
  

  

Abstract— Autocatalysis is necessary and ubiquitous in both 

engineered and biological systems but can aggravate control 

performance and cause instability. We analyze the properties of 

autocatalysis in the universal and well studied glycolytic 

pathway. A simple two-state model incorporating ATP 

autocatalysis and inhibitory feedback control captures the 

essential dynamics, including limit cycle oscillations, observed 

experimentally. System performance is limited by the inherent 

autocatalytic stoichiometry and higher levels of autocatalysis 

exacerbate stability and performance. We show that glycolytic 

oscillations are not merely a "frozen accident" but a result of 

the intrinsic stability tradeoffs emerging from the autocatalytic 

mechanism. This model has pedagogical value as well as  

appearing to be the simplest and most complete illustration yet 

of Bode’s integral formula. 

I. INTRODUCTION 

IN metabolic systems the destabilizing effects of “positive” 

autocatalytic feedback is often countered by negative 

feedback loops. Instability due to high autocatalysis is 

typically via a real pole (i.e. saddle-node bifurcation) 

whereas high inhibition can drive a system into a limit cycle 

(sustained oscillations via a Hopf bifurcation). This effect 

has also been studied in other biological systems such as 

mitogen-activated protein kinase cascades [1]. 

We wish to explore the hard limits of stability and 

performance that arise from such autocatalytic and 

regulatory mechanisms using a familiar and well-understood 

example. The glycolytic system is ideal to motivate such 

theoretical analysis for biological systems. Glycolysis is 

perhaps the most common control system on the planet as it 

is found in every one of the more than 10
30 

cells, from 

bacteria to human. It has been widely studied and is one of 

biology’s best understood systems. However, despite the 

extensive experimental and theoretical studies, many 

questions as to why oscillations occur in glycolysis remain. 

Similar to an engineered power plant whose machinery 

runs on its own energy product, the glycolysis reaction is 

autocatalytic. Glycolysis generates Adenosine triphosphate 
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(ATP), which is the cell’s energy currency. The ATP 

molecule contains three phosphate groups and energy is 

stored in the bonds between these phosphate groups. Two 

molecules of ATP are consumed in the early steps 

(hexokinase, phosphofructokinase/PFK) and four ATPs are 

generated as pyruvate is produced. PFK is also regulated 

such that it is activated when the Adenosine monophosphate 

(AMP)/ATP ratio is low; hence it is inhibited by high 

cellular ATP concentration.  This pattern of product 

inhibition is common in metabolic pathways. 

The instability of the glycolytic pathway has been 

experimentally observed since the 1960s when oscillations of 

glycolytic intermediates were seen in continuous flow 

experiments in yeast extracts. Since then, glycolytic 

oscillations have been studied extensively both 

experimentally and theoretically. In intact cells, oscillations 

have been observed in anaerobic conditions. A nice review 

of the experimental history can be found in [4]. On the 

theoretical side, the contribution of different enzymes to the 

period and amplitude of oscillations has been a particular 

focus [7], [8]. Numerous mathematical models have also 

been developed. Many of the models attempt to capture in 

detail the full mechanism of glycolysis, yielding large models 

that have high fidelity but can obscure fundamental tradeoffs. 

This in turn has motivated the search for reduced models [2] 

that highlight the most essential mechanisms. 

Early experimental observations suggest that there are two 

Hopf modes present in the system. Metabolites upstream and 

downstream of phosphofructokinase (PFK) have 180° phase 

difference, suggesting that a two-dimensional model 

incorporating PFK dynamics might be a reasonable 

approximation of the system [3]. In this paper we propose a 

two-state model based on the autocatalytic stoichiometry of 

ATP and inhibition of ATP (activation by AMP) on PFK.  

We will argue that this simple control model captures the 

most essential dynamics and bifurcations of glycolysis in the 

specific interplay between autocatalysis and inhibition.  This 

answers one aspect of “why oscillations?” with a simple, 

sufficient mechanism that is consistent with more complex 

and detailed models and directly traceable to extensive 

experimentation.  In the context of such simple models, 

necessary conditions for oscillations in terms of the slope of 

the function representing the nonlinear effect of ATP on the 

reaction rate can also be derived [5]. 

In this paper, we take this modeling and analysis further 

by considering deeper aspects of “why oscillations?”  If this 

model does indeed capture the essential mechanism, why do 

real glycolytic pathways have parameter values that allow for 
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oscillations?  More deeply, why is there this pattern of 

feedbacks and not some other? (Savageau et al. addresses 

similar questions in [15]). A number of alternative 

hypotheses have been put forth. Some suggest that glycolytic 

oscillations potentially minimize the dissipation of free 

energy [9], although most argue that they can be detrimental 

to the cell [10]-[12], and thus it is often claimed that they are 

merely a “frozen accident” of evolution.  

In this paper, we show that glycolytic oscillations are 

rather a result of the hard tradeoff that emerges from the 

autocatalytic mechanism of glycolysis, which is necessary for 

the downstream reactions to proceed. We will further argue 

that control theory and particularly Bode integral limits 

provide a clear and coherent framework in which to study 

and answer these questions, although even deeper analysis 

will require continued integration of control theory and far-

from-equilibrium thermodynamics [15]. 

In the control theory community, the idea of performance 

limitations and trade-offs is well established, most elegantly 

expressed by the Bode Integral Formula or related 

inequalities [6]. The Bode formula uses conservation of area 

under the curve of the Sensitivity function S to show that 

benefits achieved in certain performance criteria must be 

paid for in another. In the frequency domain, we typically 

want S(jω) to be small for small steady state error in some 

frequency range (around ω=0). However, pushing this low 

frequency response to be smaller must be compensated by a 

larger response in another region. This idea is often 

visualized as a “water-bed” effect: as we push down on one 

part of S, the displaced “water” inevitably makes another 

part rise.  

This trade-off law is universal in all systems, but may be 

aggravated in systems with certain structure. Despite its 

universality, this idea is currently not well-known outside of 

the control theory community. We ultimately plan to use the 

glycolysis system to introduce the importance of this trade-

off idea to the wider scientific community, and illustrate the 

potential of having a more unified theory of hard limits.   

The usual Bode Integral Formula assumes degree ≥ 2. In 

this paper we state a version that holds as well for systems 

with degree<2 but at least one right half plane (RHP) zero. 

Proofs of this result are standard and are omitted. We show 

that our simple glycolysis model is such a system, has severe 

limits on performance and robustness, is intrinsically prone 

to oscillations, and that the autocatalysis exacerbates these 

hard limits. The two-state model we present is the simplest, 

most complete, and most dramatic example we are aware of 

that illustrates the tradeoff idea of the Bode formula, and 

thus should be of widespread pedagogical value. While there 

is no new control theoretic result per se, we hope this paper 

will be of interest to control theorists due to its connections 

with long-standing questions in biology, as well as 

motivation for more unified theories of hard limits involving 

energy efficiency in addition to control. Due to space 

limitations, biological details will unfortunately be somewhat 

terse. 

II. MATERIALS AND METHODS 

A. Nominal Regulated Autocatalytic Model 

Experimental observations suggest that a two-state model 

centered on an abstracted version of PFK is a reasonable 

simplification of glycolysis. Consider a two-state model with 

ATP (x) and a lumped intermediate metabolite (y) as states. 

We assume that the total concentration of adenosine 

phosphates in the cell remains constant: 

  

 [ ] [ ] [ ] [ ]Atot ATP ADP AMP= + +  (1.1) 

 

and hence the activating effects of AMP can be expressed as 

inhibition by ATP. Because we will focus on linearizations, 

the possible saturating effects of (1.1) will be ignored. 

We further assume that the decay rates of the metabolites 

and the intermediate reaction converting y to x are operating 

in the linear regime and obey simple mass action kinetics: 
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The parameter ky represents the lumped metabolic 

reactions that generate ATP, and h is the gain of the 

inhibition of the enzymes by ATP. kx represents the ATP 

demand of the cell, and we assumed that ATP-dependent 

processes are in saturation, and thus constant (i.e. the control 

for the glycolytic flux is set by the ATP demand of the cell). 

As a reminder, glycolytic oscillations have so far mainly 

been seen in anaerobic conditions, and so there is no 

additional ATP production from aerobic pathways.  

We normalize the model such that the system produces 

one more molecule of x than the number consumed 

(consumes q x molecules and produces q+1 x molecules).  

We can further non-dimensionalize with respect to the 

concentration and flux of x such that the steady state 

concentration of x is xss=1, and nominally kx=1.  This greatly 

simplifies the parameterization.  

 

B. Linearization 

 The linearization around the non-zero steady state with 

the above normalization yields: 
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GLOSSARY 

 x       output, ATP level 

δ       input, disturbance in ATP consumption. 

y  lumped variable of intermediate metabolites 

downstream of the autocatalytic reaction 



  

 

Fig. 1.  Stability regions of the system ky=2. i) The stability of the system in the q and ĥ  plane. For a given q, there is a range of ĥ  values where the 

system is stable. Region A is unstable. Regions C,B are the stable regions, and region D is the oscillatory region.  ii) Sample system trajectories in the 

phase plane domain. 

 
 q      stoichiometry of the autocatalytic reaction 

ˆq hσ = −   linearization of net enzyme (e.g. PFK) 

response to changes in x 

1ˆ 1h h
V

 
= − 

 
  net effective product inhibition gain. 

 

The second term on the right half side is the reaction that 

consumes y and produces 1+q molecules of x.  The last term 

is the consumption of x, assumed to be saturated, and an 

external disturbance δ in consumption is introduced. In 

glycolysis, 2 ATPs are consumed to produce 4 ATPs at the 

end. In our model, the reaction is normalized to a 

consumption of 1 molecule of x to produce 2 molecules of x 

in the second reaction, which is equivalent to q=1. The first 

term is the reaction involving PFK which consumes q 

molecules of x and yields one molecule of  y.  Note that V > 

1 must hold for a steady state to exist, and small values of V 

reduce the effective feedback gain.  V depends on both the 

rate and concentration of PFK, and thus larger V requires 

higher catalytic efficiency, more enzymes, or both. 

While there is no separate controller per se, and the 

terminology of “plant” and controller is perhaps misleading, 

the sensitivity function S can still be written in the form 
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where P(s) can be thought of as the “closed loop” plant from 

disturbance δ to output x 
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and ( )0h
P s= is simply the “open loop” plant without 

regulatory feedback, i.e. without inhibition by ATP ( ˆ 0h = ).  

 

C. Theoretical Performance Limits 

If S(z)=1 for a right half plane “zero” z (equivalent to a 

right half plane zero in the open loop plant), which is true for 

our model, a constraint on the sensitivity function can easily 

be shown to be: 

 ( )ˆ ˆ 2 2

0

1
ln max 0, ln

h h

z z p
S j d

z pz
ω ω

π ω

∞

=

 + 
≥  

−+   
∫  (1.6) 

where (possibly) S(p)=0 (e.g. an OLRHP pole). Note that 
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so this term constrains the waterbed effect below frequency 

z, a potentially severe limitation.   

 

III. RESULTS 

A. Dynamics and Stability Region 

Our two-state model seems to capture the essential 

dynamics of glycolytic oscillations. In continuous stirred 

tank reactor (CSTR) experiments, oscillations in yeast 

extracts are seen for a bounded range of flow rates. In a 

CSTR experiment, materials are flown into and out of the 

tank at a constant rate such that the volume in the tank 

remains constant. When the extract and substrate are flown 

slowly into the reactor, the metabolites do not oscillate. As 

the flow rate increases, we start to see oscillations and the 

period increases along with the flow rate until the system 

settles back into a steady state. This behavior is captured in 

our model, though this won’t be explained in detail here. The 

flow rates enter as both a constant input into x and y and a 

“sink” for both states with a constant rate. Phase plane plots 

show that when this rate is increased, the system goes from a 

steady state into a limit cycle which expands as the rate 



  

continues to increase, and eventually returns to a steady state 

point.  

The characteristic polynomial is
2

( )
y y

s q k s kσ σ+ + − , so 

stability holds iff { }min , 0y yq k kσ σ+ − >  , i.e. iff 

ˆ yk
q h q

q
< < + . With 1, 2

y
q k= = , stability only holds for a 

narrow range of ˆ1 3h< < . Local stability regions with 

respect to the different parameters are shown in Fig. 1. We 

see that high negative feedback ( ĥ ) drives the system into 

sustained oscillations. However, if there is no autocatalysis 

(q=0), the system is always stable, and as q is increased, the 

region of stability becomes narrower.  

 

B. Limits and Tradeoffs: Example of Glycolysis 

 Autocatalysis not only narrows the stability region but 

also exacerbates the system performance, as seen in Figure 2.  

Our model is simple enough that it can be thoroughly 

analyzed analytically to explain the intrinsic nature of such 

oscillations and transients, and the resulting formulae are 

remarkably simple.  

 The simplest performance requirement is for small steady 

state gain P(0) from δ to x.  Both P(0) and S(0) are easily 

computed to be 
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so steady state performance is improved via larger gain h, 

though stability limits this to  

(0)
y

q
P

k
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At this limit the system would oscillate. Thus large 

autocatalysis q and small 
y

k , which would both be desirable 

for steady state metabolic efficiency, severely constrains 

achievable steady state disturbance rejection. 

 The natural next question is how this would change if PFK 

control via ATP were allowed to be more complex, without 

regard to biological implementation. Bode’s integral formula 

suggests that tampering with ATP feedback would not 

matter.  The reason is that the zero of this glycolysis model, 

given by  

 
yk

z
q
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indeed lies in the right half plane, and therefore the 

performance constraint given above holds for this system. 

For all q ≥ 0, there is also one unstable pole in the open loop 

plant ( ĥ =0), which is given by: 

 

( ){ }2 2

2 2 2( ) 4

2

y y

y y y

p RHPzero s q k s qk

q k q k qk

= + + −

− − ± + +
=

 (1.9) 

and hence the area under the sensitivity curve obeys the 

constraint given in equation (1.6). This implies that even if 

the system is controlled optimally, its performance is limited 

by the ratio on the right half side of the equation.  It is also 

easy to verify that our biologically motivated model achieves 

this bound with equality, so could not be uniformly improved 

on.  This is a much stronger result than merely verifying that 

a given model has performance limitations, because it says 

that such limitations would apply to all controllers, without 

regard to their implementation. 

The performance limitation of the system is not dependent 

on ĥ , but depends only on q and 
y

k , since both z and p 

depend only on these parameters. Further analysis separating 

the stoichiometry with the exponential coefficient of the 

autocatalysis shows that z is dependent only on the 

stoichiometry and not the exponent. This implies that the 

system performance is limited only by the pathway 

architecture, in particular the stoichiometry of the 

autocatalysis.  Furthermore, the ratio 
z p

z p

+

−
 from equation 

(1.6) monotonically increases to infinity as q is made larger 

and/or 
y

k smaller; therefore the performance limit worsens in 

exactly the same direction as the steady state gain. 

Decreasing q can allow for a better bound, as illustrated in 

Fig. 2 (generated using MATLAB).The peaks of S increase 

more significantly as ĥ is increased for systems with higher 

q. However, decreasing the stoichiometry will undermine the 

system’s efficiency in generating ATP – yet another tradeoff. 

Similarly, the tradeoffs are relieved by a larger 
y

k , but this 

requires either more efficient or more abundant enzymes. 

Full state feedback by adding allosteric control of PFK by 

the intermediate metabolite y can eliminate the transmission 

zero but greatly adds to the complexity of the enzyme. 

Finally, the rest of the cell can contribute to alleviating this 

tradeoff if consumption is not saturated.  The worst case is 

having saturated consumption, small 
y

k , and large q. The 

case of small 
y

k  can be achieved when the intermediate 

glycolytic enzymes are downregulated. 

  

IV. DISCUSSION 

Whereas certain parameters such as the kinetic rates and 

inhibitory constant of the system might have been tuned by 

evolution and natural selection, and might naturally be 

assumed “optimal” in some sense, the autocatalysis and 

stoichiometry are inherent properties of the pathway’s 

structure.  In what sense could these be optimal, when they 

so aggravate control performance.  Our analytical results 

hold for all q>0, regardless of the values of the other 

parameters. As such, these particular properties of stability 

and performance limitations are present in the system 

regardless of the cell’s environment and noise and 

fluctuations, intrinsic or extrinsic. 

The plot of the stability region shows that for q=0 



  

sustained oscillations are not possible in this simple model. 

Whereas the oscillations occur only when the negative 

feedback gain is amplified, the autocatalytic structure of the 

pathway is also necessary. Pomerening et al. have similarly 

shown experimentally in the case of cell-cycle oscillator that 

positive feedback is necessary to generate Cdc2 oscillations 

[13]. 

 Whenever a system is reduced to a simple model, there is 

always the question whether or not the results would hold for 

a more complex, complete model. To address this issue, we 

have extended our model to: 1) a general n-state model, 2) 

incorporate reversible reactions, and 3) incorporate 

consumption of intermediate metabolites. We find that our 

results hold qualitatively even for these extended models (in 

preparation). Furthermore, we have shown that similar 

results hold for the nonlinear case (in preparation), although 

the presentation is substantially more complicated. We have 

presented only the results for the linearized system in order 

to keep our model system simple enough to introduce the 

concept of tradeoffs and performance limitations.   

While in the current model we have assumed that the ATP 

consumption is constant, we have found that changing the 

consumption to a linear one would affect only p but not z.  

Whether or not glycolytic oscillations serve a purpose in 

the cell has been an unsolved debate. Several papers have 

suggested that glycolysis is more efficient in oscillatory 

mode than in steady state, based on higher (average) 

ATP/ADP ratio and lower (average) free-energy dissipation 

[9], [12]. On the other hand, recent evidence suggests that 

glycolytic oscillations trigger membrane current oscillations 

in myocardial cells and result in action potential duration 

shortening, and may contribute to arrhythmias [10], [14].  

Our analysis introduces a new view into this debate on the 

necessity and the raison d’etre of glycolytic oscillations. The 

performance hard limits suggest that glycolytic oscillations 

are not merely a frozen accident that occurred during 

evolution but a necessary trade-off inherent in the structure 

of the system. With this level of autocatalysis, glycolysis has 

inherent performance limitations which will lead to operation 

near oscillatory regimes. 

Whereas the purpose of oscillation per se is unclear, the 

role of autocatalysis is much better understood. While the 

details are themselves complex, the standard biochemistry 

argument (e.g. in [16]) is that steady-state efficiency requires 

the initial energy investment in the form of phosphate 

addition, obtained from ATP. Some of the necessary 

intermediates of glycolysis lie on a higher energy landscape 

than glucose, thus the energy investment is necessary to 

reach these intermediate states. Without the addition of these 

phosphates, the substrate would not be able to proceed 

through the downstream reactions.  

If this argument is accepted, autocatalysis is simply 

necessary for the steady state efficiencies of glycolysis. The 

observed oscillations are therefore inevitable consequences 

of the pathway operating in a high autocatalytic regime 

(q=1). In addition to steady state efficiency, the system must 

also be optimized for its regulatory performance, i.e. 

disturbance rejection, also dominated by disturbances at low 

frequencies around steady state. Evolution has apparently 

fine-tuned the system such that it achieves the optimal 

performance bound and is relatively robust to commonly 

encountered environmental fluctuations. However, 

optimizing both steady state efficiency and disturbance 

rejection gives the system the tendency to oscillate in some 

circumstances. Therefore, there is no "purpose" per se to the 

oscillations; they are the side effects of tradeoffs involving 

efficiency, performance, and robustness.  

This is not to say that autocatalysis would automatically 

lend a system the tendency to oscillate. As seen in our 

model, the negative feedback is necessary for sustained 

oscillation. Different autocatalysis and negative feedback 

interactions can yield different stability and performance 

properties, such as the threshold ‘all-or-none’ response seen 

in the lac operon in E. coli and the blood clotting cascade in 

humans [17].  

The analysis on our simple model of glycolysis illustrates 

the power of control theory on shedding new light on the 

cause and necessity of biological phenomenon. The 

argument above relied on ideas from biochemistry, not 

described in any detail, to explain the need for autocatalysis 

and then control theory for the consequences.  This clearly 

motivates a theory that would more explicitly and rigorously 

treat the tradeoff between steady state efficiency, steady state 

disturbance rejection, and Bode-type integrals. Currently 

efforts are being made in unifying thermodynamics and 

control theory. Although progress has been made in this area, 

it does not yet address the complexity of reactions such as 

the ones seen in glycolysis [18]. 
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region (Region A, Fig. 1) are not shown.  D, E, F, Time trajectories of the same systems demonstrate markedly increased transient oscillations, and 
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