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We study the input-output response of a streamwise constant projection of the Navier-Stokes

equations for plane Couette flow, the so-called 2D/3C model. Study of a streamwise constant model

is motivated by numerical and experimental observations that suggest the prevalence and importance

of streamwise and quasi-streamwise elongated structures. Periodic spanwise/wall-normal (z–y) plane

stream functions are used as input to develop a forced 2D/3C streamwise velocity field that is

qualitatively similar to a fully turbulent spatial field of direct numerical simulation data. The input-

output response associated with the 2D/3C nonlinear coupling is used to estimate the energy optimal

spanwise wavelength over a range of Reynolds numbers. The results of the input-output analysis

agree with previous studies of the linearized Navier-Stokes equations. The optimal energy

corresponds to minimal nonlinear coupling. On the other hand, the nature of the forced 2D/3C

streamwise velocity field provides evidence that the nonlinear coupling in the 2D/3C model is

responsible for creating the well known characteristic “S” shaped turbulent velocity profile. This

indicates that there is an important tradeoff between energy amplification, which is primarily linear,

and the seemingly nonlinear momentum transfer mechanism that produces a turbulent-like mean

profile. VC 2011 American Institute of Physics. [doi:10.1063/1.3599701]

I. INTRODUCTION

We study the input-output response of the Navier-Stokes

(NS) equations for plane Couette flow. Although this type of

analysis can be performed for a variety of input/output com-

binations for the full nonlinear equations, the mathematical

complexity of such an endeavor makes it difficult to both

obtain and interpret the results. Instead, we perform the anal-

ysis in the simplified setting of a nonlinear streamwise con-

stant projection of the NS equations.

The choice of a streamwise constant model is motivated

by studies of the linearized Navier-Stokes (LNS) equations,

which show that streamwise constant features are the domi-

nant mode shapes that develop under various perturbations

about both the laminar1–4 and turbulent mean velocity5,6 pro-

files. In addition, streaks of streamwise velocity naturally

arise from the set of initial conditions that produce the larg-

est energy growth,7,8 namely, streamwise vortices. Even in

linearly unstable flows, studies have shown that the ampli-

tude of streamwise constant structures can exceed that of the

linearly unstable modes.9,10 Bamieh and Dahleh2 explicitly

showed that streamwise constant perturbations produce

energy growth on the order of R3 whereas disturbances with

streamwise variations produce growth on the order of R
3
2.

The prevalence of large-scale streamwise constant struc-

tures is also supported by direct numerical simulation (DNS)

and experiments. In Couette flow, DNS has long produced

turbulent flows with very-large-scale streamwise and quasi-

streamwise structures in the core.11,12 Experimental high

Reynolds number studies have similarly identified large-

scale streamwise coherence in other flow configurations.13–16

At high Reynolds numbers (e.g., Res> 7300), there is experi-

mental evidence from pipes and turbulent boundary layers

suggesting that these structures contain more energy than

those nearer to the wall.14,16,17 The near-wall features, which

also exhibit streamwise and quasi-streamwise alignment, are

known to play a key role in energy production through the

well studied “near-wall autonomous cycle.”18–21

The dominance of streamwise constant features was pre-

viously used to motivate the study of a streamwise constant

model for plane Couette flow.22 A stochastically forced ver-

sion of this streamwise constant projection of NS was shown

to reproduce important features of fully developed turbu-

lence, including the shape of the turbulent velocity profile.

Further, using Taylor’s hypothesis, the same model also gen-

erated large-scale streaky structures that closely resemble

large-scale features in the core.23 Given that maximum

amplification of the LNS also occurs for the kx¼ 0 modes

(i.e., in a streamwise constant sense), the analysis of a

streamwise constant model can be viewed as a study of the

full system along the direction of maximum amplification. In

the present work, we use this approach to examine the inter-

action between the well studied linear amplification mecha-

nisms and additional effects due to the nonlinear coupling in

the streamwise constant model.

This paper is organized as follows. In Sec. II, we

describe the streamwise constant (so-called 2D/3C) model

and the idealized steady-state stream function model
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representing the cross-stream components of streamwise ho-

mogenous features. This stream function is used as input to a

steady-state 2D/3C streamwise momentum equation. The so-

lution corresponding to each stream function input can be

thought of as a forced solution of the respective streamwise

deviation from the laminar flow. These streamwise velocity

fields are compared to a spatial field of DNS data, obtained

from the Kawamura group,24 in order to verify the ability of

the model to capture relevant features of turbulent flow. We

compute the spanwise/wall-normal (z–y) plane forcing

required to produce each of the stream functions described

above and study the input-output response from this forcing

input to the streamwise velocity’s deviation from laminar.

The optimal spanwise wavelength computed in this manner

is consistent with linear studies. However, the nonlinearity in

the model gives additional insight to the relationship

between amplification and the turbulent velocity profile. In

fact, this work demonstrates that there is an important trade-

off between linear amplification mechanisms and the nonli-

nearity required to develop an appropriately shaped turbulent

velocity profile. The paper concludes with a summary of our

results and directions for future work.

II. MODELS

A. The 2D/3C model

The 2D/3C model for plane Couette flow discussed

herein is obtained by setting the streamwise (x–direction) ve-

locity derivatives in the full NS equations to zero.25 This can

be thought of as a projection of the NS equations into the

streamwise constant space. The velocity field is then decom-

posed into components ~u¼ Uþu0sw;Vþv0sw;Wþw0sw

� �
,

where (U, V, W) with U¼U(y)¼ y, V¼W¼ 0 is the laminar

flow, and u0sw;v
0
sw;w

0
sw

� �
are the streamwise, wall-normal,

and spanwise time dependent deviations, respectively, from

laminar in the streamwise constant sense. One can explicitly

show that, for Couette flow, this 2D/3C formulation also

results in a system with zero streamwise pressure gradient.

A stream function w(y, z, t), such that

v0sw ¼
@w
@z

; w0sw ¼ �
@w
@y

;

ensures that the resulting model satisfies the appropriate 2D
continuity equation. This yields

@u0sw

@t
¼ � @w

@z

@u0sw

@y
� @w
@z

@U

@y
þ @w
@y

@u0sw

@z
þ D

R
u0sw (1a)

@Dw
@t
¼ � @w

@z

@Dw
@y
þ @w
@y

@Dw
@z
þ 1

R
D2w; (1b)

where D ¼ @2

@y2 þ @2

@z2. There is no slip or penetration at the

wall, and periodic boundary conditions are assumed for the

spanwise direction.

The Reynolds number employed for all computations

described herein is R ¼ Rw ¼ Uwh
� , where the Uw is the veloc-

ity of the top plate, h is the channel height, and � is the kine-

matic viscosity of the fluid. All distances and velocities are

normalized by h and Uw, respectively.

B. The stream function model

As a first step, we focus on the effect of large-scale

streamwise elongated features in the core of a fully turbulent

flow. We limit our study to cross-stream (i.e., wall-normal/

spanwise plane) inputs because energy amplification of per-

turbations (forcing) from the wall-normal and spanwise

directions have been shown to scale as R3 whereas all of the

other input-output combinations admit only R scaling.4 We

focus on the effect of cross-stream inputs, specifically those

that represent the large-scale channel spanning streamwise

structures that dominate the flow,26 on the streamwise com-

ponent of the flow.

We are interested in developing a simple analytic model

for the steady-state stream functions wss(y, z) that will define

our inputs. This will lead to computational tractability and

better lends itself to analytical studies. In order to develop a

phenomenologically accurate model, we examined the cross-

stream field wss(y, z) created by integrating the streamwise

averaged spanwise and wall-normal components of a fully

turbulent three dimensional field of DNS data.24 This averag-

ing gives us an approximation of a streamwise constant flow

field. In the sequel, we refer to this streamwise averaged

DNS field as the x–averaged DNS data. A full discussion of

this velocity field and its use as an approximation for stream-

wise constant data (including an examination of the effects

of the streamwise extent that it is being averaged over) is

given in Refs. 22 and 27.

Our model development was further guided by the work

of Barkley and Tuckerman,28 who showed that laminar-tur-

bulent flow patterns in plane Couette flow can be reproduced

using a cross-stream stream function of the form

w(y, z)¼w0(y)þw1(y) cos (kzz)þw2(y) sin (kzz). After con-

firming that their model is consistent with our DNS based

estimate, we adopt their basic model with the zeroth-order

term set to zero. A nonzero w0 produces a nonzero-mean

spanwise flow w0ss, which is not representative of the velocity

field we are interested in studying. Combining their ideas

with the information obtained from the DNS data led to the

following simple doubly harmonic function

wssðy; zÞ ¼ e sin2 qpyð Þ cos
2p
kz

z

� �
; (2)

which obeys the boundary conditions.22,27 Based on Eq. (2),

the geometry and associated wall-normal extent of the struc-

tures are fixed. Thus, the parameter e dictates the intensity of

the features, while q indicates the wall-normal mode that we

are considering.

In order to estimate the values for kz, e, and q, we exam-

ine the x–averaged spanwise and wall-normal DNS fields.

We verify that not only the wss field but also the correspond-

ing wall-normal and spanwise velocity fields based on differ-

entiation of our model have the correct features. Figure 1(b)

shows w ¼ � @w0xave

@y computed by integrating the x–averaged

spanwise velocity ðw0xave
ðy; zÞÞ from the DNS data at

R¼ 3000. The wss model corresponding to Eq. (2) with

q¼ 1, e¼ 0.00675 selected to match the magnitude of the

integrated w0xave
and v0xave

DNS fields, and kz � 1.8 selected to

match the fundamental spanwise wavelength of DNS is
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provided in Figure 1(a). Comparison of Figures 1(b) and 1(a)

indicate that the wss model shows good agreement with the

DNS data approximation in the region of highest signal. The

region of highest signal is of primary interest because, with

q¼ 1, we are only looking at the first harmonic in both the

wall-normal and spanwise directions.

III. FORCED SOLUTIONS

The steady-state solutions of Eq. (1a) corresponding to

steady-state stream functions of the form of Eq. (2) are of in-

terest for two reasons. First, they allow us to isolate the non-

linear streamwise velocity equation in order to demonstrate

that its nonlinear coupling filters an appropriately con-

structed wss(y, z) towards the expected “S” shape of the tur-

bulent velocity profile. It also gives insight into mechanisms

that create the momentum (energy) transfer, which generates

this blunted profile. This relationship can be explored by not-

ing that the forced solutions represent a balance between the

dissipation D
R u0sw and a combination of the nonlinear terms,

@w
@z

@u0sw

@y �
@w
@y

@u0sw

@z , plus the mean shear term, @w@z
@U
@y . It is easy to

show that the nonlinear terms are energy conserving. Thus,

we are left with a balance between the dissipation and the

streamwise constant part of the vortex tilting term and asso-

ciated lift-up mechanism described by Landahl.29,30

The forced solutions shown herein are presented solely

to demonstrate that the 2D/3C model (Eq. (1)) is representa-

tive of certain aspects of turbulent behavior and as such, an

amplification study based on this model is of interest. Gayme

et al.22 and Gayme27 provide a detailed exploration of the

extent to which the 2D/3C (Eq. (1)) can be used as a model

for turbulent behavior. The stability of the mean turbulent

velocity profile for plane Couette flow in the face of three-

dimensional perturbations has previously been verified by

Hwang and Cossu.31 The additional stability studies on the

spanwise varying steady-state fields generated in this section

require the analysis of a spatially distributed linear system

with periodic coefficients, as described by Fardad and

Bamieh.32 This requires extensive mathematical analysis

that is beyond the scope of the current work and is currently

under investigation.

For all of the results presented in this section, we solved

for the forced solution u0swss
ðy; zÞ both using a least-squares

approach and iteratively using an explicit Euler method for

comparison. The initial studies were carried out using the

same grid resolution as in the DNS data described by Tsuka-

hara et al.,24 (i.e. using a 96� 512 grid on the y–z plane).

We then reduced the resolution to a y–z plane grid of

48� 100. We found negligible differences in the results

between these two grid sizes. In the sequel, we only report

the results for the 48� 100 grid and the explicit Euler itera-

tive solution.

A. The velocity field

Figure 2(a) shows a contour plot of u0swss
ðy; zÞ resulting

from a stream function wss with the same parameters as in

Figure 1(a) (i.e., q¼ 1, e¼ 0.00675, and kz¼ 1.8, at

R¼ 3000). This figure shows that our computed streamwise

deviation from the laminar velocity has features consistent

with the difference between a laminar and turbulent velocity

field. For example, the velocity gradients near the walls are

associated with an “S” shaped (or blunted) turbulent velocity

profile. Figure 2(a) also shows good qualitative agreement

with the x–averaged DNS data [shown in Figure 2(b) with

the same contour levels as 2(a)]. This x–averaged DNS data

have previously been shown to have a spanwise mean veloc-

ity corresponding to the full turbulent velocity profile.22 The

steady-state streamwise velocity deviation from laminar

u0swss
ðy; zÞ has similar structural features to the DNS data in

that both have near-wall minimum and maximum peaks that

are out of spanwise phase with one another top-to-bottom.

There is, however, more coherence in our deviation from

laminar across the span as compared to the DNS field, which

is expected due to our use of a single harmonic in both the

spanwise and wall-normal directions.

FIG. 1. (a) Contour plot of the first y harmonic (q¼ 1) for the stream function model. This model represents the streamwise constant streaks and vortices com-

monly observed in DNS and experiments. (b) The stream function computed based on the x-averaged spanwise DNS velocity field, which was integrated to

obtain the stream function, i.e., wxave
ðy; zÞ ¼ � @w0xave

@y . These plots are reproduced from Ref. 22.
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B. Mean profile

The effective energy redistribution through the forced

streamwise velocity deviations is further investigated

through a spanwise mean over the streamwise velocity devi-

ation from laminar. This is carried out at five perturbation

amplitudes (0.000675 � e � 0.02), all at R¼ 3000. Figure 3

shows averages across the span of u0swss
ðy; zÞ for these five e

values along with a similar average of the x–averaged

streamwise velocity field of the DNS. The spanwise average

of the DNS has been validated against other results in the lit-

erature by Tsukahara et al.24

The use of wss from Eq. (2) as an input to the steady-

state Eq. (1a) produces streamwise velocity profiles whose

shapes are consistent with the x–averaged DNS data. How-

ever, the peaks are located at different wall-normal positions.

The fact that an exact match (with DNS data) for the wall-

normal peak position is not obtained is not unexpected given

the simplicity of the wall-normal variation in the steady-state

model, as well as the streamwise constant and steady-state

assumptions. Clearly, the full turbulent field is neither

streamwise constant nor steady-state. The main point of pre-

senting the velocity field arising from the forced steady-state

model is to illustrate its effectiveness in reproducing the mo-

mentum redistribution associated with the change in the ve-

locity profile from laminar to turbulent. This means that

Eq. (1) provides more information about the turbulent veloc-

ity field than a linear model (which cannot produce the

change in mean velocity profile between laminar and turbu-

lent flows). Therefore, studying input-output amplification in

this model may provide us with some additional insight com-

pared to the traditional analysis performed using linear

models.

The simple steady-state model described herein reason-

ably predicts the essence of the mean behavior at the expense

of losing some of the smaller scale details. For example, an

exact characterization of the wall-normal variation and, of

course, the small-scale turbulent velocity fluctuations are not

captured in this analysis. These results suggest that the phe-

nomenon that is responsible for blunting of the velocity pro-

file in the mean sense is a direct consequence of the

interaction between rolling motions caused by the y–z stream

function and the laminar profile. In other words, this study

provides strong evidence that the nonlinearity needed to gen-

erate the turbulent velocity profile is dominated by the non-

linear terms that are present in the u0swðy; z; tÞ evolution

Eq. (1a).

IV. INPUT-OUTPUT AMPLIFICATION

A. Energy amplification

In order to discuss input-output amplification, it is useful

to determine the forcing required to produce a particular

steady-state wss described by Eq. (2). This is accomplished by

solving a forced version of the steady-state w evolution Eq.

(1b) for the corresponding forcing term gss(y, z), [note for

gss(y, z)¼ 0, i.e., the unforced equations, the stream function

is zero]. We use a linearized version of Eq. (1b) because the

nonlinear mechanisms that lead to the profile blunting are

completely captured through the nonlinearity in Eq. (1b).22

FIG. 2. Contour plots of (a) u0swss
, from wssðy; zÞ ¼ 0:00675 sin2 pyð Þ cos 2p

1:82
z

� �
and (b) u0xave

the streamwise velocity component of the x-averaged DNS data.

All plots correspond to R¼ 3000 and have the same contour levels. These plots are reproduced from Ref. 22.

FIG. 3. Variation of the 2D=3C (streamwise constant) deviation from lami-

nar, u0swss
with perturbation amplitude (e); based on input wssðy; zÞ

¼ e sin2 pyð Þ cos 2p
1:82

z
� �

. A version of this figure is further discussed in

Ref. 22.
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The linearized version of this forcing, which by abuse of nota-

tion we also refer to as gss(y, z), is given by

gssðy; zÞ ¼ �
1

R
D2wss: (3)

This gss can be viewed as the deterministic forcing required

to produce a particular wss. In the sequel, we use the linear

gss of Eq. (3) for all of the computations. For a complete dis-

cussion of the use of a linear w equation, see Ref. 27.

The input-output response can now be studied through

an amplification factor of the form

Css ¼
u0swss

��� ���2

gssk k2
: (4)

Css is a nonlinear analog of the L2–to–L2 induced norm that

has been used to study the optimal response of the LNS with

harmonic input/forcing, see, for example, Ref. 33. The

energy in Eq. (4) is defined in terms of the squared 2-norm.

For each two-dimensional component b(y, z), this quantity is

bk k2¼
ðz2

z1

ð1

0

bðy; zÞ2 dy dz

� DzDy

Ly Lz

XNz�1

k¼1

XNy�1

j¼1

b2ðyj; zkÞ;
(5)

where Dy¼ y2 – y1 and Dz¼ z2 – z1 represent the space

between the y and z grid points, respectively.

B. Reynolds number scaling

The scaling of u0swss
with R for a particular e is unclear

from Eqs. (1a) and (2). An empirical relationship was com-

puted using the stream function model (2) with q¼ 1 and

e¼ 0.001 for four different values of R: 3000, 6000, 10 000,

and 12 000. Figure 4(a) shows that u0swss

��� ���2

appears to scale as

a function of
ffiffiffi
R
p

at the higher wave numbers (kz> 2), for the

R values selected. The energy peaks also seem to collapse

under this scaling for the higher Reynolds numbers we

considered.

FIG. 4. (a) The streamwise energy scales as
ffiffiffi
R
p

. (b) The amplification factor Css scales as R
5
2. The optimal spanwise wavenumber occurs at the maximum Css

for each R. The change in peak response with increasing Reynolds number is interesting; however, the exact nature of the optimal input-output response is a

function of both kz and e. Therefore, one needs to find the corresponding optimal e in order to determine the true optimal spanwise large-scale feature spacing.

(c) and (d) Css for different values of e all at R¼ 3000. Both Css and the optimal spanwise wavenumber monotonically decrease with increasing e. As e gets

small, we approach the linearized equations because u0sw � U. Thus, linear mechanisms dominate for very small e and increasingly linearized equations have a

larger input-output response. However, when e¼ 0, the forced solution (deviation from laminar) is zero and we recover the laminar solution.
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The scaling of Css can be estimated by combining thisffiffiffi
R
p

scaling of u0swss

��� ���2

with the 1
R scaling of gss(y, z), as seen

in Eq. (3). Thus, Css should scale as a function of R
5
2. Figure

4(b), which shows Css

R5=2 for the same R’s and e, indicates that

the amplification factor data do collapse well under the R5/2

scaling, especially at the higher wave numbers. However,

the R¼ 3000 data peak does not seem to follow this relation-

ship. This discrepancy can be explained by looking at previ-

ous linear studies.

The scaling of the input-output amplification for stream-

wise constant disturbances of the LNS equations was

expressed as f1(kz)Rþ f2(kz)R
3 by Bamieh and Dahleh.2 Fur-

thermore, they reported that the form of f1(kz) and f2(kz)

means that the linear term dominates at low Reynolds num-

bers.2 The difference in scaling over different Reynolds

number ranges was confirmed by a low Reynolds number

linear study of Poiseuille flow that showed energy amplifica-

tion at kx¼ 0 scales with R
3
2 for the range 800 � R � 5000

and R3 for larger Reynolds numbers.34 That study used a dif-

ferent characteristic length and velocity scale than in the

present work and an equivalent normalization of our Reyn-

olds number range yields 750 � Rc � 3000, which is compa-

rable to the range they considered. Optimal amplification

studies based on initial conditions also support R scaling at

low Reynolds numbers.34 Based on these studies and the low

Reynolds numbers employed in this study, it is reasonable

that our scaling is less than R3. The dominance of the linear

scaling at low Reynolds numbers explains the lower Css peak

value for R¼ 3000 (corresponding to Rc¼ 750 based on the

normalization used in Ref. 34).

C. Optimal spanwise spacing

Figure 4(a) indicates that u0swss

��� ���2

increases with kz until

it reaches a maximum value and then levels off. We can sim-

ilarly find a relationship between kz and Css by substituting

the expression for wss from Eq. (2) into the linearized noise

Eq. (3):

gssðy; zÞ ¼
e
R

cosðkzzÞ
n

8q4p4 þ 2q2k2
z p

2
� �

þ 4q2k2
z p

2 � k2
z þ 4q2p2

� �2
h i

sin2ðqpyÞ
o
: (6)

Equation (6) illustrates that the noise scales with k4
z and q4.

So, the forcing energy gssk k2
monotonically increases with

kz while u0swss

��� ���2

peaks and then levels off. Thus, even

though larger kz is associated with higher forcing, the corre-

sponding amplification factor does not continue to increase.

There is an optimal kz that generates the most amplification:

This is the dominant wavenumber corresponding to optimal

spanwise spacing. In this section, we explore how changes in

e and R relate to the optimal spacing and discuss how our

results compare to what has been previously reported in the

literature.

The peak values of Css for the Reynolds numbers con-

sidered in Figure 4(b) correspond to spanwise wave numbers

of kz¼ 0.86, 1.0, 1.4, and 1.7 for R¼ 12 000, 10 000, 6000,

and 3000, respectively. This amounts to wavelengths of

7.3h, 6.1h, 4.6h, and 3.7h, respectively. To determine if these

are optimal values over the entire parameter set, we need to

determine the relationship between Css and amplitude e.
Figure 4(c) shows Css for an amplitude range of

0.000675 � e � 0.005 all with R¼ 3000. Over most of the

range, both Css and the optimal spanwise wavenumber

monotonically decrease with increasing e, although there

appears to be a collapse at the minimal wavelengths. There-

fore, the peak Css over all the amplitudes we selected (i.e.,

the optimal kz) occurs at the lowest e. Figure 4(d) shows that

continuing to reduce e results in convergence to an optimal

wavenumber of kz¼ 2.06, which corresponds to kz¼ 3.05h,

for all e � 0.0001. We obtain the same optimal wavelength

when we repeat this procedure for R¼ 6000, 10 000, and

12 000.

Much of the literature (e.g., Refs. 1, 7, and 10) related to

optimal spanwise spacing has shown optimal spanwise wave

numbers kz 2 ½2:8; 4�. However, in many cases, these studies

were aimed at determining spanwise spacing in the near-wall

(inner-scaled) region. Recent Poiseuille flow studies using

the LNS linearized about a turbulent velocity profile, where

an eddy viscosity is used to maintain the profile, found that,

at high Reynolds numbers, there are actually two peaks in

the optimal energy growth curves, one scaling in inner units

and the other in outer units.5,35 The outer unit peak appears

to correspond to the large-scale structures that have a span-

wise spacing of approximately kz 2 ½2; 5:2�d (where d corre-

sponds to the channel half height, i.e., h
2
).

The only Couette flow study to look at both inner and

outer unit scalings reported results at R¼ 3000.31 At this low

Reynolds number, there is little to no scale separation

between the peaks. They studied several input-output

response functions and found that the optimal response to

harmonic forcing occurs when kz¼ 3.85h. This harmonic

forcing study is more closely related to our analysis than the

initial condition-based studies reported in most of the other

work. Couette flow DNS (Ref. 36) and experimental stud-

ies26 have observed large-scale (outer region) feature spacing

in the range kz¼ [2,2.55]h. Thus, our results (kz¼ 3.05h) lie

right in between those of the linear analytical Couette flow

study31 and the flow field observations. A constant optimal

wavelength across Reynolds numbers is also consistent with

previous studies using a linear model with an eddy viscosity

based turbulent velocity profile.5,35

D. Mean velocity profile versus optimal kz

Figure 5(a) shows the steady-state mean velocity profile

computed using wss models [Eq. (2)] with amplitudes in the

range 0.001 � e � 0.00675 at their corresponding optimal

values of kz along with the DNS data. All plots correspond to

R¼ 3000. The velocity gradients at the wall increase with e.
The fit in the center of the channel also approaches the DNS

data as e increases, although, at e¼ 0.005 and above, the

curve overshoots the DNS. There is no amplitude that

exactly matches the DNS data and the fit is especially bad in

the near-wall region. As previously discussed, this is because

the assumptions inherent in the 2D/3C model neglect the
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smaller scale activity that dominates in the near-wall region.

In the core, the mean velocity curves,
uswss

Uw
, corresponding to

e¼ 0.005 and e¼ 0.00675, respectively, cross the DNS curve

at a yþ � 30 and yþ � 27, based on the DNS viscous units.

The maximum overshoot in the core (defined by yþ> 30 in

DNS viscous units) is 3.6% and 6.2%, respectively, for

e¼ 0.005 and e¼ 0.00675. This is remarkably good for such

a simplified steady-state model.

The fact that the e¼ 0.005 and e¼ 0.00675 mean

velocity profiles show the best agreement (most blunting)

with the DNS data is not consistent with the fact that maxi-

mum amplification occurs at the smallest amplitudes (i.e.,

e � 0.0001). In order to study this further, we looked at dif-

ferent kz values corresponding to a wss model amplitude of

e¼ 0.005. Figure 5(b) shows the mean velocity profile of the

DNS along with mean velocities for e¼ 0.005 at the maxi-

mum Css (optimal wavenumber kz ¼ 2p
kz
¼ 0:69), at kz¼ 1.8

and at kz¼ 3.4. This last value coincides with kz¼ 1.8, i.e.,

the value corresponding to the dominant wavenumber of the

x–averaged DNS data24 and the results discussed in Sec. III.

Again, while by definition the amplitude of Css is larger for

the optimal wavenumber kz¼ 0.6825, the velocity profile has

larger velocity gradients at the wall for higher values of kz.

This continued increase in shear stress at the wall as both kz

and e increase is better seen in Figure 6, which depicts the

energy in u0ss versus the shear stress at the wall.

Small wss model (2) amplitudes, e’s, correspond to lesser

nonlinear coupling between the equations (because u0sw � U
so that the equations approach the linearized model). On the

other hand, at higher e, the nonlinear terms have a larger

magnitude because e directly multiplies each of the nonlinear

terms. As e decreases, the energy amplification increases but

the velocity profile blunting decreases (i.e., the profiles

become increasingly laminar-like). In fact, in the limit as

e 7! 0, the laminar flow is recovered (i.e., u0sw ¼ 0). This

behavior can be interpreted as follows: the amplification is

dominated by linear mechanisms, whereas the blunting

comes from nonlinear interactions. Moreover, there is some

tradeoff between energy amplification and the creation of a

turbulent-like blunted mean velocity profile. The observation

that blunting continues to increase with wavenumbers

beyond the energy optimal wavenumber as depicted in Fig-

ure 6 appears to indicate that the exact relationship depends

on the spanwise wavenumber. This type of dependence is

consistent with linear amplification theory. Further under-

standing of this tradeoff may provide important insight into

the mechanisms associated with both transition and fully tur-

bulent flow.

V. CONCLUSIONS AND FUTURE WORK

A simple cross-stream model of large-scale streamwise

elongated structures nonlinearly coupled through a steady-

state 2D/3C streamwise momentum equation allows us to

isolate important mechanisms involved in determining the

shape of the turbulent velocity profile. The momentum redis-

tribution that produces features consistent with the mean

characteristics of fully developed turbulence appears to be

directly related to the 2D/3C nonlinear coupling in the

streamwise velocity evolution Eq. (1a). The steady-state 2D/

3C model produces a blunted, turbulent-like profile using

very simple stream functions. This behavior appears to be ro-

bust to small changes in the stream function model. This

repeatability suggests a preference for redistribution of mo-

mentum along the wall-normal direction. Further under-

standing of the underlying dynamics of this mechanism may

FIG. 5. (a) The mean velocity profile of the DNS data along with the one computed from the steady-state [Eq. (1a)] for a wss model (Eq. (2)) with q¼ 1, over

a range of e with kz corresponding to the peak Css for each e considered. (b) The mean velocity profile for e¼ 0.00675 at a number of different kz values com-

pared with DNS data. The data in both (a) and (b) correspond to R¼ 3000.

FIG. 6. The velocity gradient at the wall continues to increase while both

Css and the energy u0swss

��� ���2

peak and then drop off. The solid black line rep-

resents the peak Css for each e.
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provide insight into the transition problem and allow better

design of turbulent suppression flow control algorithms.

An input-output analysis in this framework not only pro-

vides results consistent with previous studies but also illumi-

nates an interesting interaction between energy amplification

and the increased velocity gradient at the wall associated

with the turbulent profile. Essentially, although the input-

output amplification monotonically decreases with increas-

ing forcing amplitude, the velocity profiles become increas-

ingly more blunted. Thus, there is likely a tradeoff between

the linear amplification mechanisms and nonlinear blunting

mechanisms that determine important features of the turbu-

lence-like phenomena modeled by Eq. (1). This tradeoff may

have important implications for flow control techniques that

target skin friction or the mean profile.

A natural extension of this work would be to refine our

stream function model through adding additional wall-nor-

mal and spanwise harmonics to the existing form of Eq. (2).

Developing an entirely new model using models of real sour-

ces of flow disturbances, as discussed in Ref. 22, may also

provide guidance in determining a better stream function wss

as a forced steady-state solution of Eq. (1b).
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