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Robustness Analysis and Synthesis
for Nonlinear Uncertain Systems

Wei-Min Lu, Member, IEEE and John C. Doyle

Abstract—A state-space characterization of robustness analysis
and synthesis for nonlinear uncertain systems is proposed. The A
robustness of a class of nonlinear systems subject 10, -bounded
structured uncertainties is characterized in terms of a nonlinear

matrix inequality (NLMI), which yields a convex feasibility prob- y o
lem. As in the linear case, scalings are used to find a Lyapunov

or storage function that give sufficient conditions for robust sta- b

bility and performances. Sufficient conditions for the solvability 5 o

of robustness synthesis problems are represented in terms of

NLMT’s as well. With the proposed NLMI characterizations, itis  Fig. 1. Uncertain system.
shown that the computation needed for robustness analysis and

synthesis is not more difficult than that for checking Lyapunov

stability; the numerical solutions for robustness problems are galso be expressed using state space [13], [22], [17], [24], [4].

approximated by the use of finite element methods orfinite differ- 4 jinear systems, small-gain conditions can be characterized
ence schemes, and the computations are reduced to solving linear. '

matrix inequalities. Unfortunately, while the development in this in terms of linear matrix inequalities (LMI's) in state space by-
paper parallels the corresponding linear theory, the resulting the use of the KYP lemma. Therefore, the robustness anaIySIS

computational consequences are, of course, not as favorable.  and synthesis can be conducted by solving LMI’s, which are

Index Terms—Computational nonlinear control, nonlinear con- computationally efficient convex feasibility problems (see [4]

trol systems, nonlinear matrix inequality (NLMI), robust control, ~ for a tutorial review of LMI's and their use).
robust performance, state space. For nonlinear systems, the computational properties of state-
space treatment have not been fully exploited yet, although
they clearly are much more difficult. In this paper, we will
pursue the computational issues further for nonlinear control
I N THIS paper, we will consider the analysis and synthesi§ state space, attempting to parallel the linear LMI theory
problems for a class of nonlinear systems subjecCie as much as possible. We show that the robustness analysis
bounded structured uncertainty in a state-space setting. Thg synthesis for nonlinear systems can also be reduced
basic tool for robustness analysis of such uncertain systemggsthe convex feasibility problems with nonlinear matrix
the small-gain theorem or its \{ariations (see for example B%equalities (NLMI's). Note that the state-space treatment
[10], and [12]). A standard diagram for robustness analysigptures systems’ internal properties, in addition to the 1/O-
of an uncertain system is depicted in Fig. 1, whefas the pehaviors; therefore, instead of I/O-stability, the notion of
nominal system and\ is the uncertainty, which is usually 3symptotic stability is naturally employed in this paper. By
assumed to be strictly bounded by one. A general sufficienfyst asymptotic stability, we mean that the feedback systems
condltlor_l for robust stability is that the gain of the nomm_aélre asymptotically stable for each admissible uncertainty:;
system is less than or equal to one. Overviews of a varigys ropust performance means that the uncertain systems
of results in the linear case can be found in [23], [30], [8le asymptotically stable and havk-gain < 1 for each
and [36]. In those results, the systems are described in terfgnissible uncertainty. -
of their input—output (1/O) behaviors, and robustness analysisthe robustness results can also be represented in terms of
is essentially reduced to gain analysis of the correspondipgmijton—Jacobi equations/inequalities, which is more con-
transfer matrices or I/O operators, but most of the results cg8ntional. However, the NLMI characterizations may offer
better computational features. With the NLMI characteriza-
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LMI's. But the solutions of NLMI's on bounded set can be Il. PRELIMINARIES: SMALL- GAIN
numerically approximated by the use of finite element method THEOREMS AND BOUNDED UNCERTAINTY

or finite difference spatial discretization; the computations 14 motivate the techniques to be used in this paper, we

are reduced to solving LMI's. Clearly, much additional worky| review the small-gain theorems for robust input—output

will be needed on the achievement of high computationglypijity  For a causal nonlinear time-invariant operator
efﬂm_ency, and sophisticated computational tephmque; will be. £5[0, 50) — £5[0, 00) with G(0) = 0, the £»-gain is
required to make the general NLMI computation feasible. jeofined as

In essence, the linear theory fails to fully extend in two
ways. First, checking stability for nonlinear systems is much G|l ey:= sup sup || 2r Gul|2 )
harder so that reducing the computation is less advantageous. TE(0, +o0) ueL[0, 00), |PrUllz0 [[Prull2
Second, the generalization from robust performance analysis to
full-information synthesis has serious obstructions, as will BgherePr is a truncation operatoy is I/O-stable if||G||c, <
clear. Hopefully, this treatment of the problem will highlighto. G has£L»-gain less than or equal tp > 0 if and only if
the similarities and differences between the linear and nonlin- T T
ear cases in a way that will encourage further development of / ||y(t)||2 dt < 72/ ||u(t)||2 dt 2)
a computational nonlinear control theory. 0 0

The rest of the paper is organized as foIIowg. In Sectiqn Hor all w e L5RT) and T € RY.
some standard results for robustness analysis are reviewe dext, we consider the robust stability of the uncertain

In particular, the small-gain theorems are given for uncegystem in Fig. 1 without disturbance input and regulated

tain systems with structured uncertainty. In Section I, th8utput7 which is denoted byG, A), where the uncertainty
performance robustness of nonlinear uncertain systems are A’is structured T

characterized, in particular, a NLMI characterization is empha-
sized. In Section IV, we deal with the performance robustness  A. — {block-diag[A;,- -+, Ax]
synthesis problem; the solvability conditions are also in terms
of NLMI's. We address some computational issues for robust-
ness analysis and synthesis in Section V, in particular, Véad hasc,-gain < 1, i.e, A € BA:= {A € A | ||Az, <
numerical algorithms are provided, one uses finite elemepf This description about the uncertainty is fairly general; in
method and the other a finite difference scheme. A numerigahny cases, we can use the (frequency-dependent) scaling on
example is provided to illustrate the use of finite differendgoth plant and uncertainty, and the problem can be transferred
schemes and LMI solvers. to this standard case. The feedback structure is assumed to
Detailed proofs are omitted throughout because of spage well-posed for anyA € BA, since robust I/O-stability
constraints. No fundamentally new techniques are introducegh (G, A) requires thatl — AG is stably invertible for all
but the interested reader can find more details in [20]. A € BA.
Definition 11.1: The structuredl,-gain pa(G) of G with
respect to the structurd in (3) is

Ai: [,12)[0, OO)
— L8]0, c0) is causa} (3)

A. Conventions
-1

The following conventions are made in this pagRris the  pa(G):= sup {||A||;; | { — AG is not stably invertiblg.
set of real number®*: = [0, o) C R. R™ is n-dimensional aed @)
real Eug:hdean spacej - | §tan_ds for the Euclidean nornX Otherwise, ifI — AG stably invertible for allA € A, then
(or X,) is the state set which is a convex open subset of some

i i 1 xXm nxXmy | N-J(G) = 0
Euclidean space and contains the 0”9‘?”} (crm) is The uncertain systeif(7, A) with A € BA is thus robustly
the net of alln x m real (complex) matrices. The transpos?/

of some matrixM € R™*™ is denoted byM?. By P > 0 O-stable if anq only ifpia(G) < 1, but t.hls deflnmon of
- . N x structured£s-gain does not provide any immediate compu-
(P > 0) for some Hermitian matri® € R™**™ or (C"*™) . ;
o . o L ._tational advantage, even for the linear systems. On the other
we mean that the matrix is (semi-)positive definite. A functio

is said to be of clas€C* if it is continuously differentiable Hand, the original uncertain systext;, A), is equivalent to

-1 -1 ;
k times; soC? stands for the class of continuous functionst.he scaled systeDGD™, DAD™) whereD) & D defined

A function V: X — RT is positive-definite ifV(xz) > 0,

V(z) =0= 2 =0, andlim,—o V(z) = cc onX. A C°  p._ rplock-diag{d, I, dol,---,dxI}: d; € R, d; > 0}
matrix-valued function”: X — R"™*" is positive definite if (5)
P(x) is positive definite for each € X and there existt > 0 \yhere each of the identity matrices is compatible with the
such thatP(z) > af for all & € X. Ly(R¥) (or LE(RY))  corresponding nonlinear uncertaindy;. Note that||A[|z, =
stands for the function space which is defined as the Set|flf)AD—1||£2 forall D € D andA € BA: therefore, for each
all real (p-dimensional) vector-valued functiongt) on R*  p c p A e BAifand only if DAD~! € BA. Observe that
such thatf|ul2: = (f5° (lu(®)]|> dt)'/? < oo, and LS(RY) is

its extended space which is defined as the set of the vector- Glle, > inf |DGD7Y|z, > pa(G). (6)
valued functions:(¢) on R* such thatPru(t) € Lo(RT) for bep

all T ¢ R, where Pr is the truncation operator. We immediately have the following scaled small-gain theorem.
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Lemma Il.2 (Scaled Small-Gain Theoremljhe uncertain to reduce possible conservatism. Our focus is on the robust per-
system(G, A) is robustly I/O-stable if there i$) € D such formance issues; the robust stability and pdseperformance
that are special cases (see [20]).

IDGD™ |z, < 1. (7) . ROBUSTNESSANALYSIS OF UNCERTAIN SYSTEMS

For D = I this is the well-known small-gain theorem (see for !N this section, we will consider the robust performance
example [35]), and (6) suggests why the scaling can red@%alyss problem._ The fgedpack uncertqln system is repre-
the conservatism of the unscaled small-gain condition. Tﬁ_&”teg by block diagram '”hF'g' 1, :Nhegms so:ne externaLI
computational implication of the scaled small-gain conditiofliSturbance vector and is the regulate signal vector. The
will be discussed in the next sections. Condition (7) is ald§Pminal plantG has the following realization:

necessaryinder some additional assumptions, such as that the &= f(z) + g1(z)u + g2(z)w
plant is linear or nonlinear with fading memory [30], [21], G:Qy=hi(z)+kn(@)u+ kz(z)w 9)
[28]. Similar scaling can be used to reduce the conservatism z = ho(x) + ka1 (z)u + k2o (2)w

of analysis of robust performance for the uncertain systgm,,, .. € X, and the uncertaintA is structured which is
Fig. 1.With external disturbancg input and regulatgd OUtpUt 55sumed to ,belong to the s@tdefined by Definition I1.3. We
z agalnst structured perturbatloms [12],. [36]. I_\I(_)tlce that assumek. () = 0 for all = € X for simplicity, and the
the scaling for reducing the conservatism arising from the . -, systent is strictly causal with respect to the inpit
constrained structure was previously introduced in conjungp . .o wherg,, # 0 for somez € X is considered in [20]
tion with “interconnected systems stability theory” (see fof, 1o following, we denote the uncertain system(&s A).
examplle [1] and [22])' . . . . Definition 11.1: The uncertain syster7, A) depicted in
In this paper, we will mainly consider the internal propertle,lgig 1 has robust performance if for eaghe £2, the corre-

of the control systems with structured uncertainties; for exargz | . ; ;
) . . L™ T onding feedback system is well posed andfiagain< 1,
ple, instead of I/O-stability, asymptotic stability is considere P g y P gain=

in the sequel. We next consider an internal description of the ™ .
above-bounded uncertainty set. The reader is referred to [33] / (@7 = [lw(@®)]?) dt < 0
for a detailed description of dynamical systems with inputs 0 N
and outputs. LefA: u — y be a dynamical system with stateror a)| 77 ¢ R+; in addition, it is asymptotically stable around
spaceX and initial statez(0) = 0. It has £»-gain less than ,ar0 forw = 0.
or equal toy for somey > 0 if (2) holds for all” > 0y the following we will examine under what conditions the
and w(t) € L5(RT). It is known from [34] and [15] that ,ncertain system above has robust performance. The scaling
the systemA has.»-gain < 1 if and only if there exists @ js ysed to reduce possible conservatism arising from the
nonnegative functio’: X — R, which is known as storage sirctural constraints of the uncertainty; the equivalent scaled
function [34], such that for alto, £, € R*, zo € X, and gygtem
u € LY(R™T) the following dissipation inequality holds: .
(1o 3ol 3] s0)
0 I 0o Iy
will be used to derive the solutions, whete € D with the

scaling matrix sefD defined in (5). Denoting

Vo) - V(o) < / I = oIt (®)

wherez is the state for the system with inputat time¢;.

Note that if the storage function is continuously differentiable, g(@):= [ (@) g2(x)], h(z):= [hl(x)}

then the dissipation inequality (8) becomes ha()
Bz):= [’m(“f) ’ﬁ?(w)}

V(@) < lu@)I? = lly@)I1*. kor(z)  oa(2)

In this paper, we will consider a clag2 C A of the dynamic
uncertainties which ar&,-gain-bounded.

Definition 11.3: The class2 ¢ A of admissible time-invar-
iant structured uncertainties withV blocks is a set
of dynamical systems, and for allA:= block-diag

we have the following result.

Theorem I11.2: Consider the uncertain systef@, A) with
G is described in (9) and\ € £2 defined by Definition 11.3.
The system has robust performance if there exist a positive
definite functionV: X — R and a positive definite matrix

Lﬁ)lékA7A£p] (GR?) Tdﬁ';?r(;'f) %Virll"siééé\g’gh;dén%rgjc () € D such that any of the following statements is true with
1+ ~9 2 7 )

is asymptotically stable at equilibrium zero with zero inpu€: = % ? .

and has that;-gain < 1, the corresponding storage function T , .

Ui: X; — R+, is continuously differentiable. 1) Q—k (a:)Qk(a:) > 0 and the Hamilton—Jacobi inequal-
In the next two sections, we will address the robustness 'Y holds as in (10), shown at the bottom of the next

analysis and synthesis problems for nonlinear systems with P29, for allz &€ X\{0}.

the above-described admissible structured uncertainty set; th&) 'neauality (11), also shown at the bottom of the next

scaling is still used in different analysis and synthesis problems ~ P2ge. holds for all: € X\{0}.
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In fact, statements 1) and 2) are equivalent from the Schdefined by Definition I1.3. Correspondingly, the scaling matrix
complements argument. With some algebraic manipulatiorsgt D is defined as (5). In this section, we only consider the
Statement 2) [therefore 1)] implies that the scaled system state feedback case, i.e., the full state veetof the nominal

Y2 0-2 o system is_ available for the output measurement. The synthesis

{ 0 I} { 0 I} problem is stated as follows.

Definition IV.1 (State Feedback Synthesis Problemgcide

has£»-gain < 1. Note that the left-hand side of (11) is affinevhen a state feedback law. = K(z) with K € C° and
in V(z), thus (11) is actually a differential linear (or affine)K’(0) = 0 exists for the uncertain system such that the closed-
matrix inequality, but we will refer to it as NLMI to emphasizeloop uncertain system satisfies robust performance.
its use in nonlinear problems and that they must hold for eachin the following, we consider the solutions to the above
z. The proof of the theorem is given in [20]. robustness synthesis problem.

Though the two characterizations in this theorem are equiv-
alent, the NLMI characterization (11) makes immediate some State Feedback Solutions
appealing convexity properties: the solutions of NLMI (11) Consider the uncertain system with the nominal plant (12).
form a convex set. (By the equivalence between the tvl?efi ne
statements, the solutions of the Hamilton—Jacobi inequality
(10) also form a convex set, although it is not immediate g(z):=[g1(z) g2(z)], h(z):= {hl(ﬂf)}
and easy to employed in computation. The convexity is a ha()
necessary condition for the Hamilton—Jacobi inequality to
be equivalently transferred to an NLMI representation.) This (2): = kii(z)  kio(x) o(a): = k13(z)
trivial fact of the convexity has only been exploited system- BT kor(2)  kao(z) |7 72T | kas(z) |
atically in the linear computation, but we hope that numenc:iuhe following structural constraints are imposed for simplicity.
techniques may be developed to exploit it in the nonlinear case, T _
as well, although this case is obviously much more difficul Assumption IV.2:ky (z) = 0, and ky (z)[h(z)  ka(2)] =

EO Ro(x)] where Ro(z) > 0 for all z € X.

In Section IV, we will consider the numerical issues. Theorem IV.3:Under Assumption 1V.2, the state feedback
robust performance synthesis problem has a solution for the
IV. 'ROBUST SYNTHESIS FORUNCERTAIN SYSTEMS uncertain system depicted as in Fig. 1 plus control input if
In the last section, robustness of uncertain systems tigre exist a positive definit€! positive definite function
characterized in terms of NLMI's as a small-gain conditiof’: X — R* and a positive definite matrix) € P such
for a (scaled) nominal systems modulo some appropridtet the following Hamilton—Jacobi inequality holds for all
stabilizing conditions. Therefore, robust synthesis can combinec X\ {0}:
the analysis results in the last two sections with the techniqu 19V
of H..-control synthesis (see for example [31], [2], and [19])=— T () f(z) + ——x(a:)(g(a:)Q_lgT(a:) — g3(z)
Technically, we will closely follow the treatments in [19]
and [18]. Note that the robust stabilization with unstructured Ry (z)gd () —=—(z) + hT ()Qh(x) < 0
uncertainty is also considered in [32]. (13)
Consider the uncertain system Fig. 1 plus additional control
input vector u. and measured output vectgt As in the
analysis problemy is the external disturbance vector, ants  \,here
the regulated signal vector. The nominal plant for robustness A
synthesis has the following realization: Q= {Q 0}

0 I
&= f(z) + g1 (x)u + ga(@)w + g3(x)ue _ A .
G:{y=hi(z)+ ki(2)u + kp(e)w + kia(z)u.  (12) for all z € X\{0}. Moreover, if (V(z), Q) is such a pair of

2 = ho(x) + ka1 (x)u + koo (2)w + koz(z)u. solutions, then the state feedback function
wherez is the state vector of the nominal systefi,g;, ;, K(z) = —lel(a:)g (x )8V (z)
ki € C° and f(0) = 0, h;j(0) = 0, for i, j = 1,2, 3. 2 dz

The uncertaintyA is structured and belongs to the s@t makes the closed-loop system have a robust performance.

A G @ )=S0 @) 41 @Qn() + (55 aa) + 1 0)Qk) )
Q- F @k @) (36705 @)+ F@0hw)) <0 (10

O o)o], FOL I @A) ko) + 108
Mar (G 02 =y Fut ) Lot ook ] <° .
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The proof follows the argument in [18] and Theorem l1ll.2the proof of [19, Th. 4.5] and is given in [20]. Note that the

it is given in [20]. However, the computational implication oNLMI (15) is affine in the unknownsX(z) and Y'; for this

the Hamilton—Jacobi inequality (13) is not immediate. Notpart of the characterization, the computation reduces to convex

that the Hamilton—-Jacobi inequality has unknownsand Q; feasibility problems. However, the overall characterization is

essentially, its left-hand side is not convex in either unknownsot convex in general; this can be seen by the additional

thus it cannot be turned into an NLMI as in Theorem II.2. Imonconvex conditior8” (z) = 227X ~1(z).

the following, we will give an alternative structured charac- As discussed above, there are infinitely many representa-

terization with better computational properties. tions for (12) with the form of (14). A natural question is
the following: does there exist a proper representation such

B. A Convex Characterization for State Feedback Solutionsthat the NLMI (15) gives a solution such that the condition

OV (N _ o Ty—1( ) i - o
Consider the uncertain system with nominal plant (12) Witk?_wd(x) =27 X d(,“f) is automatically satisfied? Nr(])te that
f and h; being sufficiently smooth such that the nomina nder some conditions, e.g., Assumption 1V.2, the NLMI

lant is equivalently represented by the following differenti I15) Is equivalent to a state-dependent Riccali inequality (or
P q y rep y 9 equation) with unknowns’(z) = X~1(z) andQ = Y1,

equation:
g ‘ which can be also derived from Hamilton—Jacobi inequality
& = A(z)z + Bi(2)u + Ba(x)w + Ba(z)uc (13) by replacing2Y (z) = 227 P(z). In [16], it is shown
G: Qy = Ci(z)x + Di(@)u + Dia(z)w + Dis(z)ue that there exists a proper representation such that the solution
z =

Ca(x)x + Da1(x)u + Daa(2)w + Daz(z)uc to the corresponding state-dependent Riccati equation satisfies
(14)  the additional condition. Note that the state-dependent Riccati
where A(z)z = f(z) etc., and4, B;, Cj, Dj; are C°  gqation approach was used in nonlinear regulation problem in
matrix-valued functions. Notice that the choice 4fx) and [g]. But the Riccati equation characterization does not provide
Ci(x) is not unique; for example, itd(z)x = f(z), then jmmediate computational benefit to the robustness synthesis

(A(z) + E(x))x = f(x) for all matrix-valued function®() problem because of the essential nonconvexity.
with E(z)x = 0. In the following, we assume (14) is proper in

a sense to be made precise soon. In addition, we assume that

Dy (z) = 0 for all z € X for simplicity, which also implies V. NLMI's AND NUMERICAL ALGORITHMS
that the uncertain system is well posed. We now define The computation for robustness analysis and synthesis in-
Cyi(x) volves solving NLMI's. In this section, we examine some
B(z):= [Bi(z) Ba(z)], Cz):= Cs(x) properties of NLMI's and exploit them in computations for

robustness analysis and synthesis.
0 Dlg(ai):| y y

D(x):= |:D21(JZ) Das(z) . . .
A. Structural Properties for Robustness Analysis and Synthesis

and To make the computational properties of NLMI's more
. - - - explicit for different characterizations, we will take Lyapunov
B(x):=[Bs(z) Dis(x) D)) stability analysis as a benchmark and compare robustness

Let A(B(z)) be the distribution onX which annihilates analysis and robustness synthesis problemsnwith it.
all of the row vectors of B(z). We have the following Consider a system = f(z) with « € R™ being state
characterization for the synthesis problem. vector, f is sufficiently smooth, andf(0) = 0. From the

Theorem IV.4: Consider the uncertain system with nominatyapunov theorem, the system is Lyapunov stable around the
plant defined as (14). The state feedback robust performa®@!ilibrium zero if and only if there is €' positive definite
synthesis problem has a solution if there exist a positifdnction V: X — R* such that
definite matrix-valued functiok: X — R™*™ and a positive v
definite matrixY” € D such that (15), shown at the bottom of %(x)f(x) <0. (16)
the page, holds for alk € X with

v o Note that (16) is also an NLMI; moreover, the NLMI charac-
Y:= {0 I} terizations of robustness analysis and synthesis problems share
a common structure with that for Lyapunov stability, i.e., each
where B () is a C° matrix-valued function oiX such that of the solutions involves solving an algebraic NLMI (or state-
span(By (z)) = N(B(x)) for all z € X, and 9 (z) = dependent LMI) and a partial differential equation (PDE). The
227X ~Y(z) for someC! functionV on X with V(0) = 0.  structures of the solutions are summarized in Table I, where

The proof of the above theorem, which uses a generalizedX — R*™ with p(0) = 0, X: X — R™*", and Q,

Finsler's theorem [19, Lemma 7.3], follows the arguments i € R?*? are the unknowns.

A(2)X(z) + X(2)AT () + BT (2)YB(z) X(x)CT(x)+ B(x)Y DT (x)

Msyn(X, Y, z): = Bi (x) Clz)X(z) + D(z)Y BT (z) D(z)YD¥(z) -Y

Bi(z) <0 (15)
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TABLE |
Problems ” Algebraic NLMIs PDEs
Lyapunov Stability (16) p(z)f(z) <0 %(:c) = p(z)

Robustness Analysis || (11) Mgp(p(z),Q,2) <0 | ZX(z) = p(z)

Robustness Synthesis || (15) Mgyn(X(2),Y,z) <0 | &¥(z) = 22T X~ 1(x)

Because of the similarity in solution structures betweeralued functionP: X — R™*™ with P(z) = PT(x) > 0,
the robustness analysis/synthesis problems and Lyapunov stech thatM(P(z), @, z) < 0 for all z € X.
bility, we conclude thathe computational effort needed for Proof: Consider the NLMI (18). By assumption, there
robustness analysis and synthesis is not more difficult tharist a positive definite matrix pafp € R?*? and P, € R™"*"
that for checking Lyapunov stabilityin other words, the for eachz € X such that
NLMI characterization reduces the robustness analysis and
synthesis problems to the possible easiest problems in the M(Pa; @, w) <0.
computational point of view. In the following, we proposesy continuity of M with respect toz, there is anr, > 0
two types of numerical algorithms for solving the abovgych that
analysis and synthesis problems by taking advantage of NLMI
characterizations. M(Py, Q, x9) <0 (20)

. for all zp € N(z):= {zo: ||zo — || < 72}

B. Finite Element Methods Now {N(z)}|.cx is an open covering oK C R", then
Let us first examine the algebraic NLMI's. The algebraithere is a locally finite open subcoverifN; }|;c1 for some

NLMI's for robustness synthesis have square matrix uindex setl which refines{N(z)}|zex. Now F; € R™*" is

knowns. The algebraic NLMI's for robustness analysis cgpositive definite for each € I such that

also be turned into the same form. Let us take (11) as an

example: Letf(z) = A(z)z, g(z) = B(x), h(z) = Clz)z, M(F;, @, 2) <0 (21)

k(z) = D(z), andp(z) = P(x)r where A, B, C, andD for all z € N;.

are properly chosen continuous matrix-valued functions (seeit is known by the standard argument of partitions of

[16]), then the solution of (17), as shown at the bottom of thgnity that there is a smooth partition of unifyp; }ier to X

page, can be obtained by the solution of (18), also showngihordinated to the coveringN;}|:cr; i.e., ¢; is smooth and

the bottom of the page. It is sufficient to find@ matrix- nonnegative with suppofupp (¢;) C N; for each: € I, and
valued functionP: X — R™*™ and a positive definite matrix

Q such thatM(P, Q, z) < 0. Therefore, if(P(z), Q) is a dopil@)y=1, VreX. (22)

solution to (18), ther{22? P(z), Q) is a solution to (17). The i€l

left-hand side of NLMI (18) or (15) is affine in its unknown, pefine P: X — R**" as

for example
N N N P(z) = Z;d)i(a:)Pi vz e X (23)

aS
MDD P, > arQr, x| =Y arM(Py, Qr, z) (19) o g N o

P ot ot which is positive definite for alk: € X and smooth since it is

N locally a finite sum of smooth positive definite matrix-valued
for all o > 0 with >7°;" | ap = 1. Equation (19) implies functions.

that the (positive definitefC° solutionsP(x) and@ to NLMI It follows from (22), (23), and (19) that
M(P(zx), Q, ) < 0 form a convex set. Using this property,

one can also show that the positive definite solutions of the M(P(2), Q, z) = M Z(/)‘(ﬂf)P‘ Q, x

NLMI (18) can always be chosen to be continuous if they exist. T e s
Theorem V.1:Suppose the matrix inequality1(P, @, z)

< 0 has positive definite solution paitP,, @), where P, = Z¢i($)M(B’ Q, z) <0.

depends oz € X C R", then there exists &£° matrix- ict

[ PO+ AT @)RM)  Ap@)g(e) + T (@)Qk()
Murt Qo= TS Lot T W S| <0 )
_[AT@P() + PT(@)A(z) + CT(2)QC()  PT(2)B(x) + OT(2)QD(x)
S M AT s e Monm o <0 a®
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Therefore, the constructed smooth positive definite matric. Finite Difference Schemes

valued functionP: X — R™" in (23) is a solution 10 thg finjte difference scheme is a useful (recursive) numer-
M(P(z), Q, x) <O0. _ ical method of finding approximated solutions to PDE'’s, in
The NLMI (18) or (15) is actually a state-dependent LMpaticyjar Hamilton—Jacobi equations [7], where the differ-
on X. In general cases where the state Xets not finite, gnce gpproximation technique is used to approximate partial
the computation for solving NLMI's is an infinite-dimensionalyejyatives. The finite difference technique can be naturally
LMI' problem. Though this is bad news for computationglmp|oyed to numerically approximate the solutions of NLMI's

efforts to deal with nonlinear problems, some approximatio(i}ising from the robustness analysis problems, e.g., (26),
computation methods can still be used. In fact, the constructiVgown at the bottom of the page, Bnc R”, with V(0) = 0.

proof of the above theorem suggests a finite element method, implement the finite-difference algorithm, we first grid
to numerically approximate solutions of algebraic NLMI (18}, siate spac®”. A generic point inR™ will be writ-

or (15) on a bounded state skt C R". ten as(xi,---,,). Let the mesh sizes baz; > 0 for
To illustrate the finite element ideas, let open sé&fs ., _ | 5 .. , |et Vi be the value of nu-
» “ ) 1l 1,

P2, 00, in)

(¢ =1,---,1) be afinite covering o, i.e., merical approximation oV’ (z) at (i;Azy,---,i,Az,) for
7 i1, in € Z. The gradientd at (i Az, -+, i,Az,) can
X = UNi' be approximated by the following difference formula:
=t AN DA
Choose the trial functions to be a partition of unfiy; } to X %(” R )
subordinated to the coveringV;}. Then the solutiorP(x) of [ Va1, o, i) = Vi, i)
algebraic NLMI (18) or (15) forz € X can be approximated ~ N ’
by the following finite expansion: B Vi immsint1) = Viin, ineein) 27)
I ’ Az, )
(z) ;d) (z) ‘ (24) By substituting the difference approximation, the “dif-
ferenced form” of (26) atz = (H14Az1,---,i,Azy,)

where the coefficient matri>,<P.i is chosen to satisfy the pecomes (28), also shown at the bottom of the page, with
following set of coupled LM's: Vi0,0..0p = 0. Inequality (28) is an LMI, because the

M(P;, Q, z;) < 0 left-hand side of the inequality is affinite W 11, 4,,....i,)
Viir io41,min)s 0 Vi, i i +1)0 @A Vi iy i) THETE-
for somez; € N;, where P, and (7 are unknowns. fore, the nonnegative/;, ;,....;,) for each (i1, iz, -, i)

The above finite element algorithm indirectly gives thean be computed by solving the above set of LMI's for all
numerical solutions to the robustness analysis or synthesis. -, i,. If the computational memory is a concern, an
problems. However, even if the algorithm happens to satisfigeration approach can be used instead; the solutions at each

iteration involves solving the LMI (28) with unknown, say,
M(B, @ 2) <0 Viir+1,-,4,) €tC., being nonnegative whefg; ;, ... ) €tc.
for all z € N;, p(z) = 227 P(z) [or p(z) = 2T X~1(z)] are known. . . o
still does not give the exact solutions to the original analysis Observe that the computational complexity of finite-
or synthesis problems. It is additionally required that there i§éfference method is exponentially dependent on the dimen-

.7177.

a C! function V: X — R+ such that sion of the state vector. However, the advantage of using
av the finite difference method in NLMI computation is that the
—(x) = pT T (25) computations are reduced to solving LMI's, which are convex
ar

o _ feasibility problems. The finite difference method with NLMI
for all z € X. The finite element algorithm does not guarantegharacterization is more computationally efficient than that
(25). Thus, the above finite element method only gives apprayith Hamilton—Jacobi equation characterization. For example,

imated solutions. There are more discussions about (25) in #¥hsider instead the corresponding Hamilton—Jacobi equation:
context of NLMI solution in [20]. In the next subsection, we av

will give another numerical algorithm where (25) is integrated H<
into the algorithm. o

(x), a:) =0, V(0)=0 (29)

M<3_V($)7 x>:: { or @) f (@) + 2T (@)h(w) 550 (x)g(x) + T (2)k(x)

)
oz LgT(2) 7 (&) + kT (x)h(x) KT (2)h(z) — I } <0 (26)

V(i1+1 i9,eeyin) T V(il i9,00sin ) V(il dg,e i tl) T V(il 2,0 esin) . .
: AL ? LAl ? ? 2T 2 EARREXS 1 F o < 28
Mq Ay v Az,  (Awy, oy inAzn) | <O (28)
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Epsilon = 0.75
T

Fig. 2. Numerical solution of NLMI example.

with z € R™ with V(0, 0) = 0. To use the finite difference NLMI as follows:

method, we similarly grid the state space; the gradight ~ WV (2)eTw + a2 —10V (p)et e S (x)e”

can be similarly approximated as partial difference in (27). _ 1OV ()e” 42 21 0 <0,
Therefore, the Hamilton—Jacobi equation (29) is approximatgd by (x)ex 0 —1

by the following difference equation: (30)

The exact solutionV’ can be re resented a8 =
H V(i1+1,~~~,in) V(Zh. in) V(il,"',in-l-l) V(h: i 5 1 N (37) . p - ( )
Az AR Az, x _fo tP(tx) dt, where P(z) satisfies s> 26 < P(z) <
(i Az1, - ,inAan)) = 0. 2e77, t2herefore,V(a:) > 0 must satlsfy
2
2—62(1 —(1+2)e™®) < V(e) <21 - (1+a)e™™).
— €
X : . |E§ee Fig. 2 fore = 3/4, where the solution range is bounded
approximated solutions(;, ... i, for all (i, ---,7,). There the dashed lines.) Next, the finite difference (recursive
are several numerical methods to solve the above nonlmg heme described above) is used to find numerical solutions
equation, such as Jacobi and Gauss—Seidel methods [3]. EPNLMI (30) on [—2, 10] with ¢ = 3/4. At each iterative

One needs to solve the implicit nonlinear equation to get t

example, ifV§, _; , for each(i,---,in) in the following step, an LMI is solved using LMI-toolbox [14]. The mesh
iteration: size is varying between 0.001 and 0.1. The numerical solution
yhL o _ypk of V(z) is shown in Fig. 2 as the solid line, which is in the
(i1, sin) = (1ymerin) solution range.
1% L =VE
(i141,,0n) (41,7++58n)
—\H ,
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