnitude between 1 and y(G). A value close to 
1 indicates that the disturbance is in the good direction (a) 
corresponding to the high plant gain 6(G). A value close to y(G) 
indicates that the disturbance is in the bad direction (e) corres- 
ponding to the low plant gain a(G). We will consider the 
following two disturbances (actudly setpoint changes) in the 
simulations 

ysl = ( k) with ydl (G) = 110.5 

ysz= (:$ with yd2(G) = 12.3. 

ys ,  corresponds to a setpoint change in y D  only, and it 
represents a change with a large component in the bad direction 
corresponding to the low plant gain. Setpoint change us, is mostly 
in the good direction corresponding to the high plant gain, and is 
therefore expected to be easier for the control system to handle. 

Linear Closed-L oop Simulations 

Linear simulations of the distillation model (4) will now be 
used to support the following three claims regarding ill-condi- 
tioned plants. 

1) Inverse-based controllers are potentially very sensitive to 
uncertainty on the inputs. 

2) Low condition-number controllers are less sensitive to 
uncertainty, but the response is strongly dependent on the 
disturbance direction. 

3) Changing the plant may make even an ill-conditioned plant 
insensitive to input uncertainty. 
1) Inverse-Based Controllers are Potentially Very Sensitive 

to Uncertainty on the Inputs: The inverse-based controller 

kl Cl(@=- S G;:(S)= S 

kl =0.7 min-l (6) 

is obtained by the IMC design procedure with a first-order filter 
[9] or by using a steady-state decoupler plus a PI-controller. In 
theory, this controller should remove all the directionality of the 
plant and give rise to a first-order response with time constant 
1.43 min. This is indeed confirmed by the simulations in Fig. 3 
for the case with no uncertainty. In practice the plant is different 
from the model and we also show the response when there is 20 
percent error (uncertainty) in the change of each manipulated 
input 

dL= 1.2dLC, dV=0.8dVC. (7) 

(dL and dVare the actual changes in the manipulated flow rates, 
while dL, and dVc are the desired values as specified by the 
controller.) It is important to stress that this diagonal input 
uncertainty, which stems from our inability to know the exact 
values of the manipulated inputs, is always present. Note that the 
uncertainty is on the change in the inputs (flow rates AL and A V) 
and not on their absolute values. A 20 percent error is reasonable 
for process control applications (some reduction may be possible, 
for example, by use of cascade control using flow measurements, 
but there will still be uncertainty because of measurement errors). 
Anyway, the main objective of this paper is to demonstrate the 
effect of uncertainty, and its exact magnitude is of less impor- 
tance. 

For setpoint change ys the simulated response with uncertainty 
differs drastically from the one predicted by the model, and the 
response is clearly not acceptable; the response is no longer 
decoupled, and AyD and AX6 reach a value of about 6 before 
settling at their desired values of 1 and 0. As expected, the 
uncertainty has less deteriorating effect for setpoint change ys2. 

There is a simple physical reason for the observed poor 
response to the setpoint change in yO.  To accomplish this change, 
which occurs mostly in the bad direction corresponding to the low 
plant gains, the inverse-based controller generates a large change 
in the internal flow (dL + d V )  while trying to keep the changes 
in the external flows (dB = - d D  = dL - d V )  very small. 
However, uncertainty with respect to the values of dL and dV 
makes it impossible to keep their sum large while keeping their 
difference small-the result is an undesired large change in the 
external flows, which subsequently results in large changes in the 
product compositions because of the large plant gain in this 
direction. This sensitivity to input uncertainty may be avoided by 
controlling D or B directly as shown below. 
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Nominal [No Unc.) With Unc. (Eq. 7) 

Ys, = (;) 

Y.. = (:;) 

0 10 20 30 

_ _ _ _ _ _ _ _ - _ _ - - - - - - -  

0.4 

0.2  

-8 .2 
0 10 20 30 

TInE ( m i n )  TIME ( m i n )  

Fig. 3. L V-configuration. Closed-loop responses Ayo and AxB with 
inverse-based controller C,(s ) ,  k ,  = 0.7. 

A more mathematical way of showing how the uncertainty 
changes the plant is as follows. Let the plant transfer model be 
G(s) and let A, and A, represent the relative uncertainty for each 
manipulated input. Then the actual (perturbed) plant is 

With an inverse-based controller C(s) = c(s)G(s)-l, the loop 
transfer matrix becomes 

Gp C = ~ ( s )  G( I+ A,) G- = c(s)( I+  GAiG I ) .  (8) 

The error term 

) (9) 
35.1A1-34.1AZ -27.7A1+27.7Az 

GLvAici'= ( 43.2Al-43.2A2 -34.1A,+35.1A, 

is worst when A, and A2 have different signs. With AI = 0.2 and 
A2 = -0 .2  [as used in the simulations (7)] we find 

GLVAIGL$= ( 1 3 . 8  17.2 - -"-'> 13.8 ' 

The elements in this matrix are much larger than one, and the 
observed poor response is not surprising. 

2) Low Condition-Number Controllers are Less Sensitive to 
Uncertainty, but the Response is Strongly Dependent on the 
Disturbance Direction: The poor response for the case with 
uncertainty in the above example was caused by the high 
condition-number controller which generates large input signals in 
the direction corresponding to the low plant gain. The simplest 
way to make the closed-loop system insensitive to input uncer- 
tainty is to use a low condition-number controller which does not 
have large gains in any particular direction. The problem with 
such a controller is that little or no correction is made for the 
strong directionality of the plant. This results in a closed-loop 
response which depends strongly on the disturbance direction. To 
illustrate this, consider the diagonal controller 

which consists of two equal single-loop PI controllers and has a 
condition number of one. As seen from the simulations in Fig. 4 
the quality of the closed-loop response depends strongly on the 
disturbance direction, but is only weakly influenced by uncer- 
tainty. The response toy,, is very sluggish, while the response to 
y,, is fast initially, but approaches the final steady-state sluggishly. 
Note that a disturbance entirely in the good direction ( y ,  = U )  
would give a first-order response with time constant 6(G)/2.4 = 
0.21 min. On the other hand, a disturbance in the bad direction ( ys 
= U )  generates a first-order response with time constant a ( G ) /  
2.4 = 30 min. All other responses are linear combinations of 
these two extremes (Fig. 4). 

3) Changing the Plant May Make Even an Ill-Conditioned 
Plant Insensitive to Input Uncertainty: We already argued 
physically that the plant might be made less sensitive to 
uncertainty by controlling the external flows directly. Consider 
the case of distillate flow D and boilup I/ as manipulated variables 
(direct material balance control [7]). Assuming perfect level and 
pressure control, i.e., dL = dV - dD (3), we have 

(5)=( - A  ;)($ 
and the following linear model is derived from (4): 

(2 )  =CDv ( z )  
- 1  1 1 -0.878 0.014 

GDV=GLV ( 1>=- 1 +75s ( - 1.082 -0.014 

In practice, the condenser level loop introduces a lag between the 
change in distillate flow dD and the reflux flow dL (which is the 
input which actually affects the compositions), but this is 
neglected here. The plant (12) is also ill-conditioned; ~(GIJ , )  = 
70.8. In this case the SVD yields 

- 1 .ooo - 0.001 ( 0.:97) ' V= ( -0.001 1.000 

0.630 0.111 
(0.777 -0.630 
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Nominal (No Unc.) With Unc. (Eq. 7) 

10 20 38 10 20 38 
T I M E  ( n i n )  T I M E  ( . i n )  

Y.2 = (1:) 

EL-- 18 28 30 

T I M E  ( n i n )  

Fig. 4. LV-configuration. Closed-loop responses AyD and AxB with 
diagonal controller Cz(s), kz = 2.4. 

Nominal (No Unc.) With Unc. (Eq. 14) 

Y.r = (;) 0 . y - I  0.6 E. 4 ;;rx 0.2 0.2 
t-.. 

0 
E 10 20 38 0 10 20 30 

T I M E  ( n i n )  T I M E  ( n i n )  

10 20 30 
T I M E  ( n i n )  

Fig. 5. DV-configuration. Closed-loop responses Ayo and AxB with 
inverse-based controller C,(s), k, = 0.7. 

The high gain corresponds to an input (5:) in the direction of 
V(GDv) = (-'.Oo0 ) which, as expected, corresponds to a change 
in the external &%S. The low gain again corresponds to a change 
in the internal flows (dD 2 0). Note that in this case there is one 
manipulated variable (dD) which acts in the high gain direction, 
and another (dV) which acts in the low gain direction. This 
decomposition is significant since uncertainty in d V  does not 
affect the external flows dD. 

To confirm that the system is much less sensitive to uncertainty 
in this case, consider the following inverse-based controller: 

C3 (s) = 3 G &s) = 

k3=0.7 min-I. (13) 
Without uncertainty, this controller gives the same response as 

with Cl(s) applied to the LV-configuration. However, for the 
D V-configuration the decoupled first-order response with time 
constant 1.43 min is also maintained when there is 20 percent 
uncertainty on the manipulated inputs (Fig. 5). The following 
errors with respect to dD and d V  were used: 

dD= 1.2dDc, dV=0.8dVc. (14) 

From this example we see that ill-conditioned plants by themsel- 
ves may not give performance problems provided the uncertainty 
is appropriately aligned with the plant. 

For the DV-configuration we find the error matrix GA,G-' in 
(8) 
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and with A, = 0.2 and A2 = -0.2 corresponding to (14) 

The elements in this matrix are small compared to one, and good 
performance is maintained even in the presence of uncertainty on 
each input. The nonzero off-diagonal elements explain why the 
response to ysl in the case with uncertainty (upper right in Fig. 5) 
is not completely decoupled. 

111. ROBUSTNESS ANALYSIS WITH p 

It is quite evident from the linear simulations above that 
multivariable systems exhibit a type of directionality which makes 
the closed-loop response strongly dependent on the particular 
disturbance and model error assumed. One of the major weak- 
nesses with the simulation approach is that it may be very difficult 
and time-consuming to find the particular input signal and model 
error which causes control problems. Therefore, there is a need 
for a tool which solves the following problem in a systematic 
manner. 

Robust Performance Problem: Given a nominal plant model, 
an uncertainty description, a set of possible external input signals 
(disturbances, setpoints), a desired performance objective, and a 
controller: Will the worst case response satisfy the desired 
performance objective? As we will show, the structured singular 
value p proves to be a useful tool for solving this problem. A 
definition of p with some of its properties is given in the 
Appendix. 

Achieving robust performance is clearly the ultimate goal for 
the controller design. However, it may be easier to solve this 
problem by first considering the following subobjectives which 
have to be satisfied in order to achieve robust performance. 

Nominal Stability (NS): The closed-loop system with the 
controller applied to the (nominal) plant model must be stable. 

Nominal Performance (NP): In addition to stability, the 
quality of the response should satisfy some minimum require- 
ment. We will define performance in terms of the weighted H,- 
norm of the closed-loop transfer function between external inputs 
(disturbances and setpoints) and errors (may include y - ys ,  
manipulated inputs U ,  etc.) The simplest example of such a 
performance specification is a bound on the weighted sensitivity 
operator 

NP 9 6( W l p S W 2 p ) <  1 V U .  ( 164 

The input weight W,, is often equal to the disturbance model. The 
output weight W l p  is used to specify the frequency range over 
which the errors are to be small and (if Wlp is not equal to wpZ) 
which outputs are more important. 

Robust Stability (RS): The closed-loop system must remain 
stable for all possible perturbed plants (G,) as defined by the 
uncertainty description. 

Robust Performance (RP): The closed-loop system must 
satisfy the performance specifications for all possible plants. As 
an example we may require (16a) to be satisfied when G is 
replaced by any of the possible G, 

RP e 6( WlpS,  W 2 p ) <  1 V U ,  V G p  ( 16b) 

where S, = ( I  + GPC)- l .  
The stability margins of the classical frequency domain design 

methods are an attempt to address the robust stability problem, but 
the margins may be misleading and are a very indirect method. 

The definitions above for robust stability and robust perform- 
ance are of no value without simple tests that may be used to tell, 
for example, whether (16b) is satisfied for all possible plants G,. 
Below we state practical (computationally useful) conditions for 
RS and RP using the structured singular value of p .  

pq <=> 

d 2, 

Fig. 6. General representation of system with uncertainty A.  Robust 
performance (19) of (a) is equivalent to robust stability of (b). 

Interconnection Matrix N 

To use p,  the uncertainty (i.e., the set of possible plants) must 
be modeled in terms of norm-bounded perturbations on the 
nominal system. By use of weights each perturbation is normal- 
ized to have magnitude one: 6(Ai) < 1, V u .  The perturbations, 
which may occur at different locations in the system, are collected 
in the diagonal matrix 

(17) 

and the system is rearranged to match the structure of Fig. 6(a). 
The signals d in Fig. 6(a) represent the weighted external inputs 
(disturbances and setpoints) to the system. The signals 8 represent 
the weighted errors, or more generally all signals we want to keep 
small (e.g., y - y,, manipulated inputs U ) .  The interconnection 
matrix N in Fig. 6 is a function of the nominal plant model G,  the 
controller C ,  and the uncertainty weights. Performance weights 
are also absorbed into N in order to normalize the performance 

A=diag { A , ,  ..., A , } ,  @(A)<l,  V w  

specifications involving d and 8 

RP e @(E)< 1 V w ,  V A  ( 

where 

i? = Ed, E = N22 + Nzl A( I - NI 1 A ) - ' N 1 2 .  ( 

An example of such a performance specification is (16b). 
equivalent statement of the RP-specification (18) is 

RP 9 I l C ( j ~ ) l l z / l l d ( j ~ ) l l 2 <  1 V U ,  V A ,  V d .  

Thi; is, the worst case amplification ~ ~ 8 ~ ~ 2 / ~ ~ d [ ~ 2  for any direction 
of d ,  for any frequency U ,  and for any model error A, must be less 
than one. 

Practical Conditions for Robust Stability 

Nominal stability (A = 0) is achieved when the interconnection 
matrix N is stable. The uncertainty (perturbations, A) creates 
additional feedback paths and may therefore give rise to stability 
Rroblems. Consider the closed-loop transfer function E (18b) from 
d to C. Since N and A are assumed stable, instability can only 
occur if ( I  - Nl1A)- '  is unstable [lo]. The system is therefore 
stable if and only if det (I  - N l l A )  does not encircle the origin as 
s traverses the Nyquist D contour for all possible A's.  Because the 
perturbations A are norm-bounded (i.e., all A's satisfying 6(A) I 
1, V U ,  are allowed) this is equivalent to [IO] 

(20) 

Condition (20) is by itself not useful since it is only a yesho 
condition which must be tested for all possible A's. What is 
desired is a condition on the matrix N I  , preferable on some norm 
of N l l .  This is achieved by using the structured singular value. 
The RS-condition (20) is equivalent to ([lo], also see the 
Appendix) 

det ( Z - N l l A ) # O ,  V u ,  V A ,  6 ( A ) S  1. 

pA(Nll)6(A)< 1, V U ,  VA, 6(A)S 1 (21) 
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which is equivalent to 

pA(NlI)< 1 ,  vu- (22) 

Note that (21) may be interpreted as a generalized small gain 
theorem applied to the closed loop consisting of the blocks NI 1 and 
A. 
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Practical Conditions for Robust Performance 

Nominally (A = 0) we have E = NZz and nominal performance 
is achieved when 0(N22) < 1, V u .  To achieve robust perform- 
ance, 6(E) < 1 (18) must be satisfied for all possible A's. 
However, note that since we have used the same norm (H-)  to 
bound both the uncertainty and performance, the robust perform- 
ance-condition (18) is equivalent to requiring robust stabil ip of 
the system N [Fig. 6@)] subject to the large perturbation A = 
diag {A, Af 1. The fictitious perturbation block A,, which is a full 
matrix of the same size as E and Nz2, ensures that the performance 
specification (18) is satisfied. (Note that 6(E) = pAP(E) ,  see (A- 
1) and (A-2) in the Appendix.) Consequently, R P  is achieved if 
and only if p~a(N) < 1, Vw [IO]. 

Summary of p-Conditions for RS, NP, and  R P  

performance (1 8) we have the following results [ 101 : 
With the above assumptions for the uncertainty (17) and 

(23a) NS * N stable (internally) 

R P  * p ~ p = ~ l j p  p & ( N ) < l  (234 

where = diag {A, A,}. The quantities p ~ p ,  p ~ s ,  and p ~ p  
represent the p-"norms" and are introduced as a convenient 
notation. Note that the conditions for NP and R S  are necessary in 
order to satisfy the RP-condition. 

IV.  ANAL LYSIS OF THE COLUMN 

Problem Definition 

To study robust stability and robust performance of the 
distillation column with p,  the uncertainty and performance 
specifications must first be defined. The same uncertainty and 
performance specifications will be assumed for the L V-configura- 
tion (4) and the DV-configuration (12). (In general, it is 
reasonable to use the same performance specifications, but the 
uncertainty may be different.) 

Uncertainty: The uncertainty with respect to the manipulated 
inputs that was used in the simulations in Section II may be 
represented as multiplicative input uncertainty (Fig. 7) 

GP=G(Z+w&)AI), 6(AI)<l VU (24) 

where wI(s) gives the magnitude of the relative uncertainty on 
each manipulated input. We choose the following weight: 

5s+ 1 
0.5s+ 1 * 

W I ( S )  = 0.2 - 

This implies an input error of up to 20 percent in the low 
frequency range as was used in the simulations. The uncertainty 
increases at high frequency; reaching a value one (100 percent) at 
about w = 1 min-I. This increase may take care of neglected flow 

Fig. 7. Block diagram of plant with input uncertainty and with setpoints as 
external inputs. Rearranging this system to match Fig. 6 gives N as in (28). 

dynamics. For example, it allows for a time delay of about 1 min 
in the responses between L and V and the outputs yo and xE. At 
first the uncertainty will be assumed to be unstructured; that is, 
the perturbation matrix AI is a full 2 x 2 matrix. The off-diagonal 
terms allowed in AI imply that a change in the one input may result 
in an undesired change in the other one. This may be the case for 
some plants, for example, if the actuators are located very close to 
each other. However, for most plants, including our distillation 
column, it is more reasonable to assume that the actuators are 
independent, that is, AI is diagonal. However, for mathematical 
convenience we will assume for now that AI is a full matrix. It 
happens that this assumption does not make any difference for the 
L V-configuration. 

Performance: We use d = ys as external inputs and C = wp( y 
- y,) as weighted errors (Fig. 7) and choose the performance 
weight 

1os+ 1 
W P ( S )  = 0.5 - 

10s * 

The RP-specification (16b) then becomes 

R P  6(SP)< l / l W p l ,  V U ,  VGP.  (27) 

The performance weight w f ( s )  (26) implies that we require 
integral action at low frequency (~~(0) = 00) and allow an 
amplification of disturbances at high frequencies by at most a 
factor of two ( I  wp(joo)( - = 2).  A particular sensitivity function 
which exactly matches the performance bound (27) at low 
frequencies and satisfies it easily at high frequencies is S = ( 2 0 ~ 1  
20s + l)Z. This corresponds to a first-order response with time 
constant 20 min. 

Performance and  Stability Conditions 

structure (Fig. 6) becomes 
With the information given above the matrix N in the AN- 

This.matrix is found from Fig. 7 by breaking the loops (A, = 0) at 
the input and output of the block AI. As an example, with AI = 0, 
the transfer function from the external inputs (d)  to the errors (2) 
is N 2 2  = - wp( l  + GC)-'.  Similarly, the transfer function from 
d to the input of AI is NI2 = wIC(Z + GC)- ' .  Conditions for NP 
and R S  are derived from (28) by using (23b) and (23c) 

NP * a(S)< 1 / 1  wpl V u  (29) 

RS 0 6(Hf)<l/lWIl, V W .  (30) 

(The condition for R S  is expressed in terms of the singular value 0 
since AI is assumed to be a full matrix.) Note that S is the nominal 
sensitivity operator at the output of the plant, while HI is the 
complementary sensitivity operator as seen from the input of the 
plant. The RP-specification (27) is tested by computing p of the 
matrix N in (28) 

R P  * ps (N)< l ,  VU (31) 
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where A = diag {AI,  A,} and where AI and A, in this case are 
both full 2 x 2 matrices. 
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Simple RP-Conditions for Input Uncertainty 

For the case with input uncertainty, the following sufficient 
(conservative) tests for robust performance (27) in terms of 
singular values apply: 

RP t 7 .  6(WpSI)+6(w/H/)Sl, VU (32a) 

or 

RP G @ ( w p S ) + ~  ' 6(W,ff)51, vw (32b) 

or 

RP .= (1++) * (@(wpS)+6(wIHI))~l ,  v w .  (32c) 

Here y denotes the condition number of the plant or the controller 
(the smallest one should be used). The conditions apply to both 
diagonal and full block input uncertainty, but are obviously tighter 
(less conservative) in the latter case. Equations (32a) and (32b) 
are derived from the RP-definition (27) by introducing relation- 
ships such as s,, = S(Z + G A 1 G - ' H ) - ' .  Equation (32c) is 
derived from the p-condition (3 1) by employing the upper bound 
sup~Cr(DND-l) on p ( N )  (A-I)-(A-4). 

Conditions (32) indicate that the use of an ill-conditioned 
controller (i.e., y(C) is large) may give very poor robust 
performance even though both the nominal performance condi- 
tion, 6(wpS) < 1 (29), and robust stability condition, 6(wIHI) < 
1 (30), are individually satisfied. If a controller with a low 
condition number (e.g., a diagonal controller with y(C) = 1) is 
used, then we see from (32) that we get R P  for free provided we 
have satisfied NP and RS. This is always the case for SISO 
systems (which have y = l), and gives a partial explanation for 
why robust performance was never an important issue in the 
classical control literature. Furthermore, note that for SISO 
systems (32a) [or (32b)l is necessary and sufficient for RP .  

Conditions (32) are useful since they directly relate robust 
performance to NP, R S  and the condition number. However, (32) 
may be very conservative and in order to get a tight condition for 
R P  the p-condition (31) has to be used. 

Analysis of the L V-Configuration 

the diagonal controller used in the simulations 
We will analyze the L V-configuration for the inverse-based and 

We will first consider the choices k ,  = 0.7 and k2 = 2.4 used in 
the simulations and then see if robust performance can be 
improved with other choices for k l  and k2. Finally, we will 
consider the p-optimal controller C,(s), which is obtained by 
minimizing pRp in (23d) employing the p-synthesis procedure of 
Doyle [ 111. 

Nominal Performance and  Robust Stability: One way of 
designing controllers to meet the NP and RS  specifications is to 
use multivariable loop-shaping 1121. For NP, a(GC) must be 
above lwpl at low frequencies. For R S  with input uncertainty, 
a(CC) must lie below 1/) wIl at high frequencies (Fig. 8). For the 
inverse-based controller (33) we get 6(C,G) = a(GCI) =, Ic1( 
and it is trivial to choose a cI(s) which satisfies these conditions. 
The choice cI(s) = 0.7/s used in the simulations gives a 
controller which has much better nominal performance than 

-1 
18 

1 - 3  1 - 2  1 - 1  I 1 1  1 2  
18 18 18 1. 18 10 

Fig. 8. Multivariable loop shaping. 

Fig. 9. L V-configuration. NP bounds 

1 
10 

1. 

-1 
18 

-2 
18 

I -3 I -2 I -1 I 1 1  1 2  
18 18 18 1. 18 18 

Fig. 10. LV-configuration. R S  bounds. 

required, and which can allow about two times more uncertainty 
than assumed without becoming unstable. This is also seen from 
Figs. 9 and 10 where the NP- and RS-condition (29) and (30) are 
displayed graphically. For the diagonal controller (34) we find 
6(C2G) = 1.9721~~1 and u(GC2) = 0.01391c2(, and the 
difference between these two singular values is so large that no 
choice of c2 is able to satisfy both NP and R S  (see Figs. 9 and IO). 

Robust Performance: p for R P  is plotted in Figs. 11 and 12 
for the two controllers used in the simulations. The inverse-based 
controller C,(s) is far from satisfying the RP-requirements (pRp is 
about 5 . Q  even though the controller was shown to achieve both 
NP and RP.  This is as expected both from the simulations and 
from the simple RP-bounds (32) (the condition number of the 
controller y(Cl) is 141.7). On the other hand, the performance of 
the diagonal controller C2(s) is much less affected by the 
uncertainty and we find p R p  = 1.70 in this case. This is also as 
expected from (32) since y(C2) = 1. 

Optimizing kl and k2 with Respect to RP: For the inverse- 
based controller the optimal value for k ,  is 0.14 corresponding to 
a value of pRp equal to 3.3 which still implies poor robust 
performance. Consequently, it is not possible to achieve accept- 
able robust performance for this plant with this controller 
structure. 

For the diagonal PI-controller, the optimal gain is k2 = 2.4, 
which is the value already used. It is not clear how low pRp can be 
made if C(s )  is only restricted to be diagonal (decentralized 
control); we were able to get pRp down to 1.34 by employing two 
PID controllers with a total of six adjustable parameters. 



1 loo IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 12, DECEMBER 1988 

Fig. 1 I .  L V-configuration. p-plots for inverse-based controller C,(s), k ,  = 
0.7 

la' 1; -3 1; -2 A -1 1: Il8 118 

Fig. 12. LV-configuration. p-plots for diagonal controller C2(s), k2 = 2.4. 

TABLE II 
STATE-SPACE REALIZATION OF p-OPTIMAL CONTROLLER c,,(s) = c (SI 

- A)B-' + D 

A =  

-1.002.10-7 o 0 0 0 
0 -3.272. lo-' 0 0 0 0 
0 0 -0.1510 0 0 0 
0 0 0 -9.032 0 0 
0 0 0 0 -538.2 0 

0 0 -586.8 < o  0 0 

0.6564 0.7171 4.949 5.033 
= (0.6555 0.5425 4.941 -5.040 Is:: i;:!:) 

p-Optimal Controller: We found the p-optimal controller 
through a software package which uses a somewhat simplified 
version of the p-synthesis procedure described by Doyle [ 1 11. The 
simplification involves only considering the upper left comer 
when minimizing the H,-norm of (7.3) in Doyle's paper [ll]. 
This means that the resulting controller is not quite optimal. The 
synthesis procedure yields controllers of very high order, but by 
employing model reduction we were able to find the sixth-order p- 
optimal controller given in Table II. At low frequency the 
controller is approximately 

The condition number at low frequency is 2.1, which means that 
the controller provides some compensation for the directionality 
of the plant (y(G(0)) = 141.7, while y(GC,(O)) = y(C,G(O)) 
= 66.5). p for R P  for the controller C,(s) has a peak value of 
1.06 (Fig. 13), which means that this controller almost satisfies 
the robust performance condition. This value for pRp  is signifi- 
cantly lower than that for the diagonal PI controller, and the time 
response is also better as seen from Fig. 14. In particular, the 
approach to steady state is much faster. 

Structure of AI: Note that AI was assumed a full matrix in all 
the above calculations. It turns out that for this particular plant (4), 
the same values are found for pRs and pRp also when AI is assumed 
diagonal which is a more reasonable assumption from physical 

-65.13 -90.09 
72.24 90.31 

B = 1 -90.86 :::: I:::] -113.6 

672.2 840.3 

5866 -3816 
= (5002 -4878) 

considerations [recall the discussion that follows (25)]. On the 
other hand, for the DV-configuration below it is crucial that AI is 
modeled as a diagonal and not as a full matrix. 

Analysis of the D V-Configuration 

The set of possible plants is given by (24) with G = GDv (12), 
and with AI restricted to diagonal. We will consider an inverse- 
based and a diagonal PI controller 

(13) k3 Cs (3) = - G &s) 

C&) = - 

In the simulations in Section 11 we studied the controller C&) 
with k3 = 0.7. For this controller the NP- and RS-conditions are 
identical to those of the controller C,(s) with the LV-configura- 
tion. However, based on the simulations and other arguments 
presented before, we expect p for robust performance to be much 
better for the DV-configuration. This is indeed confirmed by the 
p-plots in Fig. 15. p R p  is 0.95 which means that the performance 
criterion is satisfied for all possible model errors. (Note that the 
condition number of both the plant and controller is 70.8, and the 
simple singular-value tests (32) prove to be extremely conserva- 
tive in this case.) The uncertainty block AI was assumed diagonal 
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Fig. 13. L V-configuration. p-plots for p-optimal controller C,(s). 

With Unc. (Eq. 7) Nominal (No Unc.) 
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Fig. 14. LV-configuration. Closed-loop responses AyD and A& with p- 
optimal controller C,(s). 

Fig. 15. DV-configuration. p-plots for inverse-based controller C&), k3 = 
0.7. 

when computing p .  If A, were full (which is not the case) the value 
of p R p  would be about 4.1. The reason for this high value is that 
off-diagonal elements in A, introduce errors in D when V is 
changed. 

Even lower values for p are obtained by reducing k3 from 0.7 to 
0.13 which yields p R p  = 0.63. In fact, this controller seems to be 
close to p-optimal as we were not able to reduce p R p  below this 
value. 

With C&), which consists of two PI-controllers, p R p  = 1.15. 
This is almost acceptable, although the value of p R p  is signifi- 
cantly higher than for the inversed-based controller C3(s) with k3 
= 0.13. Thus, a decentralized controller gives acceptable 
performance. 

The potential conservativeness in using 6 instead of p is clearly 
illustrated by considering the robust stability test for this case 
(Fig. 16). Using pAJ(HI) (A, diagonal) we see that the system 
satisfies the RS condition. However, by looking at 6(H,) (or 
equivalently by computing p with AI a full matrix), we would 
erroneously expect the system to become unstable for very small 
errors on the inputs. 

V. UNCERTAINTY MODELING 

In this section we will first discuss in somewhat general terms 
how to quantify uncertainty and then consider as an example other 
sources than input uncertainty for the distillation column. In order 
to use the framework for analyzing systems with uncertainty 
outlined in Section 111, we need to model the uncertainty as norm 
bounded perturbations. Since the uncertainty structure is very 
problem dependent, it is difficult to give general methods for how 
to do this. However, the examples given below for the distillation 
column should be sufficient to show that most uncertainties 
occurring in practice can be modeled as norm bounded perturba- 
tions. 

Choosing the Right Structure 

It may be very important that the correct structure is chosen for 
the uncertainty description, i.e., that the uncertainty is modeled as 
it occurs physically. We will illustrate this by considering the 
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Fig. 16. DV-configuration. RS-bound in terms of singular values ((I) and 
structured singular values (g) with controller C,,(s). 

Fig. 17. Three common uncertainty representations. 

following two examples: 

multiplicative uncertainty at the input [Fig. 17(a)] or at the 

output uncertainty as multiplicative [Fig. 17(b)] or inverse 
output of the plant [Fig. 17(b)]; 

multiplicative uncertainty [Fig. 17(c)]. 

Choices of Multiplicative Uncertainty 

The distillation column (as does any plant) has multiplicative 
uncertainty at the input of the plant. Simply shifting this 
uncertainty to the output of the plant (and using wo = w,) will, in 
general, give a completely different system. As an example, for 
the L V-configuration using controller C,(s) we found pRp = 5.78 
with the uncertainty at the input of the plant, but pRp is only 0.96 if 
this uncertainty is shifted to the output. Recall condition (32) 
which showed that with input uncertainty and an ill-conditioned 
controller, robust performance might be poor even when the RS 
and NP conditions are satisfied individually. We do not have this 
problem when the uncertainty is at the output. In this case we get 
a RP condition similar to (32) but without the condition number 

imposes a constraint on the sensitivity operator 

and (38) on the complementary sensitivity operator 

Equation (37) is best suited to describe pole variations while (38) 
is better for the modeling of zero variations. Equation (37) cannot 
be used to describe uncertain high frequency dynamics. Equation 
(38) cannot be used to model plants which have poles that can 
cross the jo-axis. 

Simplifv If Possible: The two examples above illustrated that 
it may be very important to model the uncertainties as they occur 
physically. However, this is not always of crucial importance, and 
whenever possible the uncertainty description should be simpli- 
fied by lumping various uncertainties into a single perturbation. 
There are two reasons for this: 1) computations are simpler; 2) 
introducing too many sources of uncertainty may be very 
conservative since it becomes very unlikely for the worst case to 
occur in practice. In particular, the individual uncertainties may 
be correlated, and it may be impossible for the worst case to 
occur. This is illustrated for the distillation column gains below. 

Additional Sources of Uncertainty for  the Distillation 
Column 

In the following we will consider two additional sources of 
uncertainty for the distillation column: gain uncertainty and time 
constant uncertainty (Fig. 18). Physically, these uncertainties 
may stem from variations in the operating conditions (nonlineari- 
ties) which yield parameter variations in the linear model. 
Treating nonlinearity as uncertainty on a linear model is by no 
means a rigorous way of handling nonlinearity. However, since it 
is not an objective of this paper to provide an accurate uncertainty 
description for the distillation column, we will not concern 
ourselves with these issues. Our objective is to demonstrate how 
different sources of uncertainty can be modeled as norm-bounded 
perturbations and fit into the framework in Fig. 6.  

All the developments below are for the LV-configuration. 
However, because of (11) they also apply to the DV-configura- 
tion. 

Time Constant Uncertainty: Let r, represent the magnitude of 
relative uncertainty on the time constant for each output ( y~ and 
xE).  Then we have the perturbed plant. 

with 7 = 75 min. We will choose r, = 0.35, corresponding to 35 
percent time 'Onstant uncertainty. The and ArB are 
independent which allows for different values of 70 and 78. This 
pole uncertainty may be written in terms of an inverse multiplica- 
tive uncertainty at the output of the plant as shown in Fig. 18. It is 
fortunate that it occurs at the output since we know that the system 
is less sensitive to uncertainty at the output than at the input of the 
Dlant. Also note that this kind of inverse output uncertainty puts a 

This illustrates that output uncertainty usually puts much less 
constraints on the design of the controller than input uncertainty, 
and for ill-conditioned plants one should be careful to model the 
uncertainty at the location where it is actually occurring. 

choices of Output Uncertainty: We will show below that 
uncertainty in the time constant may be represented as 

inverse multiplicative uncertainty 

(3,) ( I +  w,A,)-IG. 

Approximating it as the seemingly similar multiplicative uncer- 

constraint on the sensitivity function S, similar to a performance 
equivalent requirement. The robust stability test for this uncer- 
tainty alone is 

(42) 

where AT is a diagonal 2 x 2 matrix. Clearly, we need r, < 1 to 
satisfy this bound. 

tainty 7s 
PAT(S)<l/lwTl, w,(s)=r, - 7s+ 1 

(38) ( I +  woAo)G 

has drastically different implications. For robust stability, (37) 
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Effect of Additional Uncertainty on pRs and p R p :  With the 
time constant uncertainty (41) in addition to the input uncertainty 
the interconnection matrix N becomes 

(43) 

p ( N )  for RP (Table 111) is computed with respect to the structure 
diag { A l ,  A,, A p }  where A, and AT are diagonal 2 X 2 matrices 
and A p  is a full 2 x 2 matrix. For computational convenience the 
matrix A, is assumed complex. The LV-configuration with the 
inverse-based controller Cl(s), is no longer robustly stable. pRs  is 
increased from 0.53 to 4.77 by adding 35 percent time constant 
uncertainty. The p-values for the diagonal controller C2(s) and the 
p-optimal controller CJs) are seen to be only weakly influenced 
by adding the pole uncertainty. Robust stability is still predicted 
for the p-optimal controller. 

Gain Uncertainty: The linearized gains of the distillation 
column may vary tremendously with operating conditions. How- 
ever, the gains are clearly correlated and it is of crucial 
importance to take this into account to avoid a hopelessly 
conservative uncertainty description. If the elements in the steady- 
state gain matrix (4) were assumed to be independent, the gain 
matrix would become singular for relative errors in each of the 
elements exceeding [4] 

wpSG w p s  - w p s  

1 
= 0.007 (0.7%). - 1 

y*(GLv) 138.3 

Here -y*(G) is the minimized condition number 

(44) 

(45) 

(Dl  and D2 are diagonal matrices with real, positive entries.) 
Physically, we know that the distillation column will not become 
singular and a more structured uncertainty description is needed. 
Skogestad and Morari [ 131 have suggested that for small changes 
in D / B  the variations in the steady-state gains may be captured 
with additive uncertainty on the elements using a single 
perturbation Ag . For the L I/-configuration 

It is important to note that the additive uncertainty in (46) does not 
change the input singular vectors fi and y .  An SVD of the 
perturbation matrix (A, i ' )  in (46) yields 

U =  ( 0 . 7 0 7 )  , U =  ( 0 . 7 0 7 )  
- 0.707 -0.707 ' 

The direction of the input singular vector V is the same as that of 
the nominal plant (4), while the output singular vector a is almost 
perpendicular to that of the nominal plant. This means that this 

source of uncertainty is also nice in the sense that i t  mainly 
changes the plant at the output. 

The values of p for RS and RP are shown in Table 111 for the 
case of 35 percent gain uncertainty (rg = 0.35). Interestingly 
enough, it turns out that choosing rg = 0.35, r,, = 0 gives very 
similar results as rg = 0, rp = 0.35 (Fig. 19). Furthermore, 
combinations of these uncertainties were found to add up 
approximately in a linear fashion with respect to the value of p .  
This confirms that in this case, these two sources of uncertainty 
(pole and gain uncertainty) have a very similar effect on the plant, 
and that for computational simplicity we may only want to use one 
of them. Similar results are found for the DV-configuration 
(Table 111). 

We conclude that the effect of both the gain uncertainty and the 
time constant uncertainty is to change the directions at the output 
of the plant. Furthermore, since output uncertainty may be 
thought of as a disturbance entering the output of the plant, it is 
not too surprising that the controllers which were found to yield 
robust performance in Section IV are not significantly affected by 
the two additional sources of uncertainty. 

VI. DISCUSS~ON AND CONCLUSION 

High-purity distillation columns are inherently ill-conditioned 
because the product compositions are sensitive to changes in the 
product flow rates. This may cause performance problems if the 
uncertainty changes the directionality of the plant. This is the case 
for the traditional L V-configuration, where input uncertainty on 
each manipulated variable changes the directionality at the input 
of the plant and makes it impossible to use an inverse-based 
controller (decoupler). The D V-configuration is also ill-condi- 
tioned, but the diagonal input uncertainty poses no problem in this 
case. It is therefore clear that ill-conditioned plants are not 
necessarily sensitive to diagonal input uncertainty. However, it 
turns out that the relative gain array [14], defined as RGA = 
G( jw)  x ( G ( j ~ ) - l ) ~  where x denotes element-by-element 
multiplication, provides such a measure [15]. We have the 
following: 

plant with large condition number y(G): performance 
sensitive to full block input uncertainty; 
plant with large elements in the RGA: performance sensitive 
to diagonal input uncertainty (and obviously also to full block 
input uncertainty). 

The condition number and the RGA may prove to be useful 
tools for some applications, but to treat the effect of uncertainty on 
stability and performance in a rigorous manner for the general 
case, the structured singular value p should be used. It is clear that 
even with a powerful tool like p the control system design process 
consists of a sequence of iterative steps involving nonlinear 
modeling, model reduction, simulation, performance specifica- 
tions, uncertainty modeling as well as linear analysis and 
synthesis. In particular, it is nontrivial to arrive at a description of 
model uncertainty which captures the behavior of the real process 
and can be treated mathematically. Furthermore, since there are 
always a number of engineering issues which cannot easily be 
brought into a formal design procedure like the p-synthesis 
procedure, one will probably rarely implement the p-optimal 
controller as such. The main strength of p is therefore that it 
provides a rigorous basis for analyzing and understanding 
uncertain linear systems. The p-optimal controller provides an 
upper limit on the performance which can be expected by any 
linear controller for a given plant. 

APPENDIX 

THE SSV p AND ITS PROPERTIES 

Definition [16]: The function p ( M ) ,  called the structured 
singular value (SSV), is defined at each frequency such that 
p-  ' ( M )  is equal to the smallest 5 ( A )  needed to make ( I  + A M )  
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TABLE III 

DIAGONAL INPUT UNCERTAINTY AND EFFECT OF ADDING TIME 
CONSTANT UNCERTAINTY (r,) AND GAIN UNCERTAINTY (re) ( p ~ p  IS 

VALUES OF pNp, pRs,  AND pRp FOR DISTILLATION COLUMN WITH 

PNP 

LV-Configuration 

Inverse Controller, 

Ci(s),ki = 0.7 0.50 

Diagonal PI, 

Cz(s),kz = 2.4 1.50 

Optimal Inverse, 

Ci(s),ki 0.14 0.50 

“p-Optimal”, C,.(s) 0.79 

DV-Configuration 

Inverse Controller, 

C3(s),k3 = 0.7 0.50 

Diagonal PI, C,(s) 0.81 

Optimal Inverse, 

C3(s),k3 = 0.13 0.50 

UNCHANGED) 

h p u t  Uncertainty, U I ~  = 0 . 2 e  

r, = rp = 0 

P R S  lrRP 

0.53 5.78 

1.39 1.70 

0.20 3.29 

0.72 1.06 

0.53 0.97 

0.37 1.14 

0.20 0.63 

-I -3 -2 -1 Ilg I’e 1; 1’. A 1)0 

- r , = r g = O  

rg = 0.35 
- _ _ -  r ,  = 0.35 

0.7. Shows effect of adding gain and time constant uncertainty. 

_ _ _  

Fig. 19. LV-configuration. p for RP for diagonal controller C&), k2 = 

singular, i.e., 

p-’(M)=min (6 ldet (Z+AM)=O for some A, @(A)s~(u)} .  
6 

(A-1) 

A is a block diagonal perturbation matrix. p ( M )  depends on the 
matrix A4 and the structure of the perturbations A. Sometimes this 
is shown explicitly by writing p ( M )  = p a ( M ) .  

The above definition is not in itself useful for computing p since 
the optimization problem implied by it does not appear to be easily 
solvable. Fortunately, Doyle [16] has proven several properties of 
p which makes it more useful for applications. 

Properties of p [16J: 
1) p is bounded below by the spectral radius and above by the 

spectral norm: 
p ( M )  S P ( M )  5 a ‘ W )  (‘4-2) 

rv = 0.35 rp = 0.35 

PRS PRP P R S  P R P  

4.77 7.50 4.83 7.53 

1.61 1.91 1.47 1.82 

2.60 4.18 2.62 4.19 

0.99 1.29 0.87 1.24 

0.83 1.18 0.53 1.07 

0.85 1.61 0.61 1.45 

0.47 0.81 0.20 0.73 

p ( M )  = p ( M )  in the case A = 61. p ( M )  = @ ( M )  in the case A 
is unstructured, i.e., A is a full matrix. 

2) Let ‘U be the set of all unitary matrices with the same 
structure as A, then 

This optimization problem is in general not convex. 
be the set of real positive diagonal matrices D = diag 

{ d;Z;} where the size of each block (size of Zi) is equal to the size 
of the blocks Ai. Then for three or fewer blocks 

3) Let 

inf @(DMD-’)  = p ( M ) .  (A-4) 
%I 

For four or more blocks, numerical evidence suggests that the 
left-hand side in (A-4) gives a tight upper bound on p ( M ) .  A good 
estimate for the scaling matrix D is found by minimizing 
lIDMD-’112 (the Frobenius norm). 

4) p(&) = Ialp(M), a is a scalar. 
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