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Abstract— In this paper, we study the problem of extracting
work from heat flows. In thermodynamics, a device doing this
is called a heat engine. A fundamental problem is to derive
hard limits on the efficiency of heat engines. Here we construct
a linear-quadratic-Gaussian optimal controller that estimates
the states of a heated lossless system. The measurements cool
the system, and the surplus energy can be extracted as work
by the controller. Hence, the controller acts like a Maxwell’s
demon. We compute the efficiency of the controller over finite
and infinite time intervals, and since the controller is optimal,
this yields hard limits. Over infinite time horizons, the controller
has the same efficiency as a Carnot heat engine, and thereby it
respects the second law of thermodynamics. As illustration we
use an electric circuit where an ideal current source extracts
energy from resistors with Johnson-Nyquist noise.

I. INTRODUCTION

A central problem in thermodynamics is the study of
hard limits on the efficiency of heat engines. Using the
laws of thermodynamics, one can derive an upper bound
on the efficiency and construct a heat engine, the Carnot
heat engine, that achieves this bound. The bound is simple,
1 − Tcold/Thot, where Tcold and Thot are the temperatures of
the heat sources the engine can exchange heat with. Carnot
heat engines are covered in many books, for example in
[1]. The Carnot heat engine is a theoretical construct that
operates infinitely slowly and in quasi equilibrium. Hence,
the basic theory does not answer how well a heat engine can
do over finite time intervals. To study this, we have to put
more assumptions on the environment and the engine. See,
for example, [2], for a physicist’s treatment of the problem.

For a control engineer it is natural to study these problems
in a dynamical systems setting. Previous control-theoretic
approaches to analysis of efficiency of heat engines, [3],
[4], have assumed linear parameter-varying systems and used
open-loop control strategies. It has been shown that the
Carnot engine efficiency can be achieved in this setting over
infinite time horizons. Hard limits for the finite-time case are
still unknown, however.

In this paper, we assume linear time-invariant systems, and
use measurements and Linear-Quadratic-Gaussian (LQG)

H. Sandberg is now at Royal Institute of Technology (KTH), School of
Electrical Engineering, Automatic Control, Osquldas väg 10, SE-100 44
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optimal control theory. This let us easily compute the optimal
solution, both over finite and infinite time intervals. We see
that as the time interval tends to infinity, we achieve the
Carnot heat engine efficiency. In the physics literature, a heat
engine that uses measurements is often called a Maxwell’s
demon. A similar approach is used in [5]. There, however,
the Kalman-Bucy filter is in focus. We also put more as-
sumptions on the models here. Most notably, the assumptions
about lossless and dissipative models. This yields simple
expressions with clear interpretation. Also, one can argue
that physical systems are best modeled using lossless and
dissipative models, see [6], [7], and also [8]. Other control-
theoretic approaches to various problems of thermodynamics
are found in [9]–[11].

The hard limits we obtain are dependent on the idealiza-
tions we make. Here lies a trade-off: Too simple models and
the hard limits are trivial. Too complex models and no analyt-
ical treatment is possible. The models we use here are highly
idealized, yet the hard limits are nontrivial. The idealizations
we make include that computation and amplification in the
controller and actuator are free. The measurement device
is modeled by a linear dissipative system with noise. This
captures some back action effects from measurements [8].
An interesting problem for future work is to develop good
models of active elements. These should include noise and
energy losses. Such active elements can then be used in the
models of actuator and the measurement devices, and would
give more realistic hard limits.

The organization of the paper is as follows: In Section II,
an electric circuit is used to present the problem. In Sec-
tion III, the model setup is given. It is essentially identical to
the one used in [8]. In Sections IV and V, optimal open-loop
control and measurement strategies are given, respectively. In
Section VI, the optimal closed-loop control strategy is given.
Finally, in Section VII, we return to the electric circuit and
discuss the meaning of the results.

The optimal-control results we use in this paper are more
or less standard, and can be found in references such as [6],
[7], [12]–[14].

II. MOTIVATING EXAMPLE

In Fig. 1, a circuit with a lossless impedance Z, three
resistors, and an ideal current source, is shown. We assume
that the resistor Rh has temperature Th, the resistor Rm

has temperature Tm, and the resistor Ra has no temperature.
The Johnson-Nyquist noise [15], [16] in the resistors Rh and
Rm will “heat up” the impedance Z. The resistance Rm is
the resistance of a passive (voltage) measurement device.
Its noise will add heat to the circuit and give measurement
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Fig. 1. The circuit that is used as motivating example.

noise. The resistance Rh models losses of energy to, and
noise from, the environment and the current source (these
are lumped together here). The resistance Ra is introduced to
model energy losses that occur when the current i is applied.

The noisy resistors will provide uncertain energy (“heat
energy”) to the states of Z. The problem addressed in this
paper is the following: Given noisy voltage measurement of
v, how should we choose the current i so as to maximize
the extracted (expected) amount of energy − ∫ t

0
va(s)i(s)ds?

When this problem is solved, we have constructed a heat
engine that transfers heat energy from the resistors into
“useful energy” in the current source. We return to and solve
this example in Section VII.

III. PRELIMINARIES

Consider linear systems in the form

ẋ(t) = Jx(t)+Bu(t), y(t) = BT x(t), x(t) ∈ R
n, (1)

where J = −JT (anti-symmetric) and (J,B) is controllable.
It is assumed that the input u(t) and the output y(t) are
scalars (single-input–single-output [SISO] system). We de-
fine the energy of (1) as E(t) = 1

2x(t)T x(t). The system (1)
is lossless [6], [7], [14] which means that the rate of change
of energy satisfies Ė(t) = x(t)T ẋ(t) = y(t)u(t) =: w(t),
where w(t) is the work rate. All lossless (minimal) linear
SISO systems with work rate w(t) can be written in the form
(1), as seen in [7, Theorem 5]. In the following, all lossless
systems are assumed to take the form (1). The impedances
Z we consider are assumed to be lossless.

Assume now that the initial state x(0) of a lossless system
has a Gaussian distribution with mean x̄0 = Ex(0) and
covariance X0 = E[x(0) − x̄0][x(0) − x̄0]T . Assuming a
deterministic input u(t), the mean and the covariance of x(t)
propagate as [12]

˙̄x(t) = Jx̄(t) + Bu(t), x̄(t0) = x̄0, ȳ(t) = BT x̄(t),

Ẋ(t) = JX(t) + X(t)JT , X(t0) = X0, X(t) ∈ R
n×n.

The expected energy of the system is given by

Ē(t) := EE(t) = Eo(t) + U(t),

Eo(t) =
1
2
x̄(t)T x̄(t), U(t) =

1
2
TrX(t).

We call U(t) the internal energy of the system and Eo(t)
the organized energy of the system.

Remark 1: In [4], the term “mechanical energy” is used
instead of the term organized energy. By the latter we also

mean to use electrical energy, such as the one stored in a
capacitor. One can think of organized energy as the macro-
scopic kinetic and potential energy. If there is no uncertainty,
all energy is organized energy. The internal energy contains
the energy related to the (microscopic) fluctuations around
the mean state.

When a deterministic input u(t) is applied, the variance
X(t) (and thus the internal energy U(t)) is not affected, and
we have the rate of change of expected energy

dĒ(t)
dt

= Ėo(t) + U̇(t)︸︷︷︸
=0

= ȳ(t)u(t) = Ey(t)u(t) =: w̄(t),

for (1), where w̄(t) is the expected work rate on the system.
A stochastic input does change the internal energy.

Stochastic inputs are provided by heat baths in this paper.
A heat bath is defined as follows.

Definition 1 (Heat bath [8]): Let

y(t) = ku(t) −
√

2kTn(t), (2)

where n(t) is Gaussian white noise with covariance function
En(t)n(s) = δ(t− s). Then (2) is an input-output model of
a heat bath with admittance k > 0 and temperature T > 0.

A heat bath can be realized by a resistor with Johnson-
Nyquist noise [15], [16].

A physical interconnection [8] of a heat bath (2) and a
lossless system (1) has the dynamics

ẋ(t) = Jkx(t) + Bu(t) + B
√

2kTn(t), (3)

Jk := J − kBBT . The system (3) can be a model of a
lossless impedance Z connected to a resistor R = 1/k of
temperature T , for example. The interconnected system (3)
is a Langevin equation, and is asymptotically stable.

Proposition 1: The matrix J − kBBT is Hurwitz.
The mean and variance for the system (3) propagate as

˙̄x(t) = Jkx̄(t) + Bu(t), x̄(t0) = x̄0, ȳ(t) = BT x̄(t),

Ẋ(t) = JkX(t) + X(t)JT
k + 2kTBBT , X(t0) = X0.

(4)
The rate of change of organized energy for (3) is given by
Ėo(t) = w̄(t) − d(t), d(t) = 1

2kȳ(t)T ȳ(t), where d(t) is
the spontaneous dissipation rate of organized energy into
the heat bath. The rate of change of internal energy is
U̇(t) = qin − qout(t), where qin = kT Tr[BBT ] and qout(t) =
kTr[BBT X(t)]. The terms qin and qout(t) are the inflow and
outflow of heat to the lossless system. The heat bath increases
or decreases the internal energy U(t) depending on how large
the covariance X(t) is.

Remark 2 (“U̇ = w + q”?): Notice that work and heat
are stored in two different quantities, Eo and U . The reason
is that we have restricted ourselves to linear time-invariant
models. In [3], [4], both work and heat enter in the rate of
change of internal energy. Work is then extracted from the
internal energy by periodically varying the matrices Jk and
B over time. The way we extract work from internal energy
here is by measurements on the system. Thereby we increase
the amount of organized energy, see Section V. In physics,
a device doing this is called a Maxwell’s demon.
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The lossless system naturally strives towards thermal equi-
librium with the heat bath.

Proposition 2: The solution X(t) of (4) satisfies X(t) →
T · In, U(t) → 1

2nT , as t → ∞, where In is the n × n
identity matrix.

This means that in thermal equilibrium, there is energy
equipartition: All state elements of the lossless system have
an expected energy of T/2. In equilibrium statistical me-
chanics, energy equipartition is instead often shown using
the Maxwell-Boltzmann distribution, see, for example, [1].

IV. EXTRACTION OF WORK IN OPEN LOOP

In this section, we consider the problem of extracting as
much work as possible from the system (3). The input u(t)
is generated by an actuator device. An actuator with energy
losses is defined next.

Definition 2: A lossy actuator with admittance ka > 0
provides work to its environment at the rate wa(t) = w(t)+
u(t)2/ka.

Hence, for the actuator to provide the work rate w(t) to
the system, its work rate must be wa(t) ≥ w(t). A lossy
actuator can be realized by a current source in series with a
resistor Ra = 1/ka.

Let

W̄x̄(t) := max
u(x̄)

EWa(t) = −min
u(x̄)

E
∫ t

0

wa(s)ds

denote the maximum of the expected work extracted from (3)
using a lossy actuator, with respect to all control strategies
where the input u(t) is based on the mean state trajectory
x̄(t). The input u(t) is deterministic, since it does not depend
on the stochastic process n(t). Hence, Ew(t) = ȳ(t)T u(t) =
x̄(t)T Bu(t).

The optimal control problem can be formulated as

max
u(x̄)

EWa(t) = −min
u

∫ t

0

x̄(s)T Bu(s) + u(s)2/kads (5)

subject to ˙̄x(t) = Jkx̄(t) + Bu(t), x̄(0) = x̄0.
This is a linear-quadratic optimal control problem with

a well-known solution. See, for example, [14, Section 5.4]
where similar equations are used to prove the necessity part
of the positive real lemma.

Theorem 1: The work-extraction problem (5) has the
value

W̄x̄(t) =
1
2
x̄T

0 Rt(0)x̄0,

and W̄x̄(t) is an increasing function of t. The matrix-valued
function Rt(s) satisfies the differential Riccati equation

− Ṙt(s) = Rt(s)Jk + JT
k Rt(s)

+
ka

2
(Rt(s) − In)BBT (Rt(s) − In), Rt(t) = 0,

Rt(s) ∈ R
n×n. Furthermore, the optimal input is given

by the control strategy u(s) = −L(s)x̄(s), where L(s) =
ka

2 BT (In − Rt(s)).
Remark 3: Notice that the optimal control is an open-loop

strategy since it can be computed before it is applied to (3).
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Fig. 2. The actuator efficiency Λ plotted as a function of κ = k/ka.

As the time horizon t increases, we can extract more work
from the system. This follows since Rt(s) is a decreasing
function of s, and the dynamics is time invariant. Hence, it is
of interest to study the limit R∞ = limt→∞ Rt(s), for fixed
s. The limit R∞ is independent of s and is the stabilizing
solution to the algebraic Riccati equation

0 = R∞Jk + JT
k R∞ +

ka

2
(R∞ − In)BBT (R∞ − In),

see [14, Lemma 5.4] and [7, Lemma 2]. The solution R∞
has the simple diagonal structure

R∞ = Λ(κ) · In, Λ(κ) = 1 + 2κ − 2
√

κ(1 + κ), (6)

where κ := k/ka is the ratio between the admittances of the
heat bath and the actuator.

Definition 3: The scalar quantity Λ(κ) is called the actu-
ator efficiency.

The strictly decreasing function Λ(κ) is plotted in Fig. 2.
We have that Λ(κ) → 1, κ → 0, and Λ(κ) → 0, κ → ∞.
Using the structure of R∞ and the increasing property of
W̄x̄(t), the following corollary to Theorem 1 can be derived.

Corollary 1: It holds that W̄x̄(t) ≤ Eo(0) for all t, and
limt→∞ W̄x̄(t) = Eo(0)Λ(κ), where Eo(0) = 1

2 x̄T
0 x̄0 is the

initial organized energy.
Thus, when the losses in the actuator are small (ka �

k), we can extract almost all the initial organized energy
using the optimal open-loop strategy in Theorem 1. When the
admittance of the heat bath is large (k � ka), then almost all
initial organized energy dissipates into the heat bath. Notice
that the actuator efficiency decays quickly with increasing κ.

Remark 4: Notice that in the infinite-time limit the influ-
ence of the dynamics (J,B) on the efficiency disappears.
This shows that the framework agrees with regular thermo-
dynamics where dynamics usually is not considered. There
changes are often assumed to be done infinitely slowly and
in quasi equilibrium.

Example 1: Consider the circuit in Fig. 1. Assume the
lossless system is a capacitor of capacitance C (J = 0 and
B = 1/

√
C), ka = 1/Ra, and k = 1/Rh + 1/Rm. Define
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Λ+ = 1+2κ+2
√

κ(1 + κ) and λ =
√

k(k + ka)/C. Then

Rt(s) = Λ
1 − exp 2λ(s − t)

1 − (Λ/Λ+) exp 2λ(s − t)
,

and it is seen that Rt(s) converges exponentially fast towards
Λ as the time horizon t tends to infinity.

V. MEASUREMENTS AND COOLING

In this section, we introduce measurements and see how
they can be used to increase the efficiency of the open-
loop control strategy in Section IV. A measurement device
is modeled as follows.

Definition 4: A measurement device with admittance
km > 0 and temperature Tm > 0 gives the measurement sig-
nal ym(t) = y(t)−√

2Tm/kmm(t) where m(t) is Gaussian
white noise with covariance function Em(t)m(s) = δ(t−s).

The physical interconnection [8] of the lossless system, a
heat bath with admittance kh and temperature Th, and the
measurement device is given by

ẋ(t) = Jkh+km
x(t) + Bu(t)

+ B
√

2khThn(t) + B
√

2kmTmm(t), (7)

ym(t) = BT x(t) −
√

2Tm/kmm(t). (8)

The Gaussian noise n(t) and m(t) are assumed uncorrelated.
Using the substitutions

k = kh + km, T =
khTh + kmTm

kh + km
, (9)

we see that (7) can be written in the form (3). Hence, the
results in the previous sections remain true for (7). The
measurement device acts as a second independent heat bath.
Notice, however, that the noise m(t) enters both as process
noise and measurement noise. This is called “measurement
back action” in [8].

Let
Yt = {ym(s) : t0 ≤ s ≤ t}

denote a measurement sequence. With some abuse of nota-
tion, we sometimes also let Yt denote a stochastic variable
that takes its values in the set of all possible measurement
sequences. Let E[f |Yt] denote the conditional mean of f
given a particular measurement sequence Yt. The law of total
expectation gives that EYt

E[f |Yt] = Ef .
Define the estimate xm(t) as the conditional expected

value of the state x(t), xm(t) = E[x(t)|Yt]. As is well
known, see, for example [12], [13], the estimate xm(t) has
many good properties. We have the following identities

EYt
xm(t) = Ex(t) = x̄(t),

Ex,Yt
[xm(t) − x(t)]xm(t)T = 0,

E{[xm(t) − x(t)]xm(t)T |Yt} = 0,

(10)

and

Xm(t) : = Ex,Yt
[xm(t) − x(t)][xm(t) − x(t)]T

= E{[xm(t) − x(t)][xm(t) − x(t)]T |Yt}
(11)

is both the unconditional and conditional estimation error
covariance (since the system is linear and the noise is

Gaussian). Given an estimate xm(t), we can redistribute the
amounts of internal energy U(t) and organized energy Eo(t).
Using the identities (10) and (11), we have the conditional
and unconditional system energies

E[E(t)|Yt] =
1
2
xm(t)T xm(t) + Um(t),

Ē(t) = EE(t) = EYt
E[E(t)|Yt] = Eo,m(t) + Um(t),

where

Eo,m(t) :=
1
2
EYt

xm(t)T xm(t) = Eo(t) + U(t) − Um(t),

Um(t) :=
1
2
TrXm(t).

It follows that Um(t) ≤ U(t) and Eo,m(t) ≥ Eo(t). The
terms Eo,m and Um are the organized energy and internal
energy, respectively, given the measurements.

Assume now that t0 < 0, and that we have access to
the measurement sequence Y0. We now want to choose a
control signal u over the time interval [0, t] so as to maximize
EWa(t), just as in Section IV. The only difference is that we
have access to more information about the system. Denote
by maxu(Y0) EWa(t) the maximum of the expected work
extracted with respect to all control strategies based on Y0.
We have the following update to Theorem 1 and Corollary 1.

Proposition 3: It holds that

W̄Y0(t) := max
u(Y0)

EWa(t) =
1
2
xm(0)T Rt(0)xm(0),

and

EY0W̄Y0(t) ≤ Eo,m(0), EY0 lim
t→∞ W̄Y0(t) = Eo,m(0)Λ(κ).

Proposition 3 shows that measurements Y0 increase the
amount of work we can extract, and that it is the organized
energy Eo,m(0) instead of Eo(0) that gives the upper bound.

As is well known, see, for example [12], the Kalman-Bucy
filter gives the estimate xm(t). The Kalman-Bucy filter for
(7)–(8) is given in the following theorem.

Theorem 2: The estimate xm(t) and the error covariance
Xm(t) satisfy

ẋm(t) = Jkxm(t) + Bu(t) + Km(t)(ym(t) − BT xm(t)),
xm(t0) = x̄0,

and Ẋm(t) = JkXm(t) + Xm(t)JT
k + 2kTBBT −

km

2Tm
(Xm(t) − 2TmIn)BBT (Xm(t) − 2TmIn)T , where

Xm(t0) = X0, and Km(t) = km

2Tm
(Xm(t) − 2TmIn)B.

We also have the following corollary, which should be
compared to Proposition 2.

Corollary 2: The estimation error covariance Xm(t) sat-
isfies Xm(t) → TM · In as t → ∞, where the scalar TM is
given by

TM = −2κmTm + 2
√

κmTm(κmTm + Th) ≤ T, (12)

and κm := kh/km is the ratio of the admittances of the heat
bath and the measurement device.
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If we by temperature mean the steady-state value of the
uncertain amount of energy per degree of freedom, then it
makes sense to call TM a temperature of the system. At least
this is true for a person who has access to the estimate xm(t).
Since TM ≤ T , the system can be said to be cooled by the
measurements. We make the following definition.

Definition 5: The temperature T is called the physical
temperature and TM the measured temperature of the sys-
tem.

VI. EXTRACTION OF WORK IN CLOSED LOOP

A disadvantage with the open-loop method for work
extraction that is suggested in Sections IV and V is that
it is only initial organized energy Eo(0) or Eo,m(0) that
is extracted. The reason is that no measurements after time
0 are used. Therefore, no work can be extracted from the
heat inflow after time 0. In this section, we use measure-
ments to continuously transfer heat inflow to work. Using
the well-known separation theorem, see for example [12,
Theorem 7.1], the optimal solution is given by combining the
work extraction method in Section IV and the measurement
method in Section V.

Denote by maxu(Yt) EWa(t) the maximum of the ex-
pected work extracted with respect to all control strategies
based on Yt (put t0 = 0). The separation theorem says the
maximum is achieved using the feedback

u(t) = −L(t)xm(t), (13)

where L(t) is given in Theorem 1 and xm(t) in Theorem 2.
The work output maxu(Yt) EWa(t) can be calculated ex-
plicitly by applying Theorem 7.1 in [12]. We obtain the
following theorem.

Theorem 3: The feedback (13) achieves

W̄Yt
(t) := max

u(Yt)
EWa(t) =

1
2
x̄T

0 Rt(0)x̄0+
1
2
Tr[Rt(0)X0]

+
∫ t

0

kT ·Tr[Rt(s)BBT ]−Tr[L(s)T L(s)Xm(s)]/kads,

(14)

where Rt(s), L(s), and Xm(s) are given in Theorems 1 and
2, and the physical temperature T and admittance k are given
in (9).

The first term on the right-hand side of (14) is equal
to W̄x̄(t), see Theorem 1. The second term shows that by
measurements we can retrieve some work from the initial
internal energy U(0) = 1

2TrX0, since Rt(0) ≤ Λ · In ≤ In.
The third term shows how much of the heat inflow qin =
kT ·Tr[BBT ] over the time interval [0, t] we can extract as
work. Notice that Rt(s) ≤ Λ · In ≤ In appears as a time-
varying weight. The sizes of the initial three terms depend
on how much losses there are in the actuator (Rt(s)). These
three terms represent how much work that can be extracted
from the system with perfect state estimation, xm(t) = x(t).
The fourth term is negative, and its size depends on the
measurements. The smaller the estimation error Xm(t) is,
the more work we get out.

It is illustrating to let the time horizon tend to infinity.
Since there is a continuous supply of heat qin from the heat
bath, we have to normalize with the horizon length to obtain
finite quantities.

Theorem 4: Define the expected work extraction rate by
wout = limt→∞ 1

t W̄Yt
(t). Then

wout

qin
=

(
1 − TM

T

)
· Λ(κ), (15)

and therefore wout/qin → 1 − TM/T , as κ → 0, where T
is the physical temperature, TM the measured temperature
(12), and Λ the actuator efficiency.

Proof: First notice the identity

(1 − Λ(κ))2

4κ
= Λ(κ). (16)

Using Theorem 3, (16), and the limit expressions
limt→∞ Rt(s) = Λ(κ) · In and lims→∞ Xm(s) = TM · In,
we have wout = [kTΛ(κ)−kaTM (1−Λ(κ))2/4]Tr[BBT ] =
k(T − TM )Λ(κ)Tr[BBT ]. From Section III we have qin =
kTTr[BBT ], and the result follows.

For the transient behavior of the closed-loop controlled
system (“the LQG heat engine”) in Theorem 3, the dynamics
(J,B) of the lossless system is important, but in the infinite-
time limit it does not matter for the efficiency, as seen in
(15).

If we interpret the measured temperature TM as the
temperature of a heat sink, and T as the temperature of a heat
source, then (15) is identical to the Carnot engine efficiency
[1], up to the actuator efficiency factor Λ(κ). According
to Carnot’s theorem, no heat engine can exceed the Carnot
engine efficiency. Thus the LQG heat engine achieves this
upper bound when the actuation loss tends to zero (using
proper temperature interpretation).

The Carnot heat engines in [3], [4], also achieve the Carnot
efficiency, but these engines operate infinitely slowly and
use quasi-equilibrium arguments. These engines use open-
loop control and two physical heat sources of different
temperatures. The LQG heat engine is really only connected
to one physical heat source (of temperature T ). In [3], [4],
it is shown that such a heat engine cannot continuously
deliver work using open-loop control strategies (wout =
0). In fact, we have also seen that here in Theorem 1,
since limt→∞ 1

t W̄x̄(t) = 0. However, using closed-loop
control strategies, we have shown that work can be delivered
continuously (wout > 0, Theorem 4). The LQG heat engine
works like a Maxwell’s demon.

VII. MOTIVATING EXAMPLE REVISITED

In this section, we use the LQG heat engine for the circuit
example in Section II, see Fig. 1. Z is the lossless system,
for example a capacitor, and kh = 1/Rh, ka = 1/Ra, and
km = 1/Rm. The current source is the actuator with input
u(t) = i(t). The work rate of the current source is wa(t) =
va(t)i(t) = v(t)i(t) + i(t)2Ra, compare with Definition 2.
The voltage over Z, the output y(t) = v(t), is applied to the
voltage measurement device Rm. The measurement signal is
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Fig. 3. The LQG heat engine steady-state efficiency 1 − TM/T plotted
as function of κm = kh/km, for five different temperatures Tm of the
measurement device, when Th = 1.0.

ym(t) = v(t)+
√

2TmRmm(t), where Tm is the temperature
of the resistor Rm.

In Fig. 3, the steady-state efficiency 1−TM/T (assume no
actuation losses, Ra = 0 and Λ = 1) of the engine is plotted
as a function of κm = kh/km = Rm/Rh, for five different
temperatures Tm of the measurement device. For Tm = 1
and 0.5, the curves are monotonically decreasing functions
of κm. For Tm = 0.25, 0.1, and 0.01, the curves decrease
until they become zero, and then increase again until they
reach a maximum. Based on these two different behaviors,
we say that the LQG heat engine can operate in two different
modes. We call the first mode the “back action” mode and
the second mode the “classical” mode.

In the back action mode, it is the measurement device
that is the main provider of energy. This mode works for
all temperatures Tm, but best for high Tm and small κm.
For 2Tm > Th, it is the only mode of operation, since the
1 − TM/T curves are then monotonically decreasing. The
reason for this threshold is the measurement/process noise
cross-covariance term XM −2TmIn in Theorem 2. In Fig. 3,
it is seen that as Tm drops from 1.0 to 0.01, a smaller κm is
needed to achieve the same efficiency. Hence, when Tm is
small, we essentially need to disconnect the system from the
other heat source (Rh large) for the engine to work in this
mode. The back action mode works since the measurements
contain a lot of information about the process noise.

When κm ≈ 1 and Tm is small (2Tm < Th), the relative
amount of heat coming from the measurement device is
small. Yet we can extract energy using the classical mode.
Based on the voltage measurements we can estimate the
state of Z well and extract the energy provided by Rh. This
effect can be seen in Fig. 3 for Tm = 0.25, Tm = 0.1,
and Tm = 0.01. The efficiency increases with κm up to a
maximum that lies around κm ≈ 1. The classical mode only
works better with decreasing Tm, since the state estimate
keeps getting better.

VIII. CONCLUSIONS

We formulated the problem of extracting work from a
heat flow in a linear systems setting, and solved it using
LQG optimal control methods. This gave hard limits on
how much work that can be extracted, both over finite and
infinite time intervals. Up to the actuator efficiency factor, the
LQG heat engine achieves the Carnot heat engine efficiency,
using proper temperature definitions. Hence, the heat engine
respects the second law of thermodynamics. We applied the
results to an electric circuit, and identified two modes of
operation where a current source can extract energy from
warm resistors.

An interesting problem for future research is how to imple-
ment the Kalman-Bucy filter and the optimal controller using
physical components such as resistors, inductors, capacitors,
and possible active elements. This would lead to additional
noise and losses, and other hard limits, as discussed in the
introduction. For this, the careful modeling of the Kalman-
Bucy filter in [5], and the abstract and undetailed view on
how linear systems respect the second law of thermodynam-
ics in [4] may be useful.
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[12] K. J. Åström, Introduction to Stochastic Control Theory. Dover
Publications, 2006.

[13] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Dover
Publications, 2005.

[14] B. D. O. Anderson and S. Vongpanitlerd, Network Analysis and
Synthesis: A Modern Systems Theory Approach. Dover Publications,
2006.

[15] J. B. Johnson, “Thermal agitation of electricity in conductors,” Phys-
ical Review, vol. 32, pp. 97–109, 1928.

[16] H. Nyquist, “Thermal agitation of electrical charge in conductors,”
Physical Review, vol. 32, pp. 110–113, 1928.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI26.11

3107


