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For any square complex matri}/, we denote the com-
plex conjugate transpose bwy/*. The largest singular value
and the spectral radius are denoted &yM) and p(M), re-

) spectively. The real spectral radius is defined @as(M) =

A Lower Bound for the Mixed 1. Problem max{|A: X is a real eigenvalue af{ }, with pr(M) = 0 if M
has no real eigenvalues. For any complex veetathen=" denotes
the transpose;™ the complex conjugate transposgel the Euclidean
norm, and|z|« the infinity norm.

Abstract—The mixed p problem has been shown to be NP hard so The deﬁn_ition of the structured singular Valw_'e’ifs deDer_]der_]t upo_n
that exact analysis appears intractable. Our goal then is to exploit the the underlying block structure of the uncertainties, which is defined
problem structure so as to develop a polynomial time algorithm that as follows. Given a matri®4 € C"*"™ and three nonnegative integers

e;]pproximatesu zlamd usually glives gootlj answers. To this entc)iI itis sh(cj)wn m., m., andme with m = m, +m.+me < n, the block structure
that p is equivalent to a real eigenvalue maximization problem, and a -/, . R A
power algorithm is developed to tackle this problem. The algorithm not K(m.,m., mc) is anm-tuple of positive integers

only provides a lower bound for i but has the property that y is (almost) - — (hyyo e
always an equilibrium point of the algorithm. i

Peter M. Young and John C. Doyle

) krnra knzr-‘rl-, Tty krrzT+rrLC7 k7r1T+rrzC+lw Tty knz) (1)

S o—m g . . .
Index Terms—Computational methods, control system analysis, robust Where we rgqUIreZizl ki . n SO these dimensions are compatllble
control, stability analysis, structured singular value. with M. This now determines the set of allowable perturbations,

namely define
Xi = {A = block diag (&7 Ix, .-+ 60, In,, » 6110

|. INTRODUCTION met1
c C e
Computation schemes for the complexroblem, based on upper e Ty e AT o0 AL )
and lower bounds [1], [2], are now well developed, and software is T ER,65€C, A € Ckmwmﬁkamﬁmcﬂ}. )

commercially available as part of theTools toolbox [3]. The mixed
case, however, is a fundamentally more difficult problem and is mubipte thatXx C €"*" and that this block structure is sufficiently
less understood. An upper bound for the general mixgaroblem general to allow for repeated real scalars, repeated complex scalars,
was presented by Faet al. [4] involving a minimization problem and full complex blocks. Note also that the full complex blocks need
on the eigenvalues of a Hermitian matrix, and a practical schem@t be square, but we restrict them as such for notational convenience.
to compute this upper bound has recently been developed [5]. Thi3¢ Purely complex case correspondsitp = 0 and the purely real
paper addresses the problem of computing a lower boung fior €ase tom. = m¢ = 0.
the mixed case. Definition 1 [1]: The structured singular valugyx (M), of a

We begin with some preliminaries in Section I1. It is known thafnatrix M € C"*" with respect to a block structu€(rn., me, mc)
the mixedy problem is nonconvex and NP hard [6] so that, except fé? defined as
small problems or special cases, one cannot expect to compute exact L -t
solutions without an entirely unacceptable amount of computation. i (M) = <A12§1K{”(A):d°t(l —AM) = 0}> ®)
Nevertheless, we would like to quickly find approximate solutions. . )
to the problem. This motivates the power iteration approach tak%th ’“‘f(M) =0if no A € Xx solvesde_:t(I - A_M) =0 i
in the paper. Previous work on complgxproblems has shown that In this paper we will be concerned directly with the computation

power iterations are fast, seem to have some nice global propert%fs’,‘ rather th?.“ hOV_V to usg as a rob_ustness an_a|y5|s tool. For t_he
and give good answers most of the time. Of course we will not B§2d€r unfamiliar withy.-based techniques, a fairly comprehensive
able to provide guarantees about the global properties of our solutl§y'€W IS given In [7l. . L
since the problem we are trying to solve is NP hard. Whilst it is not at all obvious how to compute from (3), it is
easy to obtain the following crude upper and lower bounds:
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Dy = {block diag(ef"’l Dy, el Dy Dy g1, decomposition (SVD) or\, we obtaindet(I — ULV M) = 0 where
o U andV are (block diagonal) unitary matrices and
rtmetl ¢ T 99 b :dlag(é Ty b Iy, ﬂblfkmr+1>"'
— * ki Xk . c c c
0<D; =D} eCt " 0<de R}. (6) P T
Note that for anyA € Xx and anyD € Dx, DA = AD, and with k& = Z’:’ mmptm.+1 kio This is a polynomial inéf,---,
consequently we obtain the following lemma. é;lc,wf, ,Ye and so applylng Lemma 4 we have a solution
Lemma 1: For any matrixA/ € C"*™ and any compatible block with |67 = |6mc| = = i andj3 > 3.
structurek., for all D € Dk Now suppose? > 3, say3 = 3 + ¢ for somee > 0, then since the

) roots of a polynomial are continuous functions of the coefficients,
we can find a5 > 0 so that

Now to refine the lower bound we define the unit ball in the
perturbation set as

px (M) = px (DMD™).

€ .

5

§T—(§f| <bi=1--,m, =

L, Mg

<%,i:1,---7k.

~C
S A

)&} Vi

BXx ={A e Xk:0(A) <1} (8)

Then, move eachs;| down by £, and we can find a\ solving

The following lemma results almost immediately from the definitlog (T — AM) = 0 with 5(A) < L contradicting the definition of

of .

Lemma 2: For any matrix} € C"*" and any compatible block N Thusd = g, and it is now easy to check that for this solution
structure A= Q € Qx with PR Q\[) 3 = /l}g(f\[ O

px (M) = ACBN pr(AM). ©) IV. CHARACTERIZATION OF A MAXIMUM POINT

. . . We are interested in computingxc (1), which by (9) and (12

In light of (7) and (9), noting thalx C BXx, we can refine the . . puting. (A1) y ©) (12)
. ' - is given by

bounds in (4) to obtain the following lemma.

Lemma 3: For any matrixM € C"*"™ and any compatible block ux (M) = mBa§ pr(AM) = élé%x pr(QM).

Cx

structure X
U For reasons of tractability we choose to consider the problem
Jnax pr(QM) < px(M) < lnfk_ a(DMD™).  (10) maxgeo, pr(QM). However, since this is a nonconcave problem
we will in general only be able to find local maxima, and hence
We introduce one further piece of notation. For any two vectoige will obtain a lower bound foru (M) (which is the global
x,y € C", partitionz andy according to the block structure as  maximum). We would like this lower bound be “tight” (i.e., close
to ¢) and so wish to rule out the maxima pf:(QM) which we

— [T ... T T .. T T ... T L . .
r= [””'1 Frme.  Tey Feme TCy f'?cm(,] know are only local. Thus we only considé} € Qx which are
y=[00 W YLt Y e o yo ]T local maxima ofpr(QM) with respect not only taQ € Qx but

(11) also to@ € BXk. In this section we will develop a characterization
wherez,..y., € C¥. x.,, y., € C*»r+i, xc,,yc, € CFrmrtmeti,  of such local maxima.
These will be referred to as the “block components’:cndy, and Note that for anyQ € Qx and anyA € BXx, QA € BXx and
we define the “nondegeneracy” assumption to be that for ev@iry AQ € BXx. Now suppose some matrig € Qx achieves a local
the appropriate set)y;. z..| # 0, |ys, 2., | # 0, |yc,||zc,| # 0. maximum of pr(QM) over Q@ € BXk. Then it is easy to show
that the matrixdZ: = QM has a local maximum ofr(QM) over
O € BXy at Q = I. However, since the real elements@fare not

. . . restricted to be on their boundary, we can say more than this. For
In this section we show that the lower bound for the mixed casd%y matrix(Q € Ok [see (5)] define the index sets

(10) holds with equality, and hence it is sufficient to consider the

complex uncertainties on their boundary. Note, however, that the JQ) = {i < m,: ﬁ;‘| = 1} (13)

definition of Qx requires us to search over the full range of the real j(Q) _ {i <my (14)

perturbations. The following lemma is taken from [1]. -
Lemma 4 [1]: Letp:C* — C be a (multivariable) polynomial and and define the allowable perturbation set

define 3 = min{|z|e: p(z) = 0}, then there exists a € C* such

Ill. L owER BOUND AS A MAXIMIZATION

that p(z) = 0 and for everyi, |z| = 3. BA(J.7) = {A € Xk:
This is now used to prove the main result of the section. ied, |ﬁ,?| <l,i=1,---,m.,
. v nXxXn H -
Theorem 1: For any matrixM € C and any compatible block 5(Af) <li=1,. ,mc}. (15)
structure

o / We see that for sufficiently smadl > 0, for any Q € Qx and any
dnax pr(QM) = px(M). 12) A € BA.(J(Q).7(Q)), QA € BXx and AQ € BXk. The
point of all this is that if some matrix) € Qx achieves a local
Proof: It is trivial from (10) if pux(M) = 0. So assume maximum ofpr(QM) overQ € BXx, then the matrix\/ := QM
px (M) = 3 > 0, and this value is achieved for some perturbatlan has a local maximum 0br(QM) over Q € BA(T(Q).T(Q))
i.e.,det(T—AM) = 0 ands(A) < 5. Now fix the real perturbations (for somee > 0) atQ = I (and in fact the converse is true, provided
at these “optimal” value$s; = b{,i =1,---,m, with |6,| < ,@)- we assume that for every 67 # 0).
Then allow the complex part ak to vary, and consider minimizing  Before proving the main result we need some preliminary lemmas.
a(A) subject todet(I — AM) = 0. Performing a singular value The following two linear algebra lemmas are due to Packard [2].
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Lemma5 [2]: Lety € C" andx € C" be nonzero vectors. Thenta(G) € [0 §) is an open neighborhood dBA.(7,.7) about
there exists @ € R,d > 0 such thaty = dx iff Re(y*"Gz) < 0for E(0) = I. So now define the matrix(¢) := E(¢)M. Then it
every G € C"*" satisfyingG + G* < 0. is clear thatpr(QM) has attained a local maximum over the set

Lemma6 [2]: Let y € C" andx € C" be nonzero vectors. Q € BAJ(J.J) at Q = I iff pr(R(t)) has attained a local
Then there exists a Hermitian, positive definifte € C™*"™ such maximum overt > 0 att = 0 for arbitrary G as above

thaty = Dz iff y*» € R andy*z > 0. Since R(0) = M has a distinct real eigenvalue, we have (for

Now define the closed half-space in the complex plane as, feome nonempty interval about the origin) an analytic function),
some scalar) € R with A(0) = Xo, and A(¢) an eigenvalue ofR(¢). Thus we can

HY = {2:Re(e’” ) < 0}. (16) differentiate to obtain
) . /\(O) = y*R(O)x =2y "GMzx = 2Ny  Gz. (19)

Then we have the following elementary linear algebra lemmas.

Lemma 7: Given any set of complex scalar§ = {z;:: = In block notation this becomes
1,---,m} and any real scalap, thenZ C H" iff > a;z; € HY ) o me me .
for all real nonnegative scalars,i = 1,---,m. A(0) =20 <Z Gyl e Y gyl e + Yy, G l’a-)-

Proof («=): For eachz; choosen;, =1 anda; =0 fori # k i=1 i=1 i=1 20)

Define the set of points

(=) Re <6J’*/" Zm%) = ZariRe('ejwzi) <0. O
i=1 i=1

. « .
Z=Azi=1,---,m}={giy wr:i= 1,---.m,~}

Lemma 8: Given any set of complex scalarf = {z;:i = U{giye we,ii=1,---,mc}
1,---,m}, definex := 3"  «a;z; wherea;,i = 1,---,m are real U {yaGfTCﬁi =1,---.mc} (21)
nonnegative scalars. Thenis not real and positive for any choice ] ) o ]
of the aboven;’s iff Z C H" for somes € (— == with the obvious identification for the elements. Now since we

¢ v 22/ .

Proof (<): By Lemma 72 C H" implies\ € H¥, and hence &' atamaximum point we have the) is never regl and positive.
Re(e“A) < 0. Suppose) is real and positive. Then this implies Thus, noting that we may independently scgleg;, G- by arbitrary
Re(e’¥) < 0 which means) ¢ (—Z Z), which is a contradiction. ~nonnegative scalars a.nd. still sa.tlsfy (18), applying Lgmma 8 to (20)

(=): Assume\ is never real and positive. Now suppasez H¥ and (21) gives that this is true i C H* for somey € (=5 3)
foranyy € (—%%). First choose’ = 0. Then, we must have at leastfor eyachG_e Y}x satisfying (18_). _Furthermore, since any summation
one:z € Z With‘Re(z) > 0. Now we choose; as the element with of G.s satlsfy!ng (18) falso .SatISerS (18), Lemma.8 gives that.thls is
Re(z) > 0 having minimumjarg(=)| (which must be nonzero). Now true iff Erhsre is oneH ¥ WhICII works forev_eryGf ie., there exists
choosey = arg(%,) and define)) = 2 — 4. Then, sincez, € HY, v € (__5_5_) such tdhatz C H for{gll G € Xk satl_sfy_lng (15)' From
we must have a (nonzerd) € Z with 2, & I Suppose the deflnmonv ofH" in (16), andd in (17), (18), this is equivalent to
Re(e’ glyr,2r,) <0,

21 = ri(cost + gsiny), Z2 = r2(cos @ + jsin ¢). for all o € R with " <0. i1
9i . gi S YU, t= 1,2, My

Then by our choice Ofl and2z., ;tra}ightforV\{ard trigonometry yields R(‘,(C’r'il’bgz‘y:_r,wi) <0
the following facts:|sin ¢| > |sin |, sgn(sin@) = —sgn(sinv)), . o
|cos ¢ < |cos |, and if |cos ¢| = |cos 9|, thencos ¢ = cos . Now for »""1” 9 €ER. €T
choosed; = i anddy = m Then we have Re(e’Vgiylae,) <0,
. cos ¥ cos ¢ for all g € C with Re(g;) <0, i=1,---,m.
A= N1 Z o Zo = . FoT
1At aes [sine]  |sin 9| Re(e“yciGiC:Eci) <0,
. oo C O P
Thus\ is real and positive, which is a contradiction. O forall G, with G + Gi7 <0, 0=1,---,me (22)

Putting all this together we obtain the following alignment contor somew) € (—ZZ). It is now easy to check that the above

iti 22

dition. _ ’ o conditions may be equivalently expressed as
Theorem 2: Suppose the matrid/ € C**" has a distinct real oo ]

eigenvalue\, > 0 with right and left eigenvectors; andy, respec- Re(e’ypwr) 20, i=1,---,m,

tively, satisfying the nondegeneracy assumption. Further, suppose that Re(e”‘yﬁixri) =0, ieJ
pr(M) = Xo. Then if the functiorp r (@) M) attains a local maximum
over the set) € BAt(j, ) (for somee > 0) at@ = [, then there P o o o
exists a matrixD € Dy, with 6, = +Z for everyi € 7, and areal ~ Re(e’"yc,Giwe,) <0, forall Gi with G7 + G7* <0,

scalary € (—% %) such thaty = ¢’¥ Da. i=1,--,mo. (23)

Proof: First we parameterize the perturbation set. Consider, . .
G € Xx with Since the scala#’¥ terms may simply be absorbed into one of the

vectors, we can apply Lemmas 5 and 6 to each block component of
G = block diag (g1 Irys s gy Thrn, > 910y s x andy to obtain the equivalent conditions
ImeTir o G G L) a7y, =€ Dix,,, 0<Di=D;, 8 €[-%E],

=1, m,

ej¢y:ixci €E(0o0), i=1,-+,m

and the added restrictions

gzlgo ZEJ Yr; :ejwfiﬂ')iDiI’T‘i'/ 0<DL:DTH el:ig‘ lE;f
Re(g,;c) <0, i=1,---,m, (18)
G +G7F <0, i=1,---,me. Ye, :cjz‘/"D,;mci, 0<D;,=D}, i=1,---,m.

Now it can be shown that for some > 0, the set of all matrices ” '
E(t) := (I 4+ Gt)(I - Gt)~' for G as above and such that yc; = ¢’ "dizc,, 0<di€R,t=1,--,mc. (24)
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Stacking these relations in matrix form yielgs= e’¥ D with D of (<): Define D as the unique matri € D such thatD? = D,

the required form. O andi = b, the result follows directly. O
Remarks: Note from the proof that we immediately have a partial

converse to Theorem 2, namely thatif= e’ Da: under the above VI. A POWER ALGORITHM FOR THE LOWER BOUND

assumptions, then no directional derivative (in the above sense) of
the eigenvalue achievingz(QM) over the set) € BA (7. J) is
real and positive aty = 1.

In light of Lemma 9, the problem of computing a lower bound for
ux (M) is reduced to one of finding a solution to the set of equations
in (27) which gives us a decomposition as in (25). We would like to
develop an algorithm for computing such a solution. First note that if

V. A DECOMPOSITION AT " . . .
) o i ) _ we partitiond, a, z, w compatibly with the block structure as in (11),
Theorem 2 gives us a characterization of a maximum point §fen the set of constraint equations

pr(QM) in terms of an alignment of the right and left eigenvectors
of QM. This leads directly to the following decomposition. b= Qa b=D tw
Theorem 3: Suppose) € Qx achieves a local maximum of :=Q*QDa »=Q"w
pr(QM) over @ € BXx and that the eigenvalue achieving
pr(QM), denoteds, is distinct and positive. Then, if the right can be broken down into a seriesiafsimilar independent constraint
and left eigenvectors af M, denotedr andy, respectively, satisfy equations on the block components (singeand D are block
the nondegeneracy assumption, there exists a matrix Dx with  diagonal). These equations are of three types corresponding to a

D? € Dx and#; = +5 fori e j(Q) such that repeated real scalar block, a repeated complex scalar block, or a full
QDMD™'(Dx) = Dz complex block. We now consider a generic constraint of each type.

ok x N ol o wak The following two lemmas are due to Packard [2].
(" DHQD"M(D")" = "D (25) Lemma 10 (Repeated Complex Scalar Block [2])etb, a, z, w €

with 3 < ux(M). Furthermore, if the above maximum is g|oba|Ck be nonzero vectors with*w # 0. Then there exists a complex

then 8 = px(M). scalarg with |¢] = 1 and a complex matrixD € C*** with

Proof: SinceQ € Qx is a local maximum ofp(QM) over 0 < D = D~ such that
Q€ BXk, the matrix 3/ := QM achieves a local maximum of .
pr(QM) overQ € BA.(J(Q).J Q)) (for somer > 0) atQ = I. b=qa b=D""w

Now apply Theorem 2 to conclud;e— e’ Da with D € Dx and z=q¢"¢Da z=q"w

b; = = +£% fori € J(Q), then defineD as the unique matrix such

that D € Dx andD? = D. Substitution of this into the right and left if and only if

eigenvalue equations 6) 3/ and simple manipulations (note that for w*a atw

any@ € Qx and anyD € Dx, Q andD commute) yield the results SO T v (28)

in (25). Finally, note from Theorem 1 that we have< ux (M),

and if the above maximum is global theh= pux (M). | Lemma 11 (Full Complex Block [2])Let b,a,z,w € C* be

Remarks: Employing simple manipulations of (25) yields a partiahonzero vectors. There exists a complex matgixe C*** with
converse of this theorem. If we have a decomposition as in (25)aithQ*@Q = I, and a real positive scalat such that
real and positive and nonzero, then we have thatis an eigenvalue .
of QM with right and left eigenvectors; andy, respectively [thus b=Qa b=d w
G is a lower bound fonux (M)], wherey = re’¥ D?x with D as z=Q"Qda z=Q w
above,r a positive real scalar (which we could thus absorb ifXp
andy € [-ZZ]. Thus definingD = rD?* we havey = ¢/* D with  if and only if

D as in Theorem 2 ang € [-Z Z]. If we add the further technical | la|
assumptlon that we are not |n the special casé;of 7 for all = mfl b= mw (29)
i=1,---,m, andm. = 0,m¢c = 0, then we have) € (— o) '

Thus, we (almost) always have a decompositiop aff the form Now we consider a repeated real scalar block, bearing in mind that
(25), and any such decomposition gives us a lower bound fofow we have additional constraints if the real perturbation is not on the

we reformulate this condition into a set of vector equations. boundary (i.e., fori € J7(Q)).

Lemma 9: Suppose we have matricés € Qx with &7 # 0 for Lemma 12 (Repeated Real Scalar Blocket b, a, z,w € C* be
i=1,---,m, andD € Dx with D* € Dx and¥; = +7% for nonzero vectors with™w # 0. We have a real scalagrwith |¢| < 1,
i € J(Q). Then we have a nonzero vectdrand a real positive a real scala® € [—ZZ], and a complex matrixD € C*** with
scalar such that 0 < D = D* such that

QDMD™'(Di) = pDi b= qa b e D1
(z*D*)QD*M(D*)"' = pi* D (26) s =" Da i = qw

iff there exists a matrixD € Dx with §; = £ 7 for i € 7(Q) and

nonzero vector$, a, z, w such that with ¢ = £3 for |q < 1 iff

Mb = Ba M*z = pw z=qw b=gqa (30)
pa— pa— -1 an
b= Q(l b= D w with
2=Q"QDa z=Q w. (27)

_ R R Re(a™w) >0 forg=1
R Proof (=): Definex = Di andb,a,z,w asb = D~ Ar a = e(“*m) = org
D7'Q 'z, = DQ*x,w = Dz. Finally, defineD = D?; the Re(a"w) <0 forg=-1

result follows. Re(a"w) =0 for |¢| < L. (31)
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Proof (=): Immediately we have: = qw and b = gqa. Proof: Apply Lemmas 10-12 to the appropriate block compo-
Thus a*w = Lb*w = le/’w*(D*)"'w. Now ¢ = 1 implies nents. O
arg(a*w) = ¢, and henc&e(a*w) > 0. Similarly, ¢ = —1 implies Remarks: Since (35) and (36) are unaffected if we multigly
arg(a*w) = #+7 and hencRe(a*w) < 0. Finally, |¢| < 1 implies and a by an arbitrary positive real scalar, and = and w by an
arg(a™w) = 6 or § + = with § = 7. Thusarg(a*w) = £%, and arbitrary positive real scalay, then in searching for solutions to these
so Re(a*w) = 0. equations we may impose the additional restricfion= |w| = 1.

(«<): Immediately we haveh = ga and = = ¢"w, and so Any solution to (35) and (36) immediately gives us a decompo-
b*w = ga*w. Denotingé = arg(b*w), we see that fop = 1 sition as in (25), and hencg is a lower bound forux (M). We
Re(a™w) > 0, which impliesRe(b™w) > 0, and sof € [-3F]. also note that under certain technical assumptions (as given), there
Similarly for ¢ = —1 Re(a*w) < 0, which impliesRe(b*w) > 0, always exists a solution to these equations itk i« (M ). Since
and sof € [-3Z]. Finally for |[¢] < 1, Re(a"w) = 0 which we would like to find the largest we can that solves (35) and (36),
implies Re(b*w) = 0, and sof = £%. Now b*(e~7%w) is real we now propose finding a solution to this system of equations via
and positive, and so applying Lemma 6 we have a malriwith the following power iteration:

0 < D = D* such thath = e~ Dw. DefineD = D!, and we
haveb = e 7D w andz = ¢*w = ¢"¢’’ Db = ¢*¢e’’ Da. O
These lemmas now allow us (with a few technical assumptions)

,‘§k+1(1k+1 = Mby

*
Wy, 42y 4y

. . . X Ty = G101, 2, = T W2y,
to eliminate matricesy and D from (27). To avoid the notation Wy, A2 4y
becoming excessive, we consider a simple block structure with |ws, |
m, = m. = m¢c = 1 for the remainder of this section. We stress Ty T |QSI\'+1|”’3'~'+1

that this is purely for notational convenience, and the general formulas Bt iw — s (37)
for an arbitrary block structure, as defined in Section I, are simply 7*F1Whtt = 3 “ktt X
obtained by duplicating the appropriate formulas for each block. So by = desian by, = G2y 1 W2y @
given K = (k1, k2, k3), the appropriate scaling sets become kot e kot a3, W2y ktl

qub = {blOCk diag(qukla qnlk‘za QC): qT € [_1 1]’ b3 = |d3k+l| w3
c*k ¢ Cx ~C b |w3k 1| .
¢ =1,Q7"Q" = I, } 32) "
. 7 where gr+1 and gx1+1 evolve as
Da, = {block diag (¢’ Dy, Dz, di,): 6 € [- 5 7. ot SR -
- N x
* ks X ks . % = sen(§g : R w,,
0<D,=D;ec** 0<der] (33) Bepr = sen(de) g e(ai, ., wiy)
. . . . - L Ok S
and we partitior, a, =, w compatibly with this block structure as  f [dk+1] 21 Thengii, = e Elsedir1 = dnis
by ay z1 w1 Arsr = sgn(dar) b1, | + Re(ai Wi, 1)
b= b2 |, a=laz |, 2= |22 |, w= |wa (34) |a’1k+1| bt *
b3 as z3 w3 Qg1

If |&k~+1| 2 1 Thencjk+1 = Else(ij = dk.;,_l (38)
whereb,, a;, z;,w; € C*. Then we obtain our final form of (27) B .
as in the following theorem, which will form the basis of a poweandg.1, Gk+1 are chosen positive real so that 1| = |we1]| = 1.
iteration to compute a lower bound farc (M). It is now straightforward to verify that if the algorithm converges

Theorem 4: Suppose we have vectobsa, z,w € C" partitioned to some equilibrium point, then we satisfy the appropriate constraints
as in (34) withb;, a;, z;,w; # 0 andajw,a3w2 # 0. Then there on each block component; hence by Lemmas 10-12 we have nonzero
exist matrices) € Q..1, and D € D,,;, and a positive real scalar vectorsb, a, z, w € C", matricesQ) € Qeub. D € Dgy1,, and positive

4 such that real scalars3, 3 such that
Mb = Ba M = Bu Mb = fa Mz = juw
b= Qa b=D"w b= Qua b=D 'w (39)
z=Q"QDa z=Q"w 2=Q"QDa 2= Q" w.
with § € [-2Z], andf = £% for |¢"| < 1 iff Thus if 3 = 3, then we satisfy (27) and so have a decomposition
as in (25); hence is a lower bound fopx (3{) [associated with a
Mb = Ba local maximum ofpr(QM)].
o _whas _|ws] We note that if3 # 3, then we have not found a decomposition
A= dun z2 = |u,§a2\w2 B e as in (25). However, from (39) we find thapMb = 3b and
M= g (35) w*QM = jw”*. Thus we have that bothi and 3 are real positive
wz=pw eigenvalues ofQ M, and so by Lemma 3nax(j3, 3) still gives us
b= gar b= "2V 4 = las] a lower bound forux (M).
|a;m2| |ws|
for some real scalag € [—-1 1] with VIl. CONCLUDING REMARKS
] The algorithm described here has been implemented in software
Re(ajwi) >0 forg=1 and is commercially available as part of theTools toolbox [3]. We
Re(aTuu) <0 forg=—1 (36) how have a good deal of numerical experience with the algorithm on

benchmark problems, and in addition the code has been used for a

Re(ajwi) =0 for|q| < 1. number of real engineering applications which are detailed elsewhere
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in the literature (e.g., see [8]). We have found that the algorithm8] G. J. Balas and P. M. Young, “Control design for variations in structural
typically performs very well in terms of convergence, accuracy of the  natural frequencies,AIAA J. Guidance, Dynamics Control. 18, pp.
resulting bound, and required computation. Space constraints preclu ? 825-332, 1995. . . L

. . . . . P. M. Young, M. P. Newlin, and J. C. Doyleu"analysis with real
our including this material he_re, but we re_fer the mte_rested reader parametric uncertainty,” ifProc. 30th Conf. Decision Contrl991, pp.
[9] and the references therein for a detailed numerical study of the 1251-1256.

algorithm performance as well as [10] for recent efforts at furthdt0] J. E. Tierno and P. M. Young, “An improvegd lower bound via
enhancing the performance. adaptive power iteration,” ir81st IEEE Conf. Decision Confr1992,
pp. 3181-3186.
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