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a b s t r a c t

Autocatalytic networks, in particular the glycolytic pathway, constitute an important part of the cell
metabolism. Changes in the concentration of metabolites and catalyzing enzymes during the lifetime
of the cell can lead to perturbations from its nominal operating condition. We investigate the effects
of such perturbations on stability properties, e.g., the extent of regions of attraction, of a particular
family of autocatalytic networkmodels. Numerical experiments demonstrate that systems that are robust
with respect to perturbations in the parameter space have an easily ‘‘verifiable’’ (in terms of proof
complexity) region of attraction properties. Motivated by the computational complexity of optimization-
based formulations, we take a compositional approach and exploit a natural decomposition of the system,
induced by the underlying biological structure, into a feedback interconnection of two input–output
subsystems: a small subsystem with complicating nonlinearities and a large subsystem with simple
dynamics. This decomposition simplifies the analysis of large pathways by assembling region of attraction
certificates based on the input–output properties of the subsystems. It enables numerical as well as
analytical construction of block-diagonal Lyapunov functions for a large family of autocatalytic pathways.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Core metabolism in cells is comprised of metabolic reaction
networks (pathways), which are sequences of chemical reactions
usually connected in series, catalyzed by enzymes. These enzymes
regulate (control) the metabolic pathways via two distinct
mechanisms: transcriptional regulation on a slow time-scale and
allosteric regulation on a fast time-scale (Alberts et al., 2002).
Some metabolic pathways contain reactions that require the
consumption of one of their own products, thus creating a positive
feedback loop. Such pathways are called autocatalytic pathways.
They are very common in biology; indeed, at a certain level, all
biological networks are autocatalytic, since, in every cell, food and
resources are broken down to create energy and components via
processes that also require the use of those same components
and energy. One such pathway is the glycolysis pathway, which
the cell relies on to produce energy anaerobically by breaking
down glucose. This pathway produces four ATP molecules (energy
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carriers) while consuming two ATP molecules early in the
pathway (i.e., autocatalysis). One of the catalyzing enzymes, PFK,
is allosterically regulated by ATP: PFK is inhibited when ATP
concentration is high (Banuelos, Gancedo, & Gancedo, 1977).

Biochemical networks with different topologies and different
reaction rate constraints have been subject to study for many
decades. Results regarding the number of and convergence
properties around steady states for certain rather general networks
with mass-action kinetics are established in Feinberg (1988),
Feinberg (1995), and Horn and Jackson (1972). The theory of
monotone dynamical systems (Sontag, 2007) has proven to be
a powerful tool for understanding the behavior of biological
systems. Using this theory, certain network topologies are shown
to have global convergence for quite general reaction rates (de
Leenheer, Angeli, & Sontag, 2007). A sufficient stability criterion
(for linearized dynamics) is established for cyclic interconnection
networks with inhibition of the first reaction by the end product
(Thron, 1991; Tyson & Othmer, 1978). These results are extended
to prove global asymptotic stability using passivity of subsystems
under certain conditions on the reaction rates (Arcak & Sontag,
2006, 2008).

In this paper, we study metabolic networks with the topology
in Fig. 1. In general, these networks do not exhibit global conver-
gence properties, and they can have multiple equilibrium points,
each with a large region of attraction (RoA). Many of the in-
teresting properties of these networks are induced by the inter-
play of autocatalysis and negative allosteric regulation. Changes in
metabolite and catalyzing enzyme concentrations during the life-
time of the cell can perturb the system from the nominal operat-
ing point.We investigate robustness to such perturbations through
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Fig. 1. A schematic of an autocatalytic pathway with feedback inhibition. The final
pathway product y (blue triangles) is consumed to convert the input of the pathway
into the firstmetabolite x1 . Additionally, y inhibits (dotted red line) the enzyme that
catalyzes the autocatalytic reaction.

optimization-based estimation of the RoA (ameasure of the extent
of perturbations fromwhich the system recovers) around nominal
operating conditions (Khalil, 2002). The resulting numerical pro-
cedure is effective on relatively small pathways and becomes chal-
lenging for large pathways due to computational complexity. We
partially alleviate this computational burden by exploiting the un-
derlying biological structure, which offers a natural decomposition
of the system into a feedback interconnection of two input–output
subsystems: a small subsystem with ‘‘complicating’’ nonlineari-
ties and a large subsystemwith simple dynamics. This decomposi-
tion enables compositional RoA analysis based on the input–output
properties of the subsystems. It enables numerical construction of
block-diagonal Lyapunov functions, which provide algebraic char-
acterizations of invariant subsets of the RoA, for families of path-
ways that are not amenable to direct analysis. Furthermore, it leads
to analytical construction of Lyapunov functions for a large family
of autocatalytic pathways.

2. An autocatalytic pathway model

Consider the autocatalytic metabolic pathway with multiple
intermediate metabolite reactions (see Fig. 1)

u + ay⇀f̃ x1

x1⇀g̃1 x2 · · ·⇀g̃n−1 xn⇀g̃n(a + b)y + xn+1

y⇀g̃y φ.

(1)

Here, u is some precursor and source of energy for the pathway
with no dynamics associated, y denotes the product of the
pathway, xi are intermediate metabolites, φ is a null state, a is
the number of y molecules that are invested in the pathway, and
a + b is the number of y molecules produced. A⇀f B denotes
a chemical reaction that converts the chemical species A to the
chemical species B at rate f . Then, a set of ordinary differential
equations that govern the changes in concentrations x1, . . . , xn,
and y can be written as

ẋ1 = f̃ (y)− g̃1(x1)
ẋi = g̃i−1(xi−1)− g̃i(xi), for i = 2, . . . , n

ẏ = (a + b)g̃n(xn)− af̃ (y)− g̃y(y),

(2)

for xi ≥ 0, y ≥ 0. Here, g̃1, . . . , g̃n, and g̃y are continuous, mono-
tone, increasing functions that vanish at 0 (consistent with large
classes of chemical kinetics models such as mass-action and
Michaelis–Menten). We choose f̃ (y) =

Vyq

1+γ yh
, which is consistent

with biological intuition and experimental data in the case of the
glycolysis pathway (Banuelos et al., 1977; Dano, Madsen, Schmidt,
& Cedersund, 2006), where V > 0 depends on u (pathway input),
q > 0 captures the strength of autocatalysis, and γ , h > 0 capture
the strength of inhibition. Note that f̃ is notmonotone and captures
the interplay between the autocatalysis and inhibition. For the rest
of the paper,we take a = b = 1 andnote that the results generalize
straightforwardly for a, b > 0.

The pathway in (1) qualitatively captures the essence of
glycolytic oscillations and is similar to many reduced-order
Fig. 2. Changes in the dynamic behavior due to changes in the reaction rate
constant k with n = 1, h = 4, γ = 5, q = 2, V = 6, g̃y(y) = 1.2y/(0.2 + y)
and g̃1(x1) = kx1 .

glycolysis models in the literature. For example, Dano et al. (2006)
reduces the full-scale glycolysis pathway of Hynne, Dano, and
Sorensen (2001) to models with eight states and then three states,
both of them matching well the structure of (1). Eliminating the
fast reaction from the three-state model results in the two-state
model of Chandra, Buzi, and Doyle (2009), which is identical to (1)
for n = 1. The purpose of using the particularmodel family in (1) is
twofold: to get insights into how to analyze suchmodels in general
and to get a deeper understanding of tradeoffs that biology faces.
To this end, the model has been selected to be more homogeneous
and structured than real biology (such as ignoring the specific
features of each enzyme andmetabolite), so that both quantitative
analysis tools and models of different order can be compared.

Under perturbations in the reaction rates (e.g., as a result of
changes in enzyme concentrations), system (2) can exhibit a rich
dynamic behavior including oscillations observed in glycolysis and
glycolysis models in the literature (Nielsen & Sorensen, 1998;
Richard, 2003). Fig. 2 illustrates such changes in behavior for a
model pathway as the system goes through Hopf and homoclinic
bifurcations due to changes in k. Additionally, the equilibrium
concentrations of the intermediate metabolites depend on the
concentration of the catalyzing enzymes. Sudden drops in the
corresponding enzyme concentrations will cause perturbations in
the concentrations of the intermediate metabolites. How big can
this drop be if the system is to converge to the new equilibrium
rather than have all concentrations converging to zero and the cell
dying? In the following, we show that estimation of the region of
attraction around a nominal operating condition for (2) can be used
to study such questions.

3. Region of attraction analysis

3.1. Estimation of the region of attraction

Consider the system governed by

ξ̇ (t) = F(ξ(t)), (3)

where ξ(t) ∈ Rm is the state vector and F : Rm
→ Rm is such

that F(0) = 0, i.e., the origin is an equilibrium point of (3) and F is
locally Lipschitz on Rm. Let ϕ(t, ξ) denote the solution to (3) with
the initial condition ϕ(0, ξ) = ξ at time t . The region of attraction
(RoA) of the origin for (3) is {ξ ∈ Rm

: limt→∞ ϕ(t, ξ) = 0}. For
η > 0 and a function U : Rm

→ R, define the η-sublevel set
of U as ΩU,η := {ξ ∈ Rm

: U(ξ) ≤ η}. We use the following
characterization of the invariant subsets of the RoA.
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Lemma 1 (Topcu, Packard, & Seiler, 2008). Let α > 0. If there exists
a continuously differentiable function U : Rm

→ R such that

ΩU,α is bounded, (4)

U(0) = 0, U(ξ) > 0 for all ξ ≠ 0, and (5)

ΩU,α \ {0} ⊂

ξ ∈ Rm

: ∇U(ξ)F(ξ) < 0

, (6)

thenΩU,α is invariant and in the RoA of the origin for (3).

When F is a vector of polynomials, the search for polynomial
Lyapunov functions U that characterize invariant subsets of the
RoA through Lemma 1 can be performed as a sum-of-squares (SOS)
optimization problem (Parrilo, 2003). For example, the optimal
values of U∗, α∗, and β∗ of U, α, and β , respectively, in the
optimization

max
U∈U,α,β>0,si∈Si

β subject to

U(0) = 0, U − l1, s1, s2, and s3 are SOS,

−[(β − ξ T ξ)s1 + (U − α)] is SOS,
−[(α − U)s2 + ∇UFs3 + l2] is SOS

(7)

satisfy {ξ ∈ Rm
: ξ T ξ ≤ β∗

} ⊂ ΩU∗,α∗ , andΩU∗,α∗ is contained in
the RoA. In (7), l1 and l2 are positive-definite polynomials, and the
sets U, S1, S2, and S3 are prescribed finite-dimensional subspaces
of polynomials. The optimization in (7) is a bilinear semidefinite
program and may be nonconvex. Topcu et al. (2008) and Topcu,
Packard, Seiler, and Balas (2010) discuss strategies for computing
suboptimal solutions for this problem.

3.2. Application to the autocatalytic network model

Let ξ̄ = [x̄1, . . . , x̄n, ȳ]T be a fixed point of (2) (the operating
condition of interest) in the (strictly) positive orthant.Without loss
of generality, we use the normalization ȳ = 1, which implies that
V = ry(1+γ )with ry := g̃y(ȳ). A change of coordinates tomove the
fixed point ξ̄ to the origin enables us, with some abuse of notation,
to write the vector field as

ẋ1 = f (y)− g1(x1)
ẋi = gi−1(xi−1)− gi(xi), for i = 2, . . . , n
ẏ = 2gn(xn)− f (y)− gy(y)

(8)

in D := {ξ ∈ Rn+1
: ξi ≥ −ξ̄i, i = 1, . . . , n + 1}, where f (y) =

ry(1+γ )(y+1)q

1+γ (y+1)h
− ry. Note that g1, . . . , gn, and gy are continuous,

monotone, increasing, and vanish at 0.
Optimization (7) provides a means for computing invariant

subsets of the RoA for systemswith polynomial vector fields.When
g1, . . . , gn, gy are polynomials and q and h are integers, the vector
field in (8) is rational, and straightforward generalizations of the
conditions in (7), obtained through Lemma 2, can be used. To this
end, rewrite the vector field in (8) as G(ξ)/H(y), where H(y) :=

1 + γ (y + 1)h and G is a vector of polynomials in ξ . Note that
H(y) > 0 for all y ≥ −1 and G(0) = 0. Then, the following
can be proven using the invariance of D under the flow of (8) and
Lemma 1.

Lemma 2. Let U be a continuously differentiable function, α > 0,
and U, α satisfying the conditions in (4)–(5) andΩU,α \ {0} ⊂ {ξ ∈

Rn+1
: ∇U(ξ)G(ξ) < 0}. Then, ΩU,α ∩ D is invariant and is

contained in the RoA of the origin for (8).

For the rest of this section,we assume g1(x1) = k1x1, . . . , gn(xn)
= knxn, gy(y) = kyy, and q and h to be positive integers. For ease
of exposition, we set q = 1, k1 = · · · = kn = k, scale the time
so that ky = 1, and investigate the robustness of the system (8)
in terms of the extent of the quantified RoA estimates around the
origin using the following measures.
Fig. 3. Left: the region marked by red corresponds to the set of parameters
for which a quadratic Lyapunov function verifies that B1/2,k,1 is in the RoA, the
region marked by green corresponds to the set that needed a quartic Lyapunov
function, and the region marked by blue corresponds to linearly asymptotically
stable systems for which (7) does not yield an RoA estimate for quadratic or quartic
Lyapunov functions. Right: the color bar represents the values of r∗/


1 + 1/k2 for

stabilizing values of k and ĥ. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. The color bar represents the values of r∗/

1 + n/k2 for n = 3 and for

stabilizing values of k and ĥ.

• For given 0 < η < 1 and k, the first measure is the degree of
the smallest degree polynomial Lyapunov function that certifies
the set Bη,k,n :=


ξ : ξ T ξ < η2


1 +

n
k2


to be in the RoA.

Note that

1 + n/k2 is the distance to the nearest fixed point

[−1/k, . . . ,−1/k,−1]T to the origin.
• For Lyapunov function candidates of a fixed degree, the second

measure is themaximum value r∗ of r such that the ballB(r) :=

{ξ : ξ T ξ < r2} is certified to be in the RoA through (7).

Next, we define the parameter ĥ :=
γ

γ+1h that captures the
strength of feedback in the linearization of (8) (see Section 4.1 and
Chandra et al., 2009). For given k, define ĥk to be the largest value
of ĥ such that the system corresponding to (k, ĥ) is stable. Consider
a grid generated by uniformly picking 50 values of k in [0.1, 5] and,
for each fixed value of k, picking 50 values for ĥ in [0, ĥk].1 For n =

1, Fig. 3 (left) shows that systems away from the stability boundary
in the parameter space only require a quadratic Lyapunov function
to verify that B1/2,k,1 is in the RoA, while polynomials of higher
degree are needed for many of the systems near the boundary.
From Fig. 3 (right), the main observation is that as the feedback
gain ĥ increases and approaches its Hopf bifurcation value, the
normalized ‘‘radius’’ r∗/


1 + 1/k2 of the verifiedRoAgets smaller.

Similar interpretations hold for n = 2 and 3, illustrated in Fig. 4 for
n = 3.

The size of the optimization (7) (e.g., the number of decision
variables) grows with the length of the pathway (i.e., number of
states), the degree of the numerator and denominator of f (i.e.,
q and h), and the degree of the Lyapunov function candidates.
This growth may render the analysis based on SOS programming
impractical for even modest length pathways (see Topcu &
Packard, 2009 for a more detailed discussion). For larger models,
we propose a compositional analysis methodology which exploits
the underlying structure of the pathway.

1 For given k, h is set to the smallest integer greater than or equal to ĥk , to ensure
that the vector field is rational.
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Fig. 5. The system (8) is represented as feedback interconnection of two
subsystems S1 and S2 .

4. Compositional analysis

We discuss a compositional RoA analysis method using a
decomposition of system (8) in Section 4.2, its applications
with two different supply rates in Sections 4.3 and 4.4, and its
limitations in Section 4.5. We now motivate a notion of local
feedback gain for (8) and establish the linear stability bounds used
in the rest of the paper.

4.1. Linear stability analysis

Define ki :=
∂gi
∂xi
(0), ky :=

∂gy
∂y (0). Let Jĥ be the Jacobian of (8)

around the origin. The linearization of (8) can be viewed as the
closed-loop dynamics of ˙̃

ξ = J0ξ̃+ry[1 0 · · · 0 −1]Tu, ζ =

[0 · · · 0 1]ξ̃ with (negative) feedback u = −ĥζ . For given
n > 1, define θ(n) := (sec(π/(n + 1)))n+1 , ĥd(n) := q+

ky
ry

θ(n)
2+θ(n) ,

and ĥd(1) := q +
ky
ry
. Then, Jĥ is Hurwitz for q < ĥ < ĥd(n)

by the secant condition (Thron, 1991; Tyson & Othmer, 1978). If
k1 = k2 = · · · = kn = ky + ry(q − ĥ), then Jĥ is Hurwitz only
if ĥ < ĥd(n). Note that the upper bound ĥd(n) does not depend
on the rate constants ki of the intermediate reactions. The next
proposition establishes another set of bounds.

Proposition 3. Let ĥr := q + ky/(3ry) and ĥs := q − ky/ry. If
ĥs < ĥ ≤ ĥr , then Jĥ is Hurwitz for arbitrary values of n ≥ 1 and
ki. The bounds are tight, i.e., for any value of gain ĥ ∉ (ĥs, ĥr ], one can
construct an unstable pathway of appropriate size.

4.2. A simple decomposition

Consider the decomposition of the dynamics in (8) into two
input–output systems, S1 and S2, governed by

S1

ẋ1 = z − g1(x1)
ẋi = gi−1(xi−1)− gi(xi), for i = 2, . . . , n
w = gn(xn)

(9)

S2


ẏ = 2w − f (y)− gy(y)
z = f (y), (10)

and interconnected as in Fig. 5. S1 and S2 are single-input–single-
output systems with n and 1 states, respectively. S1 is composed
of a chain of reactions, and this special structure and the
monotonicity of rates gi make it easier to establish its input–output
properties for even large values of n. On the other hand, S2 includes
the ‘‘most dominant’’ nonlinearity in f , due to the dynamics of
y and its involvement in autocatalysis and negative feedback.
This decomposition separates the complexity of high-dimensional
state space of S1 from that of the important nonlinearity due to
autocatalysis isolated in S2.
Topcu, Packard, Seiler, and Balas (2009) proposes a method
for computing invariant subsets of the RoA for systems with
unmodeled dynamics based on certain dissipation inequalities.
We apply this idea to the feedback interconnection of S1 and S2
to compute invariant subsets of the RoA for (8). For notational
simplicity, we rewrite (9) and (10), respectively, as ẋ =

F1(x, z), w = G1(x), and ẏ = F2(y, w), z = G2(y). Note that
F1(0, 0) = F2(0, 0) = G1(0) = G2(0) = 0.

Proposition 4. Let δ, κ ≥ 0,U1 : Rn
→ R be continuously

differentiable, and satisfy U1(0) = 0,U1(x) > 0 for all x ≠ 0 and

∇U1(x) · F1(x, z) ≤ z2 + 2δwz − κw2, ∀(x, z) ∈ Rn
× R. (11)

Let N0 ⊆ R be a (bounded) neighborhood of the origin and U2 : R →

R be continuously differentiable and satisfy U2(0) = 0,U2(y) > 0
for all y ≠ 0, and

∇U2(y) · F2(y, w) ≤ κw2
− 2δwz − z2, ∀(y, w) ∈ N0 × R. (12)

Let U(x, y) := U1(x)+ U2(y) and α be such that

ΩU,α ⊂ Rn
× N0. (13)

Then, ΩU,α is invariant under the flow of (8). Furthermore, if one of
the inequalities (11) and (12) is strict (except at the origin) thenΩU,α
is a subset of the RoA of the origin for (8).

Proof. Note that U(0, 0) = 0,U(x, y) > 0 for all nonzero (x, y) ∈

Rn+1, and for all nonzero (x, y) ∈ ΩU,α , it holds that U̇(x, y) =

∇U1(x) · F1(x,G2(y)) + ∇U2(y) · F2(y,G1(x)) ≤ 0. Hence, ΩU,α

is invariant. If (11) is strict, then Γ1 := {(x, y) : U̇(x, y) = 0} ⊂

{(x, y) : x = 0}. For all (x, y) with x = 0 and y ≠ 0, it follows
that ẋ1 = f (y), ẏ = −f (y) − gy(y), and gy(y) ≠ 0 for y ≠ 0.
Consequently, the largest invariant subset of Γ1 is the origin, and
ΩU,α is a subset of the RoA (by LaSalle’s invariance principle). If
(12) is strict, then Γ2 := {(x, y) : U̇(x, y) = 0} ⊂ {(x, y) : y = 0}.
Let Γinv ⊂ {(x, y) : y = 0} be invariant. For (x, y) ∈ Γinv ,
ẏ = 2gn(xn) ≠ 0 for xn ≠ 0, which implies that xn = 0. For
(x, y) ∈ Γinv , ẋn = gn−1(xn−1) ≠ 0 for xn−1 ≠ 0, which implies
that xn−1 = 0. Similarly, for (x, y) ∈ Γinv , it follows that xi = 0 for
i = 1, . . . , n. Consequently, the largest invariant subset ofΓ2 is the
origin, and the result follows by LaSalle’s invariance principle. �

Proposition 4 constructs RoA certificates for the overall system
(8) based on the certificates for the input–output properties of the
subsystems S1 and S2 established using the dissipation inequalities
in (11) and (12), respectively. The quadratic map z2 + 2δwz −

κw2 in (11) is called a supply rate for S1 (similarly its negative
is used as a supply rate in (12) for S2). One diversion from
the classical dissipation inequalities literature (Willems, 1972) is
that the inequality in (12) is local, i.e., it is supposed to hold in
certain bounded subsets (such as certain sublevel sets of associated
storage functions) of the state space but not necessarily the whole
state space (Topcu, Packard, Seiler et al., 2009). Using special forms
of the inequalities (11) and (12), we show that, for specific ranges
of ĥ, a diagonal function U and α that satisfy the conditions in
Proposition 4 (i.e., consequently,ΩU,α is an invariant subset of the
RoA) can be analytically constructed.

4.3. RoA estimation via a local small-gain condition

Let δ = 0, κ = 1, and (12) hold strictly, i.e.,

∇U1(x) · F1(x, z) ≤ z2 − w2, ∀(x, z) ∈ Rn
× R (14)

∇U2(y) · F2(y, w) < w2
− z2, ∀(y, w) ∈ (N0 \ {0})× R. (15)

Lemma 5. The functionU1 : Rn
→ R,U1(x) :=

∑n
i=1 2

 xi
0 gi(ξ)dξ ,

is continuously differentiable and satisfies U1(0) = 0,U1(x) > 0 for
all x ≠ 0, and (14).
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Fig. 6. Left: N0 can be constructed as the set of points y where the graph of f lies
between gy and −

1
3 gy . Right: The y − xi slice of the invariant subset ΩU,α with

xj = 0, j ≠ i.

Lemma 6. If ĥs < ĥ < ĥr , then there exists a nonempty (bounded)
neighborhood N0 of the origin such that the function U2 : R →

R,U2(y) :=
1
2

 y
0


f (ξ)+ gy(ξ)


dξ , is continuously differentiable

and satisfies U2(0) = 0,U2(y) > 0 for all nonzero y ∈ N0, and (15).
Proof. Denote the set of points y for which the graph of f lies
between the graph of gy and −

1
3gy by D1 := {y : (gy(y) −

f (y))

f (y)+ gy(y)/3


≥ 0} (Fig. 6 (left)). Since ∂ f

∂y (0) = ry(q − ĥ)

and ∂gy
∂y (0) = ky > 0, ĥ < ĥr = q +

1
3
ky
ry

⇒ −
∂ f
∂y (0) <

1
3
∂gy
∂y (0) and ĥ > hs = q −

ky
ry

⇒
∂ f
∂y (0) <

∂gy
∂y (0). Therefore,

gy(y)− f (y)
 

f (y)+ gy(y)/3


≥ 0 is locally satisfied around
y = 0, and so there is a nonempty neighborhood of the origin
N0 ⊂ D1 ∪ {0}. Direct calculations show that U2 satisfies the
conditions for this N0. �

Proposition 7. Let U1,U2, and N0 be as in Lemmas 5 and 6 and
U(x, y) = U1(x) + U2(y). Then, for ĥs < ĥ < ĥr and for any α
such that ΩU,α ⊂ Rn

× N0, the set ΩU,α is an invariant subset of the
RoA for the origin for (8).

Proposition 7 follows from Proposition 4 and Lemmas 5 and 6. The
set N0 in Lemma 6 can be constructed as the largest sublevel set of
U2 that is contained in D1.

Example 8. Let gi(xi) = kixi, gy(y) = y, γ =
3
2 , q = 1, and

h = 2. Then, ĥ =
6
5 , ĥr =

4
3 ,U1(x) = k1x21 + · · · + knx2n,U2(y) =

5
12 log


5 + 6y + 3y2


+

1
4y

2
−

1
2y −

5
12 log 5,U(x, y) = U1(x) +

U2(y), and N0 = {y : y > −1}. The maximum value of α such that
U and α satisfy (13) is α = 0.3682. Fig. 6 (right) shows the slice of
the invariant subset of RoAΩU,α in the y − xi subspace.

4.4. RoA estimation via another dissipation inequality

Consider the case κ = 0 with (12) holding strictly, i.e.,

∇U1(x) · F1(x, z) ≤ z2 + 2δwz, ∀(x, z) ∈ Rn
× R (16)

∇U2(y) · F2(y, w) < −z2 − 2δwz,
∀(y, w) ∈ (N0 \ {0})× R. (17)

Lemma 9. For n > 1 and 0 < δ ≤
1
2θ(n), there exist positive

real numbers d1, . . . , dn such that the function U1(x) :=
∑n

i=1 di
 xi
0

gi(ξ)dξ satisfies (16).
Proof. For n > 1 and 0 < δ ≤

1
2θ(n), consider the system

ẋ1 = −z̃ − g1(x1)
ẋi = gi−1(xi−1)− gi(xi), for i = 2, . . . , n
˙̃z = 2δgn(xn)− z̃,

(18)

and let F̃(x, z̃) denote the vector field in (18). Since lim|xi|→∞

 xi
0 gi

(ξ)dξ = ∞, there exist constants d1, . . . , dn+1 > 0 so that
Ũ1(x, z̃) =

∑n
i=1 di

 xi
0 gi(ξ)dξ + dn+1

1
2 z̃

2
= U1(x) + dn+1

1
2 z̃

2

satisfies ∇Ũ1(x, z̃) · F̃(x, z̃) < 0 for all nonzero (x, z̃) (see Corollary
3 in Arcak & Sontag, 2006). Without loss of generality, take dn+1 =

1, and let z = −z̃; then, for all nonzero (x, z), it follows that
0 > ∇Ũ1 (x,−z)·F̃(x,−z) = ∇U1(x)·F1(x, z)−z (2δgn(xn)+ z) =

∇U1(x) · F1(x, z)− 2δwz − z2. By continuity in δ, we get ∇U1(x) ·

F1(x, z) ≤ 2δwz + z2 for all (x, z). �

Lemma 10. For n > 1, let δ = θ(n)/2 and ĥ satisfy q ≤ ĥ ≤ ĥd(n).
Then, there exists a nonempty (bounded) neighborhood N0 of the
origin such that the function U2 : R → R, defined as U2(y) :=

−δ
 y
0 f (ξ) dξ , is continuously differentiable and satisfies U2(0) =

0,U2(y) > 0 for all nonzero y ∈ N0, and (17).

Proof. Define D2 := {y : f (y)

f (y)+ δ/(1 + δ)gy(y)


≤ 0}.

Since ∂ f
∂y (0) = ry(q − ĥ) and ∂gy

∂y (0) = ky > 0, ĥ < ĥd(n) =

q +
ky
ry

θ(n)
2+θ(n) ⇒ −

∂ f
∂y (0) <

δ
1+δ

∂gy
∂y (0) and ĥ > q ⇒

∂ f
∂y (0) < 0.

Therefore, there exists a nonempty neighborhood of the origin
N0 ⊂ D2 ∪ {0}. Direct calculations show that U2 satisfies the
conditions for this N0. �

In Lemma 10, N0 can be constructed as the largest sublevel set
of U2 contained in D2. The following is a direct consequence of
Proposition 4 and Lemmas 9 and 10.

Proposition 11. Let n > 1 and δ =
1
2θ(n). Let U1,U2, and N0

be as in Lemmas 9 and 10 and U(x, y) = U1(x) + U2(y). Then, for
0 < ĥ < ĥd(n), and for any α such that ΩU,α ⊂ Rn

× N0, the set
ΩU,α is an invariant subset of the RoA of the origin for (8).

Proposition 3 and the secant condition establish bounds ĥr and
ĥd(n) on the values of ĥ that guarantee stability of the pathway for
arbitrary rates (and number in the case of ĥr ) of the intermediate
reactions. Propositions 7 and 11 imply that systems with gains
that obey these bounds are simple to analyze, i.e., estimates of
the RoA can be constructed through compositional analysis. On
the other hand, they do not provide any guarantees on how
large these estimates are. In general, the size of these subsets
will depend on the properties of f and gy. When g1, . . . , gn, gy
are polynomials (e.g., mass-action kinetics) and f is rational, the
search for polynomial U1 and U2 that satisfy the conditions in
Proposition 4 can be formulated as an SOS program through the
S-procedure and SOS relaxations. Topcu, Packard, Seiler et al.
(2009) proposes a procedure for enlarging the estimate of the
RoA while imposing these SOS constraints. Moreover, it may be
possible to enlarge the estimate through an automated search for
(sub)optimal supply rates, e.g., for suitable choices for δ and κ in
Proposition 4, as discussed in Topcu, Packard, and Murray (2009).

4.5. Existence of block-diagonal Lyapunov functions

The decomposition of (8) into S1 and S2 provides a convenient
way of searching for block-diagonal Lyapunov functions. The next
proposition examines the linearizations of S1 and S2 and shows that
locally, if there is such a Lyapunov function for the linearization
of system (8), then we can construct it by computing U1 and U2
satisfying (14) and (15), respectively. Let the linearization of S1
(around the origin) be ˙̃x = A1x̃+B1z̃ and w̃ = C1x̃ and that of S2 be
˙̃y = a2ỹ+2w̃ and z̃ = −σ ỹ, whereσ := −

∂ f
∂y (0) = ry(ĥ−q), a2 :=

−ky + σ . Rewrite the linearization of (8) as[
˙̃x
˙̃y

]
= Jĥ

[
x̃
ỹ

]
=

[
A1 −σB1
2C1 a2

] [
x̃
ỹ

]
. (19)

Proposition 12. If there exist positive-definite matrices P1 ∈ Rn×n

and p2 ∈ R such that JT
ĥ
P + PJĥ is negative definite, where P =

diag(P1, p2), then the quadratic functions U1(x̃) := −
σ 2

2a2p2
x̃TP1x̃ and

U2(ỹ) := p2ỹ2 are continuously differentiable, positive definite, and,
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Fig. 7. Illustration of the (n1, n2) decomposition of the autocatalytic pathway
model in Fig. 1.

for δ =
σ

ky−σ
, satisfy

∇U1(x̃) · (A1x̃ + B1z̃) < z̃2 + 2δw̃z̃, ∀(x̃, z̃) ∈ Rn
× R, (20)

∇U2(ỹ) · (a2ỹ + 2w̃) ≤ −z̃2 − 2δw̃z̃, ∀(ỹ, w̃) ∈ R × R. (21)

Lemma 13. For g1, . . . , gn such that ∂gi
∂xi
(0) = k, for i = 1, . . . , n,

and δ > 0, if there exists a positive-definite matrix P1 such that
U1(x̃) := x̃TP1x̃ satisfies (20), then δ < 1

2θ(n) and P1 can be chosen
diagonal.

Proposition 14. If ĥ > ĥd(n),
∂gi
∂xi
(0) = k for 1 ≤ i ≤ n, then there

is no quadratic, positive-definite, block-diagonal Lyapunov function of
the form U(x̃, ỹ) = U1(x̃)+ U2(ỹ) such that ∇U(x̃, ỹ) · Jĥ[x̃

T ỹ]T < 0
for all nonzero (x̃, ỹ).

Proof. Assume, for ĥ > ĥd(n), that there exists a quadratic, block-
diagonal functionU(x̃, ỹ) = U1(x̃)+U2(ỹ). Then, by Proposition 12,
δ =

σ
ky−σ

andU1 satisfy (20). On the other hand, Lemma 13 implies

that δ < 1
2θ(n), and the result follows from the contradiction that

δ = ry(ĥ−q)/(ky−ry(ĥ−q)) < θ(n)/2 = ry(ĥd−q)/(ky−ry(ĥd−

q)) implies that ĥ < ĥd(n). �

The partial converse result of Proposition 14 demonstrates a
limitation of the analysis based on the decomposition of (8) given
in (9) and (10). We next investigate how such limitations may be
partially alleviated using more general decompositions of (8).

5. General decomposition

Consider that the system in (8) is decomposed into two
input–output systems S1 and S2 with n1 and n2 states, respectively,
as in Fig. 5, where n1 + n2 = n + 1. Let S1 and S2, respectively, be
governed by

ζ̇ = F̃1(ζ )+ B̃1z, w = G̃1(ζ ) = gn(xn), (22)

ψ̇ = F̃2(ψ)+ B̃2w, z = G̃2(ψ) = gn2−1(xn2−1), (23)

where B̃1 = [1 0 · · · 0]T , B̃2 = [2 0 · · · 0]T , and the
correspondence between the original states x1, . . . , xn, y and the
new state variables (in (22) and (23))) is ψ = [y, x1, . . . , xn2−1]

T

and ζ = [xn2 , . . . , xn]
T . We call any such feedback interconnection

of subsystems with n1 and n2 states an (n1, n2)-decomposition
of (8). Fig. 7 illustrates the (n1, n2)-decomposition where S1
corresponds to part of the pathway as marked and S2 represents
the dynamics of the rest of the pathway. A result similar to
Proposition 4 holds for (n1, n2)-decompositions.

Proposition 15. Let ρ : R × R → R. Let U1 : Rn1 → R be
continuously differentiable and satisfy U1(0) = 0,U1(ζ ) > 0 for
all ζ ≠ 0, and

∇U1(ζ ) · (F̃1(ζ )+ B̃1z) ≤ ρ(w, z), ∀(x, z) ∈ Rn1 × R. (24)

Furthermore, let N0 ⊆ Rn2 be a (bounded) neighborhood of the
origin, U2 : Rn2 → R be continuously differentiable and satisfy
U2(0) = 0,U2(ψ) > 0 for all ψ ≠ 0, and

∇U2(ψ) · (F̃2(ψ)+ B̃2w) ≤ −ρ(w, z), ∀(y, w) ∈ N0 × R. (25)
Define U : Rn+1
→ R by U(ζ , ψ) := U1(ζ ) + U2(ψ), and let α be

such that ΩU,α ⊂ Rn
× N0. Then, ΩU,α is invariant under the flow

of (8). Furthermore, if one of the inequalities (24) and (25) is strict,
except at the origin, then ΩU,α is a subset of the RoA of the origin
for (8).

We now focus on a special case where ∂gi
∂xi
(0) = k for i =

1, . . . , n. For this case, we showed, in the previous section, that,
for ĥs < ĥ < ĥd(n), we can find block-diagonal Lyapunov func-
tions that give an estimate of the RoA. On the other hand, Propo-
sition 14 establishes that for ĥ > ĥd(n) there is no (quadratic)
block-diagonal Lyapunov function of the form U(x, y) = U1(x) +

U2(y) for the linearization of (8), i.e., the (n, 1)-decomposition can-
not produce even a local quadratic Lyapunov function for (8). The
following example demonstrates that, for systems with ĥ > ĥd(n),
Lyapunov functions can be constructed by increasing the number
of states of S2.

Example 16. Consider the (1, 2)-decomposition of a pathway
with n = 2 and gi(xi) = kxi. For κ > 0, δ =

κ−1
2 , and U1(x1) =

1
2 (1 + κ) x21, it follows that∇U1(x1) ·(z−kx1)−z2−(κ − 1) wz+

κw2
= − (z − kx1)2 ≤ 0 for all (x, z). The inequality in (25) boils

down to ∇U2(ψ) · (F̃2(ζ )+ B̃2w) ≤ κw2
− (κ − 1) wz − z2. Fig. 8

(left) shows the set of parameters for which this decomposition
yields a block-diagonal Lyapunov function for q = 1 and ∂gy

∂y (0) =

1. A similar analysis is repeated for a pathway with n = 6, and the
effect of increasing values of n2 in these decompositions is shown
in Fig. 8 (middle).

Fig. 8 (right) shows that, as the size of the pathway increases,
the size of the stability region (in the parameter space) decreases
and the range of feedback gains becomes limited. For a fixed
pathway size, as the feedback gains increase, the corresponding
systems approach the stability boundary (in the parameter space),
requiring decompositions with larger number n2 of states in S2.

When g1, . . . , gn, gy are polynomial and f is rational, the search
for the polynomials U1 and U2 that satisfy the conditions in
Proposition 15 can be formulated as an SOS programming problem.
Under these assumptions, the SOS relaxation for (24) leads to
a relatively low degree polynomial in n1 + 1 indeterminate
variables, while the SOS relaxation for (25) leads to a relatively
high degree polynomial in n2 + 1 (indeterminate) variables.
Solving the resulting SOS program, instead of the SOS program
for the conditions in Lemma 2, leads to a significant reduction
in computational complexity. This reduction stems from the fact
that the original SOS program in n + 1 = n1 + n2 variables is
replaced by another with two constraints (in addition to other
smaller constraints): one in lownumber of indeterminate variables
(n2 +1) and the other in comparable (to the original SOS program)
number of indeterminate variables (n1 + 1) but lower degree of
polynomials. It should also be noted that, for increasing values
of n2, the computational complexity of the SOS program for the
conditions in Proposition 15 will mainly be determined by that
of the SOS constraints for (25). Consequently, the decomposition
in (22) and (23) and the compositional analysis strategy in
Proposition 15 lead to two conflicting trends: increasing the state
dimension n2 of S2 renders an analysis that is potentially less
conservative at the expense of higher computational complexity.

6. Discussion

Both experiments on the glycolysis pathway and simulations
of most glycolysis models qualitatively show that unstable modes,
such as oscillations in ATP concentration, occur under changes in
the experimental conditions (e.g., certain enzyme concentrations)
and perturbations in the model parameters (e.g., reaction rates).
On the other hand, under fixed experimental conditions or a fixed
set of parameters, the behavior of the system is robust to initial
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Fig. 8. Left: the (2, 1)-decomposition can only be used to construct Lyapunov functions for the parameter sets labeled by ‘‘diagonal Lyapunov’’ and ‘‘small gain’’. In addition
to these sets, the (1, 2)-decomposition can be used to construct Lyapunov functions for the blue region. Middle: for longer pathways, different (n1, n2)-decompositions are
used to produce Lyapunov functions that verify subsets of the RoA. For fixed k, as the feedback gain ĥ approaches the stability boundary, construction of Lyapunov functions
requires larger values of n2 . The figure illustrates this trend for n = 6. Right: as the size of the pathway increases, the size of the stability region (in the parameter space)
decreases.
condition perturbations (Dano et al., 2006; Hynne et al., 2001;
Nielsen & Sorensen, 1998; Richard, 2003). We have discussed an
approach based on system-theoretic measures, such as the extent
of the region of attraction (RoA) around the nominal operating
points of the system, to prove robustness under perturbations
of the initial conditions. We have demonstrated the use of the
approach on a specific class of autocatalytic pathway models that
capture the core structure of the glycolysis pathway.

We have also shown that the size of the estimated (through a
numerical optimization-based procedure) RoA around the nominal
operating condition provides information about the robustness
of the model to parameter perturbations. More specifically,
numerical experiments demonstrated that systems that are
robust with respect to perturbations in the parameter space
have large, easily ‘‘verifiable’’ (in terms of proof complexity)
estimates of the RoA. Additionally, for systems close to the
stability boundary, small changes in the value of feedback
strength lead to several different regimes in which ‘‘simple’’
polynomial Lyapunov functions (i) certify large invariant subsets
of the RoA; (ii) can only certify relatively smaller sets to be
in the RoA; and (iii) cannot certify (to the tolerances used
in the numerical computations) any invariant subset of the
RoA. This optimization-based procedure becomes computationally
impractical as the pathway size increases. In order to extend
the RoA analysis to larger pathways, we took a compositional
approach which exploited a natural decomposition of the system,
induced by the underlying biological structure. The pathwayswere
decomposed into a feedback interconnection of two input–output
subsystems: a small subsystem with complicating nonlinearities
and a large subsystem with simple dynamics. This decomposition
simplified the analysis by assembling RoA certificates based on
the input–output properties of the subsystems. The simplest
decomposition (in Section 4) allowed us to analytically construct,
using storage functions and simple quadratic supply rates, block-
diagonal Lyapunov functions for a large family of autocatalytic
pathways. We showed that if a Lyapunov function of the specified
block-diagonal form exists, then it can be constructed using this
decomposition. For analysis of a larger class of pathways, more
general versions of the decomposition were required, allowing
for the size of the subsystem with the complicating nonlinearity
to increase. This strategy lead to two conflicting trends: a larger
family of pathwaymodels become amenable to RoA analysis at the
expense of computational complexity.
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