Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamics
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, selforganized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution

Focus on bacterial biosphere

Control of the Internet **Packets** receiver source control packets

Autocatalytic feedback

What theory is relevant to these more complex feedback systems?

Inside every cell

Core metabolic bowtie

Skipping the "OS" story, right to networks

If we drew the feedback loops the

Running only the top layers

Mature red blood cells live 120 days

> "metabolism first" origins of life?

Reactions
Flow/error
Protein level

Reactions Flow/error

RNA level

Reactions

Flow/error

DNA level

Top to bottom

- Metabolically costly but fast to cheap but slow
- Special enzymes to general polymerases
- Allostery to regulated recruitment
- Analog to digital
- High molecule count to low (noise)

Rich Tradeoffs

Networked embedded

Meta-layering of cyber-phys control

"Architecture" in practice

- Internet, biology, energy, manufacturing, transportation, water, food, waste, law, etc
- Many architectures are unsustainable/hard to fix What does "architecture" mean here?
- Persistent, ubiquitous, global features
- Constrains the possible (for good or bad)
- Enables/prevents innovation, sustainability, etc,
- Theory is fragmented, incoherent, incomplete
- Needs rigor and relevance
- "Constraints that deconstrain" and "facilitated variation" (Gerhart and Kirschner)