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Abstract 
Using measured input and output data and a pri-  

ori assumptions on nominal model and a linear fractional 
transformation uncertainty structure, a family of model 
validating uncertainty sets are constructed for robust con- 
trol analysis and design of the Caltech ducted fan. Based 
on an identified uncertainty set, the predicted closed loop 
performance for any given controller is compared to the 
directly measured performance. This paper reports cur- 
rent status of the ongoing work at Caltech and more re- 
sults will likely be reported at the conference. 

1 Introduction 
In general, an “optimal” robust performance controller [l] 
is defined with respect to a set of plants having a specific 
LFT uncertainty structure. A key premise in the above 
notion is that the LFT uncertainty structure and the cor- 
responding uncertainty bound is known. In applications 
however, particularly for systems which are more com- 
plex, the issue of selecting a suitable uncertainty struc- 
ture and their bounds is not trivial. Subsequently, it is 
difficult to predict worst case performance, and much less 
attain “optimal” robust performance. The current popu- 
larity of p analysis and less of p synthesis is a testament 
to this state of practice in control engineering. To cope 
with this reality, many approaches have been proposed in 
the past (a sample given in [2],[3]) which builds on classi- 
cal model validation ideas to explicitly include unknown 
but bounded model uncertainties in addition to unknown 
exogenous noise. 

In this study, we investigate issues directly related 
to the performance validation of the Caltech ducted fan 
test article. Since both multivariable robust control and 
identification theories assume linear, time-invariance, the 
operation of the ducted fan undergoing horizontal flight 
at a trim point is considered. First, based on a nom- 
inal model which is obtained from first principles and 
parameter identification, and a chosen uncertainty struc- 
ture, the corresponding parametrized set of all model val- 
idating uncertainty set is obtained usin a closed loop 
extension of the approach outlined in [j. Among this 
parametrized model validating set, we consider a smallest 
weighted model validating uncertainty set for the given 
uncertainty structure for the ducted fan. Second, the un- 
certainty model is evaluated by comparing its predicted 
closed loop worst case performance to the measured worst 
case closed loop performance for any controller that is 
closed loop stable when implemented. 
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Figure 1: Ducted Fan Body 

2 Caltech Ducted Fan Model 

2.1 Equations of Motion 
A schematic of the Ducted Fan is described in Figure 1 
and Figure 2. 0, X, Y, Z )  is an inertial coordinate system, 
(O,,X,,Y,, ZJ a stand center of mass, body fixed coor- 
dinate system, (ob, xb, Yb, 2 6 )  a shroud center of mass, 
body fixed coordinate system, and (Ow, X,, Yw, Zw) the 
wind coordinate system. $ is the angle between O X )  

the pitch axis angle i.e. the angle between the local hor- 
izontal [o,X,) and the [ObXb) axis and z the algebraic 
distance 00,. The airspeed at the center of mass of the 
ducted-fan (shroud+wing+boom) is denoted by V, = $, 
the angle of attack by a,, the flight path angle by Î,, the 
paddle angle by S,, the elevator angle by Se and the m e  
tor voltage by V,. Subscripts s and w denote variables 
related to shroud and wing respectively. 

and the projection of [O,X,) on the plane ( X O  d ), 8, 

The Lagrange’s equations of motion are given by 

~ili; = -r,Fga - r z O ~ 2 *  - r&, - 81gbncose (1) 

where I; is the moment of inertia of the fan, boom and 
counterweight about OZ; I$b,,, the moment of inertia of 
the fan about ObYa when wing in rearward position; I s b ,  
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2.2 Linearization about Trim 
The ducted fan is described by a set of ODES j. = f(z, U) 

where zT = [G, z ,  i , 8 ,  e] and uT = [V,, a,, he].  f is de- 
rived from the equations l, 2 and 3. The navigation vari- 
able, z,  is necessary to control the altitude during exper- 
iments since the vertical movement is constrained by the 
testbed. Figure 3 is a schematic of the linearization about 
a trim point. By solving the non-linear algebraic equa- 

Z.' 

Figure 2: Shroud and Wing Conventions 

the moment of inertia of the propeller and the motor 
about Ob&; F i 8 ,  the x, component of the boom aero- 
dynamic force; F$'* and F Z ,  the X ,  and Z, components 
of the wing aerodynamic force; M E ,  the Y, component of 
the wing aerodynamic moment; F;# and F i n ,  the X, and 
Z, components of the shroud aerodynamic force; MGa, 
the Y, component of the shroud aerodynamic moment; 
T b ,  the effective moment arm for the boom; T,, the effec- 
tive moment arm for the wing; r, ,  the distance between 
ob and the plane X O Z ;  mb the mass of the boom; m,, 
the mass of the counterweight; m f ,  the mass of the fan; 
r ,  the pulley gear ratio; g ,  the gravity and R the motor 
velocity; m := mb + mf - %. 

Boom and wing aerodynamics Due to the rotation 
of the fan, the wing will experience increasing velocities 
from its root. A similar situation occurs for the boom. 
The aerodynamic forces of the wing and boom may be 
written as: 

Fia = (8, 2,  CO,) 

F;i: = F$', (11,4 c;, C,W) 

= ( i , 4  (2% c,w> 

where CD~ is the drag coefficient of the boom (cylinder) 
and C;, C,W and C&, determined by a series of wind 
tunnel tests, are functions of a, and 6,. For now, the 
effects of all other derivatives are assumed negligible. 

Shroud Forces and Moments There are two contri- 
butions to  the shroud aerodynamic forces and moments: 
the thrust from the ducted fan engine and the aerody- 
namic forces of the shroud. In order to determine the 
shroud forces F;. and F i s ,  and moment M+*, four 2-D 
table lookup (FiT,  C;, Ci and Ch) as a function of a,, 
V, or 6, are necessary. 

Motor Speed A 2-D table lookup, function of V, and 
S,, will be used to determine the motor velocity R. The 
effects of V and CY are neglected. 

For now, the actuators are assumed to be perfect and 
the moments of inertias of the fan (shroud and wing) and 
the propeller about (Ob.&) and (ob&,) are neglected. 

Figure 3: Linear motion about trim for Ducted fan. 

tions for the forward flight at constant velocity, altitude 
and pitch angle, we obtain the trim conditions consisting 
of the pitch angle 8, the motor voltage V,, the paddle 
angle 6, and the elevator angle Se. The trim condition 
corresponds to the following conditions: 

and 

U z i m  = [Vmtrim > bptrim 7 6et,;,] / f ( z t r i m ,  Utr im)  = 01x5 

At a specified &, a linearized fifth order model is ob- 
tained by computing the Jacobian of f at this trim point. 
It turns out that the above trim point (at a tangent veloc- 
ity of V, = 8 mlsec) is unstable and a stabilizing Linear 
Quadratic Regulator is required. Since the encoders di- 
rectly measure $, z and 8, a second order filter is used in 
each channel to estimate the corresponding velocities. 

3 Performance Validation 
Our main goal in this study is to obtain a set of plants 
which satisfies a priori assumptions and is also consistent 
with input/output measurement data. Of course the end 
goal is to be able to predict or attain closed loop perfor- 
mance more reliably in practice. We begin by summa- 
rizing recent results in model validation and uncertainty 
model parameterization. 

3.1 Control Objective 
Consider a robust regulation problem in the sense of min- 
imizing the weighted Ha norm from the disturbances, r ,  
at all three plant inputs to the outputs under model un- 
certainties. The control inputs are V,, 6, and 6, and 
the measured variables are $, z and 8. Of course a wide 
range of controllers can result depending strongly on the 
control engineer. In particular, this wide range of con- 
trollers for this single physical plant can result due to 
basic differences in a priori assumptions on the models 
and exogenous noise and disturbances. 
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3.2 Model Validation 
In this section, we summarize a particular closed loop 
model validation theory which is an extension of the open 
loop case outlined in [3 ] .  Suppose we are given a regu- 
lator, K ,  command inputs, r ,  and the output measure- 
ments, y, for a stable closed loop experiment as shown in 
Figure 4. Figure 5 is a schematic of the augmented closed 
loop plant. Suppose the measurements are taken in the 
discrete-time domain and consider a discrete frequency 
domain formulation. 

output is 

ey := Y - G23r - [GI Gz]  (4) -- 
e; M 

Notice that e: denotes the output error in the nominal 
closed loop system and its norm can be taken as a measure 
of the distance between the nominal model and the true 
system. Note also that since r and K is assumed known, 
the condition ey = 0 implies fi = U ,  so that we need to 
consider only ev = 0 for model validation. 

In our approach to model validation, we consider a 
paradigm shift from the conventional model validation 
question: Is V, model validating ? to Does a model 
validating V, exists ? The first question is an existence 
test on both uncertainty structure and size of a particular 
plant set. However, the second question is an existence 
test only on its uncertainty structure, i.e., we are free to 
choose its size. It turns out that for uncertainty struc- 
tures that can be represented as T complex block diagonal 
LFTs, the existence test of a model validating set is a nec- 
essary and sufficient condition and can be easily checked 
by constant matrix test and if affirmative, all model vali- 
dating uncertainty sets can be effectively parameterized. 

If the test fails, then the model is invalidated either 
due to overly restricted levels of noise and/or disturbance 
and/or insufficiently rich uncertainty LFT structure. If 
the constant matrix test passes, it can be shown that the 
set of all (J,Q) vectors that produces zero output error 
can be characterized by 

t 
exogenous 

disturbances ! 

Figure 4: Framework for robust ID 
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Figure 5:  Closed loop augmented plant 

Let 2, := {A E C m x n  : A = diag(A1,. . . , A T ) ,  Ai E 
c m ;  x n ;  } and denote W = diag(wlI,, , . . . , wTInn,)  as a 
scaling radii applied to the blocks of the structured un- 
certainty unit ball as defined by  AB) 5 1. For a 
given W ,  define the set of plants D, = { A  E 2) : 
A = W A B , ~ ( A B )  5 1). The model validation prob- 
lem can be defined as follows: given augmented nomi- 
nal plant P, controller K ,  output noise filter V ,  struc- 
tured uncertainty set V,, measured output y, does there 

exist A, P := { }, where A E vw, IlPll 5 1 and 

.FU(G,A) := [Gzz,G23] + GziA(1 - GiiA)- ' [Gn,Gi3] ,  
such that y = FU(G(P, K ,  V ) ,  A) { f }  ? 

In this study we assume that the noise and distur- 
bance filters, G12 and G22, are given (as part of the Q 
priori model assumption and the noise vector at each fre- 
quency is norm bounded by 1. The error in plant model 

where 11, is arbitrary, and 4 satisfies inequality lldll 5 bo. 

3.3 Parameterization & Minimum Norm 

For convenience we present only the case of uncertainties 
representable by complex block-diagonal LFTs. Parti- 
tion J and into components corresponding to the block 
structure of A. We have the following result: 

Theorem 1 : 
Suppose a model validating set exists. Then, all 

model validating sets of uncertainty are given by 

Uncertainty 

Vw6$ := {A E 2) : A = WA,,  AB) 5 1) , (6) 

where 11, E Cn*, 11411 5 bo, W. := diag(w~I,,, . . . ,wT In , )  
is any diagonal complex matrix whose diagonal elements 
satisfy 

(7) 

and the (5,~) pair parameterized by q5 and 11, as given in 
Equation ( 5 )  is V-realizable. 

For LFT interconnections with repeated or real 
scalar blocks, additional conditions involving colinearity 
of corresponding 7, E is required. The interested reader is 
referred to [3] for details. 

To obtain a minimum norm model validating uncer- 
tainty set, we first test for existence of (P, V, V )  against 
(T ,  y). At this point, if the test fails, increasing the mag- 
nitude of the LFT uncertainty bound will not help. If yes, 
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we select weights W which is a measure of relative uncer- 
tainty sizes desired. We then seek at  each frequency the 
smallest z such that Dzw is model validating, as follows: 

min x 
rlt,9,& I . . . ,  L, $2 

subject to di E i = 1, .  . . , np 
= &vi, i = 1, .  . . , n p  

)dil-lwil 5 0, i=1 ,  ..., np 
IlCill - ~Iwi111~ill I 0, i = np + 1 , .  . . , T 

x 2 0  
lldll L bo 

where np is the number of uncertain real parameters. 

4 Results 
Consider a trim point corresponding to horizontal flight 
of V, = 8m/sec at which a linearized state-space (ana- 
lytical) model is obtained of order five. This model has 
the inputs (V,, de, 6,) and the outputs (6, z,  z, e,@. The 
results of four cases are reported in this paper. First two 
cases are based purely on simulation wherein the true 
model and measurement noise is assumed known. Sat- 
isfactory results in the first two cases is necessary in or- 
der to consider case 3 where a nominal plant is obtained 
from a system identification algorithm based on measured 
input-output data, and case 4 where the analytical model 
was enhanced via an ad-hoc parameter identification pro- 
cedure based on measurement data. 

4.1 Measurement Data, Nominal Model 
In cases 1 and 2, a linearized analytical model is chosen 
as the true model. In case 1, the true model is taken as 
the nominal model. This is a necessary test case where 
if the noise allowance is sufficiently large (at least as 
large as the true noise) then the identified model error 
should be zero. To simulate a nominal model for case 
2, the true model is perturbed at all five plant outputs 
by Atrue = [.3 .1 - .05 .2 - .l], with no perturbations 
in Aadd and eigenvalues. Using this true model, a Lin- 
ear Quadratic regulator controller is designed. Figure 6 
show the true (simlated) versus the nominal closed loop 
maximum singular value of the transfer function matrices 
where a significant difference is noted. A Schroder-phased 
signal is used as the test input signal, T ,  for the closed loop 
system. In cases 1 and 2, the assumed measurement noise 
allowance is set to  the maximum noise, i.e., 

Vnoise = mu= IIFFT[~noise(t)]ll2 * 15x5 

In case 3, a state-space identification algorithm is 
used to  obtain a 10th order model such that it is unstable 
open loop but stable when closed with the LQR controller 
which was used to  collect measurement data. In case 4, 
an analytically based fifth-order model was adjusted via 
parameter identification. A least squares procedure was 
used to minimize nominal closed loop output error. 

4.2 Uncertainty Model 
Figure 7 shows the interconnection structure of the nomi- 
nal and assumed structured uncertainty. Uncertainties in 

Simulated closed loop SV frequency response 
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Figure 6: True vs Nominal closed loop frequency re- 
sponse, case 2 

the plant eigenvalues, output multiplicative uncertainties 
and additive uncertainty from Vm to $ is considered. 

Figure 7: Interconnection Structure 

Figures 8 and 9 show the identified multiplicative 
uncertainty for cases 1 and 2 respectively. The follow- 
ing uncertainty weights were used in the optimization: 
WeVal = 05x5 ,  Wmult = 1 5 x 5 ,  and Wadd = .001. T O  de- 
emphasize the use of additive uncertainty from V, to $, 
a small value of = .001 was used in the optimization. 
Within computational accuracy and reliability, Figure 8 
shows that zero multiplicative uncertainty is almost re- 
covered. On the other hand, for case 2, the identified mul- 
tiplicative uncertainties resembles the true values, Atrue, 
in Figure 9. 

Figure 10 shows a representative comparison of the 
closed loop response of the measured output variable 0 
versus the response predicted by the identified nominal 
model in case 3. 

Figure 11 shows the identified multiplicative and 
additive uncertainty for case 3. The following uncer- 
tainty weights were used in the optimization: weVal = 
.02 * I~ , - ,~ lo ,  Wmult = 1 5 x 5 ,  and Wadd = 1. This means 
that the real and imaginary z-plane eigenvalues of the 
identified plant were allowed to be any value within a 
square box of length .04 about each of the 4 complex 
conjugate nominal eigenvalues and an abscissa range of 
.04 for 2 purely real nominal eigenvalues. In addition, 
the relative importance of the additive and multipliva- 
tive uncertainties are equal. Figure 11 shows the five 
multiplicative uncertainty and the single additive uncer- 
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Figure 8: Identified multiplicative uncertainty for case 1 

INOM=O RID=O eyU=12.6151 Vnoise=O.l6796 pknoise=O.l6796 
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Figure 9: Identified multiplicative uncertainty for case 2 

tainty computed. Note that there is a large uncertainty 
around .5Hz which could have been caused by unmodeled 
dynamics in the form of boom fixture flexibility and the 
periodic excitation of the wake due to nonuniform test 
walls surrounding the rotating ducted fan. 

Figure 12 shows the identified multiplica- 
tiveladditive uncertainty for case 4. The same un- 
certainty weights, W as in case 3 was used in the 
optimization. 

In summary, the identified model validating uncer- 
tainty models appeared too large for controller analysis 
and design applications. The predicted nominal closed 
loop response is significantly different from the measured 
outputs (typical of figure 10). Hence, we are currently 
investigating ways to improve our nominal models since 
a too large nominal error will almost guarantee a corre- 
spondingly large uncertainty set. 
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Figure 10: Comparison of measured vs nominal closed 
loop response for 8,  case 3 
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Figure 11: Identified multiplicative/additive uncertainty 
for case 3 
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Figure 12: Identified multiplicative/additive uncertainty 
for case 4 
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