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Robustness Analysis and Synthesis
for Nonlinear Uncertain Systems

Wei-Min Lu, Member, IEEE, and John C. Doyle

Abstract—A state-space characterization of robustness analysis
and synthesis for nonlinear uncertain systems is proposed. The
robustness of a class of nonlinear systems subject toL2-bounded
structured uncertainties is characterized in terms of a nonlinear
matrix inequality (NLMI), which yields a convex feasibility prob-
lem. As in the linear case, scalings are used to find a Lyapunov
or storage function that give sufficient conditions for robust sta-
bility and performances. Sufficient conditions for the solvability
of robustness synthesis problems are represented in terms of
NLMI’s as well. With the proposed NLMI characterizations, it is
shown that the computation needed for robustness analysis and
synthesis is not more difficult than that for checking Lyapunov
stability; the numerical solutions for robustness problems are
approximated by the use of finite element methods or finite differ-
ence schemes, and the computations are reduced to solving linear
matrix inequalities. Unfortunately, while the development in this
paper parallels the corresponding linear theory, the resulting
computational consequences are, of course, not as favorable.

Index Terms—Computational nonlinear control, nonlinear con-
trol systems, nonlinear matrix inequality (NLMI), robust control,
robust performance, state space.

I. INTRODUCTION

I N THIS paper, we will consider the analysis and synthesis
problems for a class of nonlinear systems subject to-

bounded structured uncertainty in a state-space setting. The
basic tool for robustness analysis of such uncertain systems is
the small-gain theorem or its variations (see for example [35],
[10], and [12]). A standard diagram for robustness analysis
of an uncertain system is depicted in Fig. 1, whereis the
nominal system and is the uncertainty, which is usually
assumed to be strictly bounded by one. A general sufficient
condition for robust stability is that the gain of the nominal
system is less than or equal to one. Overviews of a variety
of results in the linear case can be found in [23], [30], [8],
and [36]. In those results, the systems are described in terms
of their input–output (I/O) behaviors, and robustness analysis
is essentially reduced to gain analysis of the corresponding
transfer matrices or I/O operators, but most of the results can
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Fig. 1. Uncertain system.

also be expressed using state space [13], [22], [17], [24], [4].
For linear systems, small-gain conditions can be characterized
in terms of linear matrix inequalities (LMI’s) in state space by
the use of the KYP lemma. Therefore, the robustness analysis
and synthesis can be conducted by solving LMI’s, which are
computationally efficient convex feasibility problems (see [4]
for a tutorial review of LMI’s and their use).

For nonlinear systems, the computational properties of state-
space treatment have not been fully exploited yet, although
they clearly are much more difficult. In this paper, we will
pursue the computational issues further for nonlinear control
in state space, attempting to parallel the linear LMI theory
as much as possible. We show that the robustness analysis
and synthesis for nonlinear systems can also be reduced
to the convex feasibility problems with nonlinear matrix
inequalities (NLMI’s). Note that the state-space treatment
captures systems’ internal properties, in addition to the I/O-
behaviors; therefore, instead of I/O-stability, the notion of
asymptotic stability is naturally employed in this paper. By
robust asymptotic stability, we mean that the feedback systems
are asymptotically stable for each admissible uncertainty;
the robust performance means that the uncertain systems
are asymptotically stable and have -gain for each
admissible uncertainty.

The robustness results can also be represented in terms of
Hamilton–Jacobi equations/inequalities, which is more con-
ventional. However, the NLMI characterizations may offer
better computational features. With the NLMI characteriza-
tion it is shown that computation complexity for checking
robustness analysis and synthesis for nonlinear uncertain sys-
tems is comparable with that for checking the Lyapunov
stability; in other words, the provided approach reduces the
robustness analysis and synthesis problems to the possible
easiest problems, as far as the computation is concerned.
Unfortunately, the NLMI conditions involve neither a finite
number of unknowns nor a finite number of constraints, so
the computational advantages are far less immediate than for
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LMI’s. But the solutions of NLMI’s on bounded set can be
numerically approximated by the use of finite element method
or finite difference spatial discretization; the computations
are reduced to solving LMI’s. Clearly, much additional work
will be needed on the achievement of high computational
efficiency, and sophisticated computational techniques will be
required to make the general NLMI computation feasible.

In essence, the linear theory fails to fully extend in two
ways. First, checking stability for nonlinear systems is much
harder so that reducing the computation is less advantageous.
Second, the generalization from robust performance analysis to
full-information synthesis has serious obstructions, as will be
clear. Hopefully, this treatment of the problem will highlight
the similarities and differences between the linear and nonlin-
ear cases in a way that will encourage further development of
a computational nonlinear control theory.

The rest of the paper is organized as follows. In Section II,
some standard results for robustness analysis are reviewed.
In particular, the small-gain theorems are given for uncer-
tain systems with structured uncertainty. In Section III, the
performance robustness of nonlinear uncertain systems are
characterized, in particular, a NLMI characterization is empha-
sized. In Section IV, we deal with the performance robustness
synthesis problem; the solvability conditions are also in terms
of NLMI’s. We address some computational issues for robust-
ness analysis and synthesis in Section V, in particular, two
numerical algorithms are provided, one uses finite element
method and the other a finite difference scheme. A numerical
example is provided to illustrate the use of finite difference
schemes and LMI solvers.

Detailed proofs are omitted throughout because of space
constraints. No fundamentally new techniques are introduced,
but the interested reader can find more details in [20].

A. Conventions

The following conventions are made in this paper.is the
set of real numbers, . is -dimensional
real Euclidean space; stands for the Euclidean norm.
(or ) is the state set which is a convex open subset of some
Euclidean space and contains the origin. is
the net of all real (complex) matrices. The transpose
of some matrix is denoted by . By

for some Hermitian matrix or
we mean that the matrix is (semi-)positive definite. A function
is said to be of class if it is continuously differentiable

times; so stands for the class of continuous functions.
A function is positive-definite if ,

, and on . A
matrix-valued function is positive definite if

is positive definite for each and there exist
such that for all . (or )
stands for the function space which is defined as the set of
all real ( -dimensional) vector-valued functions on
such that , and is
its extended space which is defined as the set of the vector-
valued functions on such that for
all , where is the truncation operator.

II. PRELIMINARIES: SMALL- GAIN

THEOREMS AND BOUNDED UNCERTAINTY

To motivate the techniques to be used in this paper, we
will review the small-gain theorems for robust input–output
stability. For a causal nonlinear time-invariant operator

with , the -gain is
defined as

(1)

where is a truncation operator; is I/O-stable if
. has -gain less than or equal to if and only if

(2)

for all and .
Next, we consider the robust stability of the uncertain

system in Fig. 1 without disturbance input and regulated
output , which is denoted by , where the uncertainty

is structured

block-diag

is causal (3)

and has -gain , i.e.,
. This description about the uncertainty is fairly general; in

many cases, we can use the (frequency-dependent) scaling on
both plant and uncertainty, and the problem can be transferred
to this standard case. The feedback structure is assumed to
be well-posed for any , since robust I/O-stability
for requires that is stably invertible for all

.
Definition II.1: The structured -gain of with

respect to the structure in (3) is

is not stably invertible

(4)
Otherwise, if stably invertible for all , then

.
The uncertain system with is thus robustly

I/O-stable if and only if , but this definition of
structured -gain does not provide any immediate compu-
tational advantage, even for the linear systems. On the other
hand, the original uncertain system, , is equivalent to
the scaled system where defined
as

block-diag
(5)

where each of the identity matrices is compatible with the
corresponding nonlinear uncertainty . Note that

for all and ; therefore, for each
, if and only if . Observe that

(6)

We immediately have the following scaled small-gain theorem.
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Lemma II.2 (Scaled Small-Gain Theorem):The uncertain
system is robustly I/O-stable if there is such
that

(7)

For this is the well-known small-gain theorem (see for
example [35]), and (6) suggests why the scaling can reduce
the conservatism of the unscaled small-gain condition. The
computational implication of the scaled small-gain condition
will be discussed in the next sections. Condition (7) is also
necessaryunder some additional assumptions, such as that the
plant is linear or nonlinear with fading memory [30], [21],
[28]. Similar scaling can be used to reduce the conservatism
of analysis of robust performance for the uncertain system
Fig. 1 with external disturbance input and regulated output

against structured perturbations [12], [36]. Notice that
the scaling for reducing the conservatism arising from the
constrained structure was previously introduced in conjunc-
tion with “interconnected systems stability theory” (see for
example [1] and [22]).

In this paper, we will mainly consider the internal properties
of the control systems with structured uncertainties; for exam-
ple, instead of I/O-stability, asymptotic stability is considered
in the sequel. We next consider an internal description of the
above-bounded uncertainty set. The reader is referred to [33]
for a detailed description of dynamical systems with inputs
and outputs. Let be a dynamical system with state
space and initial state . It has -gain less than
or equal to for some if (2) holds for all
and . It is known from [34] and [15] that
the system has -gain if and only if there exists a
nonnegative function , which is known as storage
function [34], such that for all , , , and

the following dissipation inequality holds:

(8)

where is the state for the system with inputat time .
Note that if the storage function is continuously differentiable,
then the dissipation inequality (8) becomes

In this paper, we will consider a class of the dynamic
uncertainties which are -gain-bounded.

Definition II.3: The class of admissible time-invar-
iant structured uncertainties with blocks is a set
of dynamical systems, and for all block-diag

, and for all , the dynamic
block with state
is asymptotically stable at equilibrium zero with zero input
and has that -gain , the corresponding storage function

, is continuously differentiable.
In the next two sections, we will address the robustness

analysis and synthesis problems for nonlinear systems with
the above-described admissible structured uncertainty set; the
scaling is still used in different analysis and synthesis problems

to reduce possible conservatism. Our focus is on the robust per-
formance issues; the robust stability and pure-performance
are special cases (see [20]).

III. ROBUSTNESSANALYSIS OF UNCERTAIN SYSTEMS

In this section, we will consider the robust performance
analysis problem. The feedback uncertain system is repre-
sented by block diagram in Fig. 1, whereis some external
disturbance vector and is the regulated signal vector. The
nominal plant has the following realization:

(9)

with , and the uncertainty is structured which is
assumed to belong to the setdefined by Definition II.3. We
will assume for all for simplicity, and the
nominal system is strictly causal with respect to the input.
The case where for some is considered in [20].
In the following, we denote the uncertain system as .

Definition III.1: The uncertain system depicted in
Fig. 1 has robust performance if for each , the corre-
sponding feedback system is well posed and has-gain ,
i.e.,

for all ; in addition, it is asymptotically stable around
zero for .

In the following we will examine under what conditions the
uncertain system above has robust performance. The scaling
is used to reduce possible conservatism arising from the
structural constraints of the uncertainty; the equivalent scaled
system

will be used to derive the solutions, where with the
scaling matrix set defined in (5). Denoting

we have the following result.
Theorem III.2: Consider the uncertain system with
is described in (9) and defined by Definition II.3.

The system has robust performance if there exist a positive
definite function and a positive definite matrix

such that any of the following statements is true with

.

1) and the Hamilton–Jacobi inequal-
ity holds as in (10), shown at the bottom of the next
page, for all .

2) Inequality (11), also shown at the bottom of the next
page, holds for all .
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In fact, statements 1) and 2) are equivalent from the Schur
complements argument. With some algebraic manipulations,
Statement 2) [therefore 1)] implies that the scaled system

has -gain . Note that the left-hand side of (11) is affine
in , thus (11) is actually a differential linear (or affine)
matrix inequality, but we will refer to it as NLMI to emphasize
its use in nonlinear problems and that they must hold for each

. The proof of the theorem is given in [20].
Though the two characterizations in this theorem are equiv-

alent, the NLMI characterization (11) makes immediate some
appealing convexity properties: the solutions of NLMI (11)
form a convex set. (By the equivalence between the two
statements, the solutions of the Hamilton–Jacobi inequality
(10) also form a convex set, although it is not immediate
and easy to employed in computation. The convexity is a
necessary condition for the Hamilton–Jacobi inequality to
be equivalently transferred to an NLMI representation.) This
trivial fact of the convexity has only been exploited system-
atically in the linear computation, but we hope that numerical
techniques may be developed to exploit it in the nonlinear case
as well, although this case is obviously much more difficult.
In Section IV, we will consider the numerical issues.

IV. ROBUST SYNTHESIS FORUNCERTAIN SYSTEMS

In the last section, robustness of uncertain systems is
characterized in terms of NLMI’s as a small-gain condition
for a (scaled) nominal systems modulo some appropriate
stabilizing conditions. Therefore, robust synthesis can combine
the analysis results in the last two sections with the techniques
of -control synthesis (see for example [31], [2], and [19]).
Technically, we will closely follow the treatments in [19]
and [18]. Note that the robust stabilization with unstructured
uncertainty is also considered in [32].

Consider the uncertain system Fig. 1 plus additional control
input vector and measured output vector. As in the
analysis problem, is the external disturbance vector, andis
the regulated signal vector. The nominal plant for robustness
synthesis has the following realization:

(12)

where is the state vector of the nominal system,, , ,
, and , , for , .

The uncertainty is structured and belongs to the set

defined by Definition II.3. Correspondingly, the scaling matrix
set is defined as (5). In this section, we only consider the
state feedback case, i.e., the full state vectorof the nominal
system is available for the output measurement. The synthesis
problem is stated as follows.

Definition IV.1 (State Feedback Synthesis Problem):Decide
when a state feedback law with and

exists for the uncertain system such that the closed-
loop uncertain system satisfies robust performance.

In the following, we consider the solutions to the above
robustness synthesis problem.

A. State Feedback Solutions

Consider the uncertain system with the nominal plant (12).
Define

The following structural constraints are imposed for simplicity.
Assumption IV.2: , and

where for all .
Theorem IV.3:Under Assumption IV.2, the state feedback

robust performance synthesis problem has a solution for the
uncertain system depicted as in Fig. 1 plus control input if
there exist a positive definite positive definite function

and a positive definite matrix such
that the following Hamilton–Jacobi inequality holds for all

:

(13)

where

for all . Moreover, if is such a pair of
solutions, then the state feedback function

makes the closed-loop system have a robust performance.

(10)

(11)
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The proof follows the argument in [18] and Theorem III.2;
it is given in [20]. However, the computational implication of
the Hamilton–Jacobi inequality (13) is not immediate. Note
that the Hamilton–Jacobi inequality has unknownsand ;
essentially, its left-hand side is not convex in either unknowns,
thus it cannot be turned into an NLMI as in Theorem III.2. In
the following, we will give an alternative structured charac-
terization with better computational properties.

B. A Convex Characterization for State Feedback Solutions

Consider the uncertain system with nominal plant (12) with
and being sufficiently smooth such that the nominal

plant is equivalently represented by the following differential
equation:

(14)
where etc., and , , , are
matrix-valued functions. Notice that the choice of and

is not unique; for example, if , then
for all matrix-valued function

with . In the following, we assume (14) is proper in
a sense to be made precise soon. In addition, we assume that

for all for simplicity, which also implies
that the uncertain system is well posed. We now define

and

Let be the distribution on which annihilates
all of the row vectors of . We have the following
characterization for the synthesis problem.

Theorem IV.4:Consider the uncertain system with nominal
plant defined as (14). The state feedback robust performance
synthesis problem has a solution if there exist a positive
definite matrix-valued function and a positive
definite matrix such that (15), shown at the bottom of
the page, holds for all with

where is a matrix-valued function on such that
span for all , and

for some function on with .
The proof of the above theorem, which uses a generalized

Finsler’s theorem [19, Lemma 7.3], follows the arguments in

the proof of [19, Th. 4.5] and is given in [20]. Note that the
NLMI (15) is affine in the unknowns and ; for this
part of the characterization, the computation reduces to convex
feasibility problems. However, the overall characterization is
not convex in general; this can be seen by the additional
nonconvex condition .

As discussed above, there are infinitely many representa-
tions for (12) with the form of (14). A natural question is
the following: does there exist a proper representation such
that the NLMI (15) gives a solution such that the condition

is automatically satisfied? Note that
under some conditions, e.g., Assumption IV.2, the NLMI
(15) is equivalent to a state-dependent Riccati inequality (or
equation) with unknowns and ,
which can be also derived from Hamilton–Jacobi inequality
(13) by replacing . In [16], it is shown
that there exists a proper representation such that the solution
to the corresponding state-dependent Riccati equation satisfies
the additional condition. Note that the state-dependent Riccati
equation approach was used in nonlinear regulation problem in
[6]. But the Riccati equation characterization does not provide
immediate computational benefit to the robustness synthesis
problem because of the essential nonconvexity.

V. NLMI’s AND NUMERICAL ALGORITHMS

The computation for robustness analysis and synthesis in-
volves solving NLMI’s. In this section, we examine some
properties of NLMI’s and exploit them in computations for
robustness analysis and synthesis.

A. Structural Properties for Robustness Analysis and Synthesis

To make the computational properties of NLMI’s more
explicit for different characterizations, we will take Lyapunov
stability analysis as a benchmark and compare robustness
analysis and robustness synthesis problems with it.

Consider a system with being state
vector, is sufficiently smooth, and . From the
Lyapunov theorem, the system is Lyapunov stable around the
equilibrium zero if and only if there is a positive definite
function such that

(16)

Note that (16) is also an NLMI; moreover, the NLMI charac-
terizations of robustness analysis and synthesis problems share
a common structure with that for Lyapunov stability, i.e., each
of the solutions involves solving an algebraic NLMI (or state-
dependent LMI) and a partial differential equation (PDE). The
structures of the solutions are summarized in Table I, where

with , , and ,
are the unknowns.

(15)
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TABLE I

Because of the similarity in solution structures between
the robustness analysis/synthesis problems and Lyapunov sta-
bility, we conclude thatthe computational effort needed for
robustness analysis and synthesis is not more difficult than
that for checking Lyapunov stability.In other words, the
NLMI characterization reduces the robustness analysis and
synthesis problems to the possible easiest problems in the
computational point of view. In the following, we propose
two types of numerical algorithms for solving the above
analysis and synthesis problems by taking advantage of NLMI
characterizations.

B. Finite Element Methods

Let us first examine the algebraic NLMI’s. The algebraic
NLMI’s for robustness synthesis have square matrix un-
knowns. The algebraic NLMI’s for robustness analysis can
also be turned into the same form. Let us take (11) as an
example: Let , , ,

, and where , , , and
are properly chosen continuous matrix-valued functions (see
[16]), then the solution of (17), as shown at the bottom of the
page, can be obtained by the solution of (18), also shown at
the bottom of the page. It is sufficient to find a matrix-
valued function and a positive definite matrix

such that . Therefore, if is a
solution to (18), then is a solution to (17). The
left-hand side of NLMI (18) or (15) is affine in its unknown,
for example

(19)

for all with . Equation (19) implies
that the (positive definite) solutions and to NLMI

form a convex set. Using this property,
one can also show that the positive definite solutions of the
NLMI (18) can always be chosen to be continuous if they exist.

Theorem V.1:Suppose the matrix inequality
has positive definite solution pair , where

depends on , then there exists a matrix-

valued function with ,
such that for all .

Proof: Consider the NLMI (18). By assumption, there
exist a positive definite matrix pair and
for each such that

By continuity of with respect to , there is an
such that

(20)

for all .
Now is an open covering of , then

there is a locally finite open subcovering for some
index set which refines . Now is
positive definite for each such that

(21)

for all .
It is known by the standard argument of partitions of

unity that there is a smooth partition of unity to
subordinated to the covering ; i.e., is smooth and
nonnegative with support for each , and

(22)

Define as

(23)

which is positive definite for all and smooth since it is
locally a finite sum of smooth positive definite matrix-valued
functions.

It follows from (22), (23), and (19) that

(17)

(18)
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Therefore, the constructed smooth positive definite matrix-
valued function in (23) is a solution to

.
The NLMI (18) or (15) is actually a state-dependent LMI

on . In general cases where the state setis not finite,
the computation for solving NLMI’s is an infinite-dimensional
LMI problem. Though this is bad news for computational
efforts to deal with nonlinear problems, some approximation
computation methods can still be used. In fact, the constructive
proof of the above theorem suggests a finite element method
to numerically approximate solutions of algebraic NLMI (18)
or (15) on a bounded state set .

To illustrate the finite element ideas, let open sets
be a finite covering of , i.e.,

Choose the trial functions to be a partition of unity to
subordinated to the covering . Then the solution of
algebraic NLMI (18) or (15) for can be approximated
by the following finite expansion:

(24)

where the coefficient matrix is chosen to satisfy the
following set of coupled LMI’s:

for some , where and are unknowns.
The above finite element algorithm indirectly gives the

numerical solutions to the robustness analysis or synthesis
problems. However, even if the algorithm happens to satisfy

for all , [or ]
still does not give the exact solutions to the original analysis
or synthesis problems. It is additionally required that there be
a function such that

(25)

for all . The finite element algorithm does not guarantee
(25). Thus, the above finite element method only gives approx-
imated solutions. There are more discussions about (25) in the
context of NLMI solution in [20]. In the next subsection, we
will give another numerical algorithm where (25) is integrated
into the algorithm.

C. Finite Difference Schemes

The finite difference scheme is a useful (recursive) numer-
ical method of finding approximated solutions to PDE’s, in
particular Hamilton–Jacobi equations [7], where the differ-
ence approximation technique is used to approximate partial
derivatives. The finite difference technique can be naturally
employed to numerically approximate the solutions of NLMI’s
arising from the robustness analysis problems, e.g., (26),
shown at the bottom of the page, on , with .

To implement the finite-difference algorithm, we first grid
the state space . A generic point in will be writ-
ten as . Let the mesh sizes be for

. Let be the value of nu-
merical approximation of at for

. The gradient at can
be approximated by the following difference formula:

(27)

By substituting the difference approximation, the “dif-
ferenced form” of (26) at
becomes (28), also shown at the bottom of the page, with

. Inequality (28) is an LMI, because the
left-hand side of the inequality is affinite in ,

, and . There-
fore, the nonnegative for each
can be computed by solving the above set of LMI’s for all

. If the computational memory is a concern, an
iteration approach can be used instead; the solutions at each
iteration involves solving the LMI (28) with unknown, say,

etc., being nonnegative where etc.
are known.

Observe that the computational complexity of finite-
difference method is exponentially dependent on the dimen-
sion of the state vector. However, the advantage of using
the finite difference method in NLMI computation is that the
computations are reduced to solving LMI’s, which are convex
feasibility problems. The finite difference method with NLMI
characterization is more computationally efficient than that
with Hamilton–Jacobi equation characterization. For example,
consider instead the corresponding Hamilton–Jacobi equation:

(29)

(26)

(28)
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Fig. 2. Numerical solution of NLMI example.

with with . To use the finite difference
method, we similarly grid the state space; the gradient
can be similarly approximated as partial difference in (27).
Therefore, the Hamilton–Jacobi equation (29) is approximated
by the following difference equation:

One needs to solve the implicit nonlinear equation to get the
approximated solutions, for all . There
are several numerical methods to solve the above nonlinear
equation, such as Jacobi and Gauss–Seidel methods [3]. For
example, if for each in the following
iteration:

converges for an appropriately chosen , then

is the numerical solution to the original Hamilton–Jacobi
equation.

To conclude this section, we will give a numerical example
to illustrate the use of the finite difference scheme in NLMI
computation.

Example V.2:Consider the following two-input–single-
output system:

To verify that the system has a performance with-gain
for , we consider the solutions of the corresponding

NLMI as follows:

(30)
The exact solution can be represented as

, where satisfies
; therefore, must satisfy

(See Fig. 2 for , where the solution range is bounded
by the dashed lines.) Next, the finite difference (recursive
scheme described above) is used to find numerical solutions
of NLMI (30) on [ ] with . At each iterative
step, an LMI is solved using LMI-toolbox [14]. The mesh
size is varying between 0.001 and 0.1. The numerical solution
of is shown in Fig. 2 as the solid line, which is in the
solution range.
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