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Some protein interaction data do not exhibit power law statistics
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Abstract It has been claimed that protein–protein interaction
(PPI) networks are scale-free, and that identifying high-degree
‘‘hub’’ proteins reveals important features of PPI networks. In
this paper, we evaluate the claims that PPI node degree se-
quences follow a power law, a necessary condition for networks
to be scale-free. We provide two PPI network examples which
clearly do not have power laws when analyzed correctly, and thus
at least these PPI networks are not scale-free. We also show that
these PPI networks do appear to have power laws according to
methods that have become standard in the existing literature.
We explain the source of this error using numerically generated
data from analytic formulas, where there are no sampling or
noise ambiguities.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Experimental data on protein–protein interaction (PPI) net-

works have been extensively gathered with the aim of acquir-

ing a system-level understanding of biological processes [1,2].

Various statistical features of complex graphical structures

have received attention, including the size of the largest con-

nected component, the node degree distribution, the graph

diameter, the characteristic path length, and the clustering

coefficient. However, the feature that has attracted the most

attention is the distribution of node degree (the number of

links from a node) and whether or not the distribution follows

a power law (linear plot on log–log scale). The degree se-

quences of PPI networks were claimed to follow a power law

in [3], and thus PPI networks are claimed to be ‘‘scale-free’’

(SF) [4]. In fact, graph theorists point out that ‘‘scale-free’’

has not been clearly defined in the existing literature, and the

results on SF graphs are largely heuristic and experimental

studies with ‘‘rather little rigorous mathematical work; what

there is sometimes confirms and sometimes contradicts the heu-

ristic results’’ [5]. Nevertheless, most treatments assume that
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a power law node degree distribution is an important, and

sometimes defining feature [4].

This paper shows that the node degree sequences of some

published PPI networks are better described by an exponential

function when properly plotted and analyzed. The problem

with previous work is that data were plotted using fre-

quency–degree plots, which are usually ambiguous and mis-

leading but have become standard in much of the scientific

literature. This problem can be easily avoided by plotting the

same data using rank–degree plots, which are standard within

statistics and parts of engineering [6]. We also illustrate the

source of the errors using numerically generated data from

analytic formulas, where there are no sampling or noise ambi-

guities. Despite these findings, we expect that power laws will

appear ubiquitously in biology [7], just as they do in natural

and technological systems [6,8], but that their analysis will re-

quire the use of appropriate tools [6].
2. Materials and methods

It is widely accepted that publicly available data for PPI networks
represent only an approximation of the real interaction network be-
cause of the large number of false positive and false negative interac-
tions. It has been claimed that the self-similarity features of SF
networks mean that any appropriately sampled subnetwork is also
SF [9]. If this were true, then perhaps the existing data are sufficient
to determine whether PPI networks are SF, but this self-similar sam-
pling claim has been disputed elsewhere [10]. Even more fundamental
errors, however, may be involved in the basic claim that the publicly
available PPI network data possess power law node degree sequences.
A PPI node degree data set consists of a finite sequence of integers

y = (y1,y2, . . .,yn), assumed here without loss of generality always to
be ordered such that y1 P y2 P � � � P yn. Note that the rank, the
number of nodes Pk with degree equal or greater than yk, is then simply
Pk = k. A node degree sequence y follows a power law if

k � cy�a
k ; ð1Þ

where k is the rank of yk, c > 0 is a constant, and a > 0 is called the
scaling index. One important feature of power laws is that for large
n the sample means (and mean/median ratio) and variances (and var-
iance/mean ratio) diverge when a < 1 and a < 2, respectively. Such
power laws are approximately straight lines of slope �a on log–log
plots of the rank k versus the degree yk, and these provide a simple test
for whether data satisfy (1). In contrast, an exponential

k � aexp�byk ; ð2Þ

has finite and convergent sample mean and variance for all constants
a > 0 and b > 0. The k versus yk plot on a semilog scale approximates
a straight line of slope of �b since log k ¼ log a� byk , and thus semilog
plots can be used to easily check if (2) holds.
It has been standard practice in studying PPI node degrees to assume

that the sequence is drawn from a random ensemble, although no
coherent explanation has been offered as to why this is biologically jus-
blished by Elsevier B.V. All rights reserved.
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tified. Indeed, what is known of biology suggests that it is highly non-
random at every level of organization [11]. Nevertheless, random var-
iable models are central to previous work and their misinterpretations
are a classic source of errors. There is a large and sophisticated litera-
ture on the theory of stable laws [12], of which power laws are special
cases, but we will aim for the simplest possible explanation of the ori-
gin of the most common error. A non-negative random variable X with
cumulative distribution function (CDF) F(x) = P[X 6 x], is said to fol-
low a power law with index a > 0 if, as x fi1,

P ½X > x� ¼ 1� F ðxÞ � cx�a; ð3Þ

for some constant c > 0, where a(x) � b(x) as xfi1 if a(x)/b(x) fi 1
as x fi1. If the CDF F(x) satisfying (3) is differentiable, then its
derivative, the probability density function (PDF) f ðxÞ ¼ d

dxF ðxÞ, satis-
fies

f ðxÞ � c0x�ð1þaÞ. ð4Þ

A log–log plot of 1�F(x) or f(x) versus x thus approximates a straight
line of slope �a and �(1 + a), respectively, for large x. Similarly, an
exponential F gives an exponential f. While these relationships are true
for analytic formulas, differentiation of noisy data amplifies errors,
making attempts to create frequency-based data plots of f(x) typically
uninformative except in special cases. In the case of the node degree of
a graph, the data are not just noisy but inherently discrete.
While a full exposition of these issues is well beyond the scope of a

short letter, numerical experiments that are easy to reproduce illustrate
the essential points. Even in the most ‘‘idealized’’ cases shown below
using numerically generated pseudorandom data, frequency plots can
mislead. Fig. 1 shows n = 1000 integer values numerically sampled
from the distribution P[X > x] � x�1 for x P 1 and plotted using
the following MATLAB program fragment:
y=-sort(-floor(1./rand(1,n)));

loglog(y,1:n,0.k 0);
The rand function generates (pseudo-)random variables uniformly
distributed on (0,1). Suppose Z is such a random variable,
then P[Z < z] = z. Under mild technical conditions, X with
P[X > x] = h(x) for decreasing function h(x) can be generated by
X = h�1(Z) since then P[X > x] = P[h�1(Z) > x] = P[Z < h(x)] = h(x)
as desired. Thus the first line generates n sorted random integers
y = (y1,y2, . . .,yn) with y1 P y2 P � � � P yn sampled from
P[X > x] � x�1. The upper (black dots) cumulative or rank–degree
plot in Fig. 1 shows that a correct estimate of a � 1 (solid red line)
can be obtained by inspection simply from a plot of the rank k versus
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Fig. 1. Rank–degree (upper black dots) and frequency–degree (lower
blue circles) plots for integer data numerically sampled from the
random variable following a power law P[X > x] � x�1. Rank–degree
plot correctly shows the slope of a = �1 (solid red line) whereas the
frequency–degree plot incorrectly leads to estimation of a � 0.67
(dotted green line).
the degree yk. Note also that the false claim that a � 2/3 (green dot-
ted line, derived from the frequency–degree plot below) is also clearly
seen to be incorrect by a large margin.
Errors arise however when frequency–degree plots such as the lower

(blue circles) plot in Fig. 1 are used. A sample frequency–degree plot of
the data can be generated by first creating a vector of unique values
{uj}, 1 6 j 6 m, from the {yk}, and then their sample frequencies {fj}
are counted. The smaller values of yk (large k) have nonunique (re-
peated) integer values. The following is an example of a MATLAB
fragment used to generate the lower part of Fig. 1:
u=unique(y); nu=length(u); f=0

\
u;

for k=1:nu, f(k)=sum(y==u(k)); end;

loglog(u,f, 0bo 0);
In this case, we can analytically derive discrete equivalent to Eq. (4) as

pðxÞ ¼ P ½X ¼ x� ¼ P ½X > x� � P ½X > xþ 1�
¼ x�1 � ðxþ 1Þ�1

¼ x�1ðxþ 1Þ�1
; xP 1

� x�2; x � 1;

and thus it might appear that the true tail index (i.e., a = 1) could be
inferred from examining the frequency–degree plots. Unfortunately
this is not true even in this idealized case. By fitting a straight line with
slope 1 + a � 5/3 (dotted green line) to the frequency data, a tail index
estimate of a � 2/3 might appear more plausible than the correct values
of 1 + a � 2 (solid red line). At best there is ambiguity. We know in
this case however that a � 2/3 is unambiguously incorrect since we gen-
erated the ‘‘data’’ by sampling from an analytically known distribution
with a = 1, which is confirmed by the rank plot in Fig. 1 (solid red line).
Binning and smoothing the data in various ways can occasionally im-
prove the appearance of frequency plots but not their reliability in
determining a.
There are a variety of more rigorous, reliable, but unfortunately

more complex methods for estimating a [13] than examining rank–
degree plots, and since {yk} and the {uk} and {fk} have the same
information, appropriate numerical tests on one can in principle be
interpreted in terms of the other. The classic errors arise from misinter-
pretation of frequency plots in ways that do not occur with (cumula-
tive) rank–degree plots. The latter also have additional advantages
over more complex tests in that they show the raw data directly, and
are also highly robust to a range of measurement errors and noise.
Thus experienced readers can tell at a glance from the rank plots such
as Fig. 1 if (1) is plausible and over what range it holds.
An equally serious error can occur when the data are exponential, as

shown in Fig. 2. This is similar to Fig. 1 except the data are exponen-
tially distributed with P[X > x] � exp�0.1x for x > 10, generated by
y=-sort(floor(10

\
(-1+log(rand(1,n)))));

and the ranks and frequencies are in separate plots. This is another
example of an idealized case since we can analytically derive discrete
equivalents to Eq. (4) for P[X > x] = cexp�ax (x > x0) as

pðxÞ ¼ cexp�ax � cexp�aðxþ1Þ ¼ cð1� exp�aÞexp�ax

¼ ~cexp�ax x > x0.

Thus both P[X > x] and p(x) are exponentials with the same form,
yet with very different plots. Fig. 2A is a semilog rank–degree plot
confirming that the data are exponentially distributed. Fig. 2B is a
log–log frequency–degree plot suggesting incorrectly that the data
are power law distributed with a � 1.75. This kind of misuse of fre-
quency–degree plots is remarkably common in the scientific litera-
ture and until recently, frequency plots have been used almost
exclusively in the SF literature. That such errors can arise using
PPI data are illustrated in Figs. 3 and 4, which is the main focus
of this paper.
From among many publicly available studies on PPI networks, we

used the filtered yeast interactome (FYI) data set [14] and the predicted
human protein-interaction (HPI) map [15]. Much of the original data
suffers from numerous false positives and false negatives, but more re-
cent investigations have sought to refine the data. For example, the
FYI data set contains high-confidence interactions for yeast, each ob-
served by at least two different methods, thereby enriching for genuine
positives. The HPI map was generated using data from seven experi-
mental and four computationally predicted protein-interaction maps
from Saccharomyces cerevisiae [16–21], Drosophila melanogaster [22]
and Caenorhabditis elegans [23]. The idea is that a human protein
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Fig. 2. (A) Semilog rank–degree (black dots), and (B) log–log frequency–degree (blue circles) plots for integer data numerically sampled from the
random variable following an exponential P[X > x] � exp(1�0.1x) for x > 10. Rank–degree plot (A) correctly shows that the data are exponentially
distributed, whereas the frequency–degree plot (B) incorrectly suggests the data follows a power law with the slope �(1 + a) � �2.75 (dotted green
line).
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interaction can be predicted if orthologs in a model organism show an
interaction. Its accuracy has been assessed in [15]. We consider both
FYI and HPI to be refined data sets, and investigate whether their
node degree sequences follow a power law, a defining feature of
scale-free networks, by rank–degree plots.
3. Results and discussion

The rank–degree plots of the HPI and FYI data are shown

in (A) log–log scale and (B) semilog scale in Figs. 3 and 4,

respectively. The solid lines and the dotted curve in log–log

scale (A) show least-squares fitting of data to a power law with

the value of its slope and to an exponential, respectively. The

same fittings are depicted as the solid curve and the dotted line

in semilog scale (B). From these figures, we can clearly con-

clude that the node degree sequences of HPI and FYI data

are much closer to an exponential (2) for large degrees, and

are clearly not power laws (1). More sophisticated statistical

analysis can be used to confirm these conclusions. In addition,

the rank–degree plots show raw data, without binning or any

transformation of the data, and readers can easily judge at a

glance the relative suitability of various models.

However, using frequency–degree plots (C) in Figs. 3 and 4

could lead to the erroneous conclusion that the node degree se-

quence appears to follow a power law. This is essentially the

same error as that illustrated in Fig. 2, although there we

had the additional benefit of analytic formulas to confirm

the analysis. As we have shown in Fig. 1, even if the PPI data

were actually a power law, the slope in a frequency–degree plot

is not reliably related to the true slope. These results conclu-

sively demonstrate that these two refined PPI data sets are

not power laws, and thus these PPI networks are certainly

not SF, no matter how this is defined. This is consistent with

the claim in [24] that the degree sequence of refined PPI data

should not follow a power law.

It is in principle possible that the data studied here is mis-

leading because of the small size of the network and potential

experimental errors, and that real PPI networks might have
some features attributed to SF networks. At this time we only

can draw conclusions about (noisy) subgraphs of the true net-

work since the data sets are incomplete and presumably con-

tain errors. If it is true that appropriately sampled subraphs

of a SF graph is SF as was claimed in [9], they possess a power

law node degree sequence. That these subgraphs exhibit expo-

nential node degree sequences suggests that the entire network

is not SF. Since essentially all the claims that biological net-

works are SF are based on ambiguous frequency–degree anal-

ysis, this analysis must be redone to determine the correct form

of the degree sequences. This paper has provided clear exam-

ples that ambiguous plots of frequency–degree could lead to

erroneous conclusion on the existence and parametrization

of power law relationships. We have illustrated how rank–

degree plots are more reliable, but of course much more

sophisticated analysis is possible and ultimately desirable.

It has also been clearly shown [7,8] that the Internet and cell

metabolism, the two most prominent examples of SF net-

works, plausibly can have power laws for some data sets, but

have none of the other features attributed to SF networks.

One important feature of the Internet and metabolic networks

is the complete absence of centrally located high-degree

‘‘hubs’’ which are claimed to be responsible for global network

connectivity and whose removal would fragment the network.

This contradicts what has been claimed in the SF literature.

Metabolic networks have also been shown to be scale-rich

(SR), in the sense that they are far from self-similar [7] despite

some power laws in certain node degree sequence. Their power

law node degree sequence is a result of the mixture of exponen-

tial distributions in each functional module, with carriers play-

ing a crucial role. In principle, PPI networks could have this

SR structure as well, since their subnetworks have exponential

degree sequence, and perhaps power laws could emerge at

higher levels of organization. This will be revealed only when

a more complete network is elucidated. Still, the most impor-

tant point is not whether the node degree sequence follows a

power law, but whether the variability of the node degree se-

quences is high or low [7], and the biological protocols that
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Fig. 3. Node degree distribution of all interactions in human protein-
interaction map [15]: (A) rank–degree plot in log–log scale, (B) rank–
degree plot in semilog scale, and (C) frequency–degree plot in log–log
scale. The rank–degree plots indicate that the degree distribution is
exponential. The straight lines (A,C) and the dotted curve (A) in log–
log scale are the least-squares fits of the data to the power law (with the
value of the slope) and to the exponential distributions, respectively.
The straight line and the dotted curve in log–log scale (A) become the
curve and the dotted line in semilog scale (B). Still, the frequency–
degree plot in (C) might appear visually to follow a power law, and can
lead to potential errors of finding power law node degree distribution.
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Fig. 4. Node degree distribution of all interactions in �filtered yeast
interactome� (FYI) data set [14]: (A) rank–degree plot in log–log scale,
(B) rank–degree plot in semilog scale, and (C) frequency–degree plot in
log–log scale. The rank–degree plot (A,B) shows the non-power law
distribution, which is not evident in the frequency–degree plot (C). The
straight lines (A,C) and the dotted curve (A) in log–log scale are the
least-squares fits of the data to the power law (with the value of
the slope) and to the exponential distributions, respectively. The
straight line and the dotted curve in log–log scale (A) become the curve
and the dotted line in semilog scale (B).
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necessitate this high or low variability. These issues will be ex-

plored in future publications.
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