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A Lower Bound for the Mixed Problem

Peter M. Young and John C. Doyle

Abstract—The mixed � problem has been shown to be NP hard so
that exact analysis appears intractable. Our goal then is to exploit the
problem structure so as to develop a polynomial time algorithm that
approximates� and usually gives good answers. To this end it is shown
that � is equivalent to a real eigenvalue maximization problem, and a
power algorithm is developed to tackle this problem. The algorithm not
only provides a lower bound for� but has the property that � is (almost)
always an equilibrium point of the algorithm.

Index Terms—Computational methods, control system analysis, robust
control, stability analysis, structured singular value.

I. INTRODUCTION

Computation schemes for the complex� problem, based on upper
and lower bounds [1], [2], are now well developed, and software is
commercially available as part of the�-Tools toolbox [3]. The mixed
case, however, is a fundamentally more difficult problem and is much
less understood. An upper bound for the general mixed� problem
was presented by Fanet al. [4] involving a minimization problem
on the eigenvalues of a Hermitian matrix, and a practical scheme
to compute this upper bound has recently been developed [5]. This
paper addresses the problem of computing a lower bound for� in
the mixed case.

We begin with some preliminaries in Section II. It is known that
the mixed� problem is nonconvex and NP hard [6] so that, except for
small problems or special cases, one cannot expect to compute exact
solutions without an entirely unacceptable amount of computation.
Nevertheless, we would like to quickly find approximate solutions
to the problem. This motivates the power iteration approach taken
in the paper. Previous work on complex� problems has shown that
power iterations are fast, seem to have some nice global properties,
and give good answers most of the time. Of course we will not be
able to provide guarantees about the global properties of our solution
since the problem we are trying to solve is NP hard.
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It is shown in Section III that mixed� can be obtained as the result
of a (nonconcave) real eigenvalue maximization. Sections IV–VI
present several important theoretical characterizations of the mixed
� problem, including the generalization of the� decomposition to
the mixed case in Section V. This leads to the development of a
power algorithm to compute a lower bound for the mixed� problem
which is presented in Section VI. The algorithm performance is very
encouraging, both in terms of accuracy of the resulting bound and
computational efficiency, and this is briefly discussed in Section VII.

II. NOTATION AND PRELIMINARIES

For any square complex matrixM , we denote the com-
plex conjugate transpose byM�. The largest singular value
and the spectral radius are denoted by��(M) and �(M), re-
spectively. The real spectral radius is defined as�R(M) =

maxfj�j: � is a real eigenvalue ofMg, with �R(M) = 0 if M

has no real eigenvalues. For any complex vectorx, thenxT denotes
the transpose,x� the complex conjugate transpose,jxj the Euclidean
norm, andjxj1 the infinity norm.

The definition of the structured singular value,�, is dependent upon
the underlying block structure of the uncertainties, which is defined
as follows. Given a matrixM 2 Cn�n and three nonnegative integers
mr, mc, andmC with m

:
= mr+mc+mC � n, the block structure

K(mr;mc; mC) is anm-tuple of positive integers

K = (k1; � � � ; km ; km +1; � � � ; km +m ; km +m +1; � � � ; km) (1)

where we require m

i=1
ki = n so these dimensions are compatible

with M . This now determines the set of allowable perturbations,
namely define

XK = � = block diag �
r

1Ik ; � � � ; �
r

m Ik ; �
c

1Ik ; � � �

�
c

m Ik ;�
C

1 ; � � � ;�
C

m :

�
r

i 2 R; �
c

i 2 C;�
C

i 2 C
k �k

: (2)

Note thatXK � Cn�n and that this block structure is sufficiently
general to allow for repeated real scalars, repeated complex scalars,
and full complex blocks. Note also that the full complex blocks need
not be square, but we restrict them as such for notational convenience.
The purely complex case corresponds tomr = 0 and the purely real
case tomc = mC = 0.

Definition 1 [1]: The structured singular value,�K(M), of a
matrixM 2 Cn�n with respect to a block structureK(mr;mc;mC)

is defined as

�K(M) = min
�2X

f��(�): det(I ��M) = 0g

�1

(3)

with �K(M) = 0 if no � 2 XK solvesdet(I ��M) = 0.
In this paper we will be concerned directly with the computation

of � rather than how to use� as a robustness analysis tool. For the
reader unfamiliar with�-based techniques, a fairly comprehensive
review is given in [7].

Whilst it is not at all obvious how to compute� from (3), it is
easy to obtain the following crude upper and lower bounds:

�R(M) � �K(M) � ��(M): (4)

To refine these bounds further we define the following sets of block
diagonal matrices (also dependent on the underlying block structure):

QK = � 2 XK: �
r

i 2 [�1 1]; �
c�

i �
c

i = 1;�
C�

i �
C

i = Ik
(5)
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DK = block diag e
j�

D1; � � � ; e
j�

Dm ; Dm +1; � � � ;

Dm +m ; d1Ik ; � � � ; dm Ik ): �i 2 �
�

2

�

2
;

0 < Di = D
�
i 2 C

k �k
; 0 < di 2 R : (6)

Note that for any� 2 XK and anyD 2 DK, D� = �D, and
consequently we obtain the following lemma.

Lemma 1: For any matrixM 2 Cn�n and any compatible block
structureK, for all D 2 DK

�K(M) = �K(DMD
�1

): (7)

Now to refine the lower bound we define the unit ball in the
perturbation set as

BXK = f� 2 XK: ��(�) � 1g: (8)

The following lemma results almost immediately from the definition
of �.

Lemma 2: For any matrixM 2 Cn�n and any compatible block
structureK

�K(M) = max
�2BX

�R(�M): (9)

In light of (7) and (9), noting thatQK � BXK, we can refine the
bounds in (4) to obtain the following lemma.

Lemma 3: For any matrixM 2 Cn�n and any compatible block
structureK

max
Q2Q

�R(QM) � �K(M) � inf
D2D

��(DMD
�1

): (10)

We introduce one further piece of notation. For any two vectors
x; y 2 Cn, partitionx andy according to the block structure as

x = x
T
r � � � x

T
r x

T
c � � � x

T
c x

T
C � � � x

T
C

T

y = y
T
r � � � y

T
r y

T
c � � � y

T
c y

T
C � � � y

T
C

T

(11)
wherexr ; yr 2 Ck ; xc ; yc 2 Ck ; xC ; yC 2 Ck .
These will be referred to as the “block components” ofx andy, and
we define the “nondegeneracy” assumption to be that for everyi (in
the appropriate set),jy�r xr j 6= 0; jy�c xc j 6= 0; jyC jjxC j 6= 0.

III. L OWER BOUND AS A MAXIMIZATION

In this section we show that the lower bound for the mixed case
(10) holds with equality, and hence it is sufficient to consider the
complex uncertainties on their boundary. Note, however, that the
definition ofQK requires us to search over the full range of the real
perturbations. The following lemma is taken from [1].

Lemma 4 [1]: Let p: Ck ! C be a (multivariable) polynomial and
define� = minfjzj1: p(z) = 0g, then there exists az 2 Ck such
that p(z) = 0 and for everyi; jzij = �.

This is now used to prove the main result of the section.
Theorem 1: For any matrixM 2 Cn�n and any compatible block

structureK

max
Q2Q

�R(QM) = �K(M): (12)

Proof: It is trivial from (10) if �K(M) = 0. So assume
�K(M) = � > 0, and this value is achieved for some perturbation�̂,
i.e.,det(I��̂M) = 0 and��(�̂) � 1

�
. Now fix the real perturbations

at these “optimal” values(�ri = �̂
r
i ; i = 1; � � � ;mr with j�̂ri j �

1

�
).

Then allow the complex part of� to vary, and consider minimizing
��(�) subject todet(I � �M) = 0. Performing a singular value

decomposition (SVD) on�, we obtaindet(I�U�VM) = 0 where
U andV are (block diagonal) unitary matrices and

� = diag �̂
r
1Ik ; � � � �̂

r
m Ik ; �

c
1Ik ; � � �

�
c
m Ik ; 


c
1; � � � ; 


c
k

with k =
m

i=m +m +1
ki. This is a polynomial in�c1; � � � ;

�
c
m ; 


c
1; � � � ; 


c
k and so applying Lemma 4 we have a solution

with j�̂c1j = � � � = j�̂cm j = j
̂c1j = � � � = j
̂ckj =
1

�̂
and �̂ � �.

Now supposê� > �, say �̂ = � + � for some� > 0, then since the
roots of a polynomial are continuous functions of the coefficients,
we can find a� > 0 so that

�
r
i � �̂

r
i < �; i = 1; � � � ; mr ) �

c
i � �̂

c
i <

�

2
; i = 1; � � � ;mc



c
i � 
̂

c
i <

�

2
; i = 1; � � � ; k:

Then, move eachj�ri j down by �

2
, and we can find a� solving

det(I � �M) = 0 with ��(�) < 1

�
contradicting the definition of

�. Thus �̂ = �, and it is now easy to check that for this solution
��̂ = Q̂ 2 QK with �R(Q̂M) = � = �K(M).

IV. CHARACTERIZATION OF A MAXIMUM POINT

We are interested in computing�K(M), which by (9) and (12)
is given by

�K(M) = max
�2BX

�R(�M) = max
Q2Q

�R(QM):

For reasons of tractability we choose to consider the problem
maxQ2Q �R(QM). However, since this is a nonconcave problem
we will in general only be able to find local maxima, and hence
we will obtain a lower bound for�K(M) (which is the global
maximum). We would like this lower bound be “tight” (i.e., close
to �) and so wish to rule out the maxima of�R(QM) which we
know are only local. Thus we only considerQ 2 QK which are
local maxima of�R(QM) with respect not only toQ 2 QK but
also toQ 2 BXK. In this section we will develop a characterization
of such local maxima.

Note that for anyQ 2 QK and any� 2 BXK, Q� 2 BXK and
�Q 2 BXK. Now suppose some matrixQ 2 QK achieves a local
maximum of �R(QM) over Q 2 BXK. Then it is easy to show
that the matrixM̂ : = QM has a local maximum of�R(Q̂M̂) over
Q̂ 2 BXK at Q̂ = I. However, since the real elements ofQ are not
restricted to be on their boundary, we can say more than this. For
any matrixQ 2 QK [see (5)] define the index sets

J (Q) = i � mr: �
r
i = 1 (13)

Ĵ (Q) = i � mr: �
r
i < 1 (14)

and define the allowable perturbation set

B̂��(J ; Ĵ ) = � 2 XK: �
r
i � 1; i 2 J ; �

r
i < 1 + �;

i 2 Ĵ ; �
c
i � 1; i = 1; � � � ; mc;

�� �
C
i � 1; i = 1; � � � ;mC : (15)

We see that for sufficiently small� > 0, for anyQ 2 QK and any
� 2 B̂��(J (Q); Ĵ (Q)), Q� 2 BXK and �Q 2 BXK. The
point of all this is that if some matrixQ 2 QK achieves a local
maximum of�R(QM) overQ 2 BXK, then the matrixM̂ := QM

has a local maximum of�R(Q̂M̂) over Q̂ 2 B̂��(J (Q); Ĵ (Q))

(for some� > 0) at Q̂ = I (and in fact the converse is true, provided
we assume that for everyi, �ri 6= 0).

Before proving the main result we need some preliminary lemmas.
The following two linear algebra lemmas are due to Packard [2].
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Lemma 5 [2]: Let y 2 Cn andx 2 Cn be nonzero vectors. Then
there exists ad 2 R; d > 0 such thaty = dx iff Re(y�Gx) � 0 for
everyG 2 Cn�n satisfyingG + G� � 0.

Lemma 6 [2]: Let y 2 Cn and x 2 Cn be nonzero vectors.
Then there exists a Hermitian, positive definiteD 2 Cn�n such
that y = Dx iff y�x 2 R and y�x > 0.

Now define the closed half-space in the complex plane as, for
some scalar 2 R

H
 
= fz: Re(e

j 
z) � 0g: (16)

Then we have the following elementary linear algebra lemmas.
Lemma 7: Given any set of complex scalarsZ = fzi: i =

1; � � � ;mg and any real scalar , thenZ � H iff m

i=1
�izi 2 H

 

for all real nonnegative scalars�i; i = 1; � � � ;m.
Proof ((): For eachzk choose�k = 1 and�i = 0 for i 6= k

()) Re e
j 

m

i=1

�izi =

m

i=1

�iRe(e
j 
zi) � 0:

Lemma 8: Given any set of complex scalarsZ = fzi: i =

1; � � � ;mg, define� :=
m

i=1
�izi where�i; i = 1; � � � ; m are real

nonnegative scalars. Then� is not real and positive for any choice
of the above�i’s iff Z � H for some 2 (��

2

�

2
).

Proof ((): By Lemma 7Z � H implies� 2 H , and hence
Re(ej �) � 0. Suppose� is real and positive. Then this implies
Re(ej ) � 0 which means 62 (��

2

�

2
), which is a contradiction.

()): Assume� is never real and positive. Now supposeZ 6� H 

for any 2 (��

2

�

2
). First choose = 0. Then, we must have at least

onez 2 Z with Re(z) > 0. Now we choosêz1 as the element with
Re(z) > 0 having minimumjarg(z)j (which must be nonzero). Now
choose = arg(ẑ1) and define ̂ = �

2
�  . Then, sincêz1 2 H ̂,

we must have a (nonzero)̂z2 2 Z with ẑ2 62 H
 ̂. Suppose

ẑ1 = r1(cos + jsin ); ẑ2 = r2(cos�+ jsin�):

Then by our choice of̂z1 andẑ2, straightforward trigonometry yields
the following facts:jsin�j � jsin j; sgn(sin�) = �sgn(sin );

jcos�j � jcos j, and if jcos�j = jcos j, thencos� = cos . Now
choose�̂1 = 1

r jsin j
and �̂2 = 1

r jsin�j
. Then we have

�̂ = �̂1ẑ1 + �̂2ẑ2 =
cos 

jsin j
+

cos�

jsin�j
:

Thus �̂ is real and positive, which is a contradiction.
Putting all this together we obtain the following alignment con-

dition.
Theorem 2: Suppose the matrixM 2 Cn�n has a distinct real

eigenvalue�0 > 0 with right and left eigenvectors,x andy, respec-
tively, satisfying the nondegeneracy assumption. Further, suppose that
�R(M) = �0. Then if the function�R(QM) attains a local maximum
over the setQ 2 B̂��(J ; Ĵ ) (for some� > 0) atQ = I, then there
exists a matrixD 2 DK, with �i = ��

2
for every i 2 Ĵ , and a real

scalar 2 (��

2

�

2
) such thaty = ej Dx.

Proof: First we parameterize the perturbation set. Consider
G 2 XK with

G = block diag g
r
1Ik ; � � � ; g

r
m Ik ; g

c
1Ik ; � � � ;

g
c
m Ik ; G

C
1 ; � � � ; G

C
m (17)

and the added restrictions

gri � 0; i 2 J

Re gci � 0; i = 1; � � � ;mc

GCi +GC�i � 0; i = 1; � � � ;mC :

(18)

Now it can be shown that for some� > 0, the set of all matrices
E(t) := (I + Gt)(I � Gt)�1 for G as above andt such that

t��(G) 2 [0 �) is an open neighborhood of̂B��(J ; Ĵ ) about
E(0) = I. So now define the matrixR(t) := E(t)M . Then it
is clear that�R(QM) has attained a local maximum over the set
Q 2 B̂��(J ; Ĵ ) at Q = I iff �R(R(t)) has attained a local
maximum overt � 0 at t = 0 for arbitrary G as above.

SinceR(0) = M has a distinct real eigenvalue�0, we have (for
some nonempty interval about the origin) an analytic function�(t),
with �(0) = �0, and �(t) an eigenvalue ofR(t). Thus we can
differentiate to obtain

_�(0) = y
� _R(0)x = 2y

�

GMx = 2�0y
�

Gx: (19)

In block notation this becomes

_�(0) = 2�0

m

i=1

g
r
i y
�

r xr +

m

i=1

g
c
i y
�

c xc +

m

i=1

y
�

C G
C
i xC :

(20)
Define the set of points

Z = fzi: i = 1; � � � ;mg = g
r
i y
�

r xr : i = 1; � � � ;mr

[ fg
c
i y
�

c xc : i = 1; � � � ;mcg

[ y
�

C G
C
i xC : i = 1; � � � ;mC (21)

with the obvious identification for the elementszi. Now since we
are at a maximum point we have that_�(0) is never real and positive.
Thus, noting that we may independently scalegri ; g

c
i ; G

C
i by arbitrary

nonnegative scalars and still satisfy (18), applying Lemma 8 to (20)
and (21) gives that this is true iffZ � H for some 2 (��

2

�

2
)

for eachG 2 XK satisfying (18). Furthermore, since any summation
of G’s satisfying (18) also satisfies (18), Lemma 8 gives that this is
true iff there is oneH which works foreveryG, i.e., there exists
 2 (��

2

�

2
) such thatZ � H for all G 2 XK satisfying (18). From

the definition ofH in (16), andG in (17), (18), this is equivalent to

Re e
j 
g
r
i y
�

r xr � 0;

for all gri 2 R with gri � 0; i = 1; � � � ;mr

Re e
j 
g
r
i y
�

r xr � 0

for all gri 2 R; i 2 Ĵ

Re e
j 
g
c
i y
�

c xc � 0;

for all gci 2 C with Re(g
c
i ) � 0; i = 1; � � � ;mc

Re e
j 
y
�

C G
C
i xC � 0;

for all GCi with GCi +G
C�
i � 0; i = 1; � � � ;mC (22)

for some 2 (��

2

�

2
). It is now easy to check that the above

conditions may be equivalently expressed as

Re e
j 
y
�

r xr � 0; i = 1; � � � ;mr

Re e
j 
y
�

r xr = 0; i 2 Ĵ

e
j 
y
�

c xc 2 (01); i = 1; � � � ;mc

Re e
j 
y
�

C G
C
i xC � 0; for all GCi with GCi +G

C�
i � 0;

i = 1; � � � ; mC : (23)

Since the scalarej terms may simply be absorbed into one of the
vectors, we can apply Lemmas 5 and 6 to each block component of
x and y to obtain the equivalent conditions

yr = e
j 
e
j�
Dixr ; 0 < Di = D�

i ; �i 2 ��

2

�

2
;

i = 1; � � � ;mr

yr = e
j 
e
j�
Dixr ; 0 < Di = D�

i ; �i = ��

2
; i 2 Ĵ

yc = e
j 
Dixc ; 0 < Di = D�

i ; i = 1; � � � ; mc

yC = e
j 
dixC ; 0 < di 2 R; i = 1; � � � ;mC : (24)
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Stacking these relations in matrix form yieldsy = e
j 
Dx with D of

the required form.
Remarks: Note from the proof that we immediately have a partial

converse to Theorem 2, namely that ify = e
j 
Dx under the above

assumptions, then no directional derivative (in the above sense) of
the eigenvalue achieving�R(QM) over the setQ 2 B̂��(J ; Ĵ ) is
real and positive atQ = I.

V. A DECOMPOSITION AT �

Theorem 2 gives us a characterization of a maximum point of
�R(QM) in terms of an alignment of the right and left eigenvectors
of QM . This leads directly to the following decomposition.

Theorem 3: SupposeQ 2 QK achieves a local maximum of
�R(QM) over Q 2 BXK and that the eigenvalue achieving
�R(QM), denoted�, is distinct and positive. Then, if the right
and left eigenvectors ofQM , denotedx andy, respectively, satisfy
the nondegeneracy assumption, there exists a matrixD 2 DK with
D

2 2 DK and �i = ��

4
for i 2 Ĵ (Q) such that

QDMD
�1

(Dx) = �Dx

(x
�

D
�

)QD
�

M(D
�

)
�1

= �x
�

D
� (25)

with � � �K(M). Furthermore, if the above maximum is global,
then � = �K(M).

Proof: SinceQ 2 QK is a local maximum of�R(QM) over
Q 2 BXK, the matrixM̂ := QM achieves a local maximum of
�R(Q̂M̂) overQ̂ 2 B̂��(J (Q); Ĵ (Q)) (for some� > 0) at Q̂ = I.
Now apply Theorem 2 to concludey = e

j 
D̂x with D̂ 2 DK and

�̂i = ��

2
for i 2 Ĵ (Q), then defineD as the unique matrix such

thatD 2 DK andD2 = D̂. Substitution of this into the right and left
eigenvalue equations ofQM and simple manipulations (note that for
anyQ 2 QK and anyD 2 DK; Q andD commute) yield the results
in (25). Finally, note from Theorem 1 that we have� � �K(M),
and if the above maximum is global then� = �K(M).

Remarks: Employing simple manipulations of (25) yields a partial
converse of this theorem. If we have a decomposition as in (25) with�

real and positive andx nonzero, then we have that� is an eigenvalue
of QM with right and left eigenvectors,x andy, respectively [thus
� is a lower bound for�K(M)], where y = re

j 
D

2
x with D as

above,r a positive real scalar (which we could thus absorb intoD),
and 2 [��

2

�

2
]. Thus definingD̂ = rD

2 we havey = e
j 
D̂x with

D̂ as in Theorem 2 and 2 [��

2

�

2
]. If we add the further technical

assumption that we are not in the special case of�i = ��

4
for all

i = 1; � � � ;mr andmc = 0;mC = 0, then we have 2 (��

2

�

2
).

Thus, we (almost) always have a decomposition at� of the form
(25), and any such decomposition gives us a lower bound for�. Now
we reformulate this condition into a set of vector equations.

Lemma 9: Suppose we have matricesQ 2 QK with �
r
i 6= 0 for

i = 1; � � � ;mr and D̂ 2 DK with D̂
2 2 DK and �̂i = ��

4
for

i 2 Ĵ (Q). Then we have a nonzero vectorx̂ and a real positive
scalar� such that

QD̂MD̂
�1

(D̂x̂) = �D̂x̂

(x̂
�

D̂
�

)QD̂
�

M(D̂
�

)
�1

= �x̂
�

D̂
� (26)

iff there exists a matrixD 2 DK with �i = ��
2

for i 2 Ĵ (Q) and
nonzero vectorsb; a; z; w such that

Mb = �a M
�

z = �w

b = Qa b = D
�1
w

z = Q
�

QDa z = Q
�

w: (27)

Proof ()): Definex = D̂x̂ and b; a; z; w as b = D̂
�1
x; a =

D̂
�1
Q
�1
x; z = D̂Q

�
x;w = D̂x. Finally, defineD = D̂

2; the
result follows.

((): DefineD̂ as the unique matrix̂D 2 DK such thatD̂2 = D,
and x̂ = b, the result follows directly.

VI. A POWER ALGORITHM FOR THE LOWER BOUND

In light of Lemma 9, the problem of computing a lower bound for
�K(M) is reduced to one of finding a solution to the set of equations
in (27) which gives us a decomposition as in (25). We would like to
develop an algorithm for computing such a solution. First note that if
we partitionb; a; z; w compatibly with the block structure as in (11),
then the set of constraint equations

b = Qa b = D
�1
w

z = Q
�

QDa z = Q
�

w

can be broken down into a series ofm similar independent constraint
equations on the block components (sinceQ and D are block
diagonal). These equations are of three types corresponding to a
repeated real scalar block, a repeated complex scalar block, or a full
complex block. We now consider a generic constraint of each type.
The following two lemmas are due to Packard [2].

Lemma 10 (Repeated Complex Scalar Block [2]):Let b; a; z; w 2
Ck be nonzero vectors witha�w 6= 0. Then there exists a complex
scalar q with jqj = 1 and a complex matrixD 2 Ck�k with
0 < D = D

� such that

b = qa b = D
�1
w

z = q
�

qDa z = q
�

w

if and only if

z =
w
�
a

jw�aj
w b =

a
�
w

ja�wj
a: (28)

Lemma 11 (Full Complex Block [2]):Let b; a; z; w 2 Ck be
nonzero vectors. There exists a complex matrixQ 2 Ck�k with
Q
�
Q = Ik and a real positive scalard such that

b = Qa b = d
�1
w

z = Q
�

Qda z = Q
�

w

if and only if

z =
jwj

jaj
a b =

jaj

jwj
w: (29)

Now we consider a repeated real scalar block, bearing in mind that
we have additional constraints if the real perturbation is not on the
boundary (i.e., fori 2 Ĵ (Q)).

Lemma 12 (Repeated Real Scalar Block):Let b; a; z; w 2 Ck be
nonzero vectors witha�w 6= 0. We have a real scalarq with jqj � 1,
a real scalar� 2 [��

2

�

2
], and a complex matrixD 2 Ck�k with

0 < D = D
� such that

b = qa b = e
�j�

D
�1
w

z = q
�

qe
j�
Da z = q

�

w

with � = ��

2
for jqj < 1 iff

z = qw b = qa (30)

with

Re(a
�

w) � 0 for q = 1

Re(a
�

w) � 0 for q = �1

Re(a
�

w) = 0 for jqj < 1: (31)
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Proof ()): Immediately we havez = qw and b = qa.
Thus a�w =

1

q
b�w =

1

q
ej�w�(D�)�1w. Now q = 1 implies

arg(a�w) = �, and henceRe(a�w) � 0. Similarly, q = �1 implies
arg(a�w) = �+� and henceRe(a�w) � 0. Finally, jqj < 1 implies
arg(a�w) = � or � + � with � = ��

2
. Thusarg(a�w) = ��

2
, and

so Re(a�w) = 0.
((): Immediately we haveb = qa and z = q�w, and so

b�w = qa�w. Denoting � = arg(b�w), we see that forq = 1

Re(a�w) � 0, which impliesRe(b�w) � 0, and so� 2 [��

2

�

2
].

Similarly for q = �1 Re(a�w) � 0, which impliesRe(b�w) � 0,
and so� 2 [��

2

�

2
]. Finally for jqj < 1, Re(a�w) = 0 which

implies Re(b�w) = 0, and so� = ��

2
. Now b�(e�j�w) is real

and positive, and so applying Lemma 6 we have a matrixD̂ with
0 < D̂ = D̂� such thatb = e�j�D̂w. DefineD = D̂�1, and we
haveb = e�j�D�1w andz = q�w = q�ej�Db = q�qej�Da.

These lemmas now allow us (with a few technical assumptions)
to eliminate matricesQ and D from (27). To avoid the notation
becoming excessive, we consider a simple block structure with
mr = mc = mC = 1 for the remainder of this section. We stress
that this is purely for notational convenience, and the general formulas
for an arbitrary block structure, as defined in Section II, are simply
obtained by duplicating the appropriate formulas for each block. So
givenK = (k1; k2; k3), the appropriate scaling sets become

Qsub = block diag q
r
Ik ; q

c
Ik ; Q

C
: q

r
2 [�1 1];

q
c�
q
c
= 1; Q

C�
Q
C
= Ik (32)

Dsub = block diag e
j�
D1; D2; dIk : � 2 �

�

2

�

2
;

0 < Di = D
�

i 2 C
k �k

; 0 < d 2 R (33)

and we partitionb; a; z; w compatibly with this block structure as

b =

b1
b2

b3

; a =

a1
a2

a3

; z =

z1
z2

z3

; w =

w1

w2

w3

(34)

where bi; ai; zi; wi 2 C
k . Then we obtain our final form of (27)

as in the following theorem, which will form the basis of a power
iteration to compute a lower bound for�K(M).

Theorem 4: Suppose we have vectorsb; a; z; w 2 Cn partitioned
as in (34) withbi; ai; zi; wi 6= 0 and a�1w1; a

�
2w2 6= 0. Then there

exist matricesQ 2 Qsub andD 2 Dsub and a positive real scalar
� such that

Mb = �a M
�
z = �w

b = Qa b = D
�1
w

z = Q
�
QDa z = Q

�
w

with � 2 [��
2

�
2
], and� = ��

2
for jqrj < 1 iff

Mb = �a

z1 = qw1 z2 =
w�2a2

w�2a2
w2 z3 =

jw3j

ja3j
a3

M
�
z = �w

b1 = qa1 b2 =
a�2w2

a�2w2

a2 b3 =
ja3j

jw3j
w3

(35)

for some real scalarq 2 [�1 1] with

Re a
�

1w1 � 0 for q = 1

Re a
�

1w1 � 0 for q = �1

Re a
�

1w1 = 0 for jqj < 1:

(36)

Proof: Apply Lemmas 10–12 to the appropriate block compo-
nents.

Remarks: Since (35) and (36) are unaffected if we multiplyb
and a by an arbitrary positive real scalar�, and z and w by an
arbitrary positive real scalar
, then in searching for solutions to these
equations we may impose the additional restrictionjaj = jwj = 1.

Any solution to (35) and (36) immediately gives us a decompo-
sition as in (25), and hence� is a lower bound for�K(M). We
also note that under certain technical assumptions (as given), there
always exists a solution to these equations with� = �K(M). Since
we would like to find the largest� we can that solves (35) and (36),
we now propose finding a solution to this system of equations via
the following power iteration:

~�k+1ak+1 = Mbk

z1 = ~qk+1w1 z2 =
w�2 a2

w�2 a2
w2

z3 =
jw3 j

ja3 j
a3

�̂k+1wk+1 = M
�
zk+1

b1 = q̂k+1a1 b2 =
a�2 w2

a�2 w2

a2

b3 =
ja3 j

jw3 j
w3

(37)

where ~qk+1 and q̂k+1 evolve as

~�k+1 = sgn(q̂k)
jb1 j

ja1 j
+Re a

�

1 w1

If j~�k+1j � 1 Then ~qk+1 =
~�k+1

j~�k+1j
Else ~qk+1 = ~�k+1

�̂k+1 = sgn(~qk+1)
jb1 j

ja1 j
+Re a

�

1 w1

If j�̂k+1j � 1 Then q̂k+1 =
�̂k+1

j�̂k+1j
Else q̂k+1 = �̂k+1 (38)

and~�k+1; �̂k+1 are chosen positive real so thatjak+1j = jwk+1j = 1.
It is now straightforward to verify that if the algorithm converges

to some equilibrium point, then we satisfy the appropriate constraints
on each block component; hence by Lemmas 10–12 we have nonzero
vectorsb; a; z; w 2 Cn, matricesQ 2 Qsub; D 2 Dsub, and positive
real scalars~�; �̂ such that

Mb = ~�a M
�
z = �̂w

b = Qa b = D
�1
w

z = Q
�
QDa z = Q

�
w:

(39)

Thus if ~� = �̂, then we satisfy (27) and so have a decomposition
as in (25); hence~� is a lower bound for�K(M) [associated with a
local maximum of�R(QM)].

We note that if~� 6= �̂, then we have not found a decomposition
as in (25). However, from (39) we find thatQMb = ~�b and
w�QM = �̂w�. Thus we have that both~� and �̂ are real positive
eigenvalues ofQM , and so by Lemma 3,max(~�; �̂) still gives us
a lower bound for�K(M).

VII. CONCLUDING REMARKS

The algorithm described here has been implemented in software
and is commercially available as part of the�-Tools toolbox [3]. We
now have a good deal of numerical experience with the algorithm on
benchmark problems, and in addition the code has been used for a
number of real engineering applications which are detailed elsewhere
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in the literature (e.g., see [8]). We have found that the algorithm
typically performs very well in terms of convergence, accuracy of the
resulting bound, and required computation. Space constraints preclude
our including this material here, but we refer the interested reader to
[9] and the references therein for a detailed numerical study of the
algorithm performance as well as [10] for recent efforts at further
enhancing the performance.
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