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This paper aims to bridge progress in neuroscience involving
sophisticated quantitative analysis of behavior, including the use
of robust control, with other relevant conceptual and theoretical
frameworks from systems engineering, systems biology, and
mathematics. Familiar and accessible case studies are used to illus-
trate concepts of robustness, organization, and architecture (mod-
ularity and protocols) that are central to understanding complex
networks. These essential organizational features are hidden dur-
ing normal function of a system but are fundamental for under-
standing the nature, design, and function of complex biologic and
technologic systems.

complexity

Systems approaches to biology, medicine, engineering, and
neuroscience face converging challenges, because modern

science, technology, and culture create dauntingly complex but
similar and overlapping problems in these domains. Our goal is
to develop more integrated theory and methods applicable to all
systems, including neuroscience, by concentrating on organiza-
tional principles of complex systems. Beyond scientific under-
standing of systems, practitioners want to avoid and fix network
errors, failures, and fragilities. This practical necessity requires
mechanistic and often domain-specific explanations, not vague
generalities. Therefore, universal theories must facilitate the
inclusion of domain mechanisms and details and manage rather
than trivialize their complexity.
Here, we aim to put recent progress in both experimental and

theoretical neuroscience (1–15) in the context of a shared con-
ceptual and mathematical framework (7, 16–32) in which a main
theme is that complexity is driven by robustness and not by
minimal functionality. We will emphasize robustness and effi-
ciency tradeoffs and constraints and the control systems that
balance them, their highly organized architecture (16–18), and its
resulting side effects and fragilities. A confounding commonality
that we must both overcome and exploit is that the most robust
and powerful mechanisms are also the most cryptic, hidden from
introspection or simple investigation. These mechanisms can
give rise to a host of illusions, errors, and confusion, but they are
also the essential keys to reverse engineering hidden network
complexity.
This paper is inspired by several complementary research

themes in behavioral neurosciences. The work by Marder (1)
systematically perturbs both experimental and math models of
small circuits to explore robustness and fragility properties of
neural hardware in mechanistic detail. In humans, cleverly con-
structed experiments to unmask the workings of the brain can
elicit visual (2) and other (3) illusions, suggesting hidden, auto-
matic subconscious functions (4–6). A theoretical framework
consistent with other empirical observations treats the brain as
an integrated, robust control system (7) in which components for
sensing, communication, computation, simulation, and decision
are useful primarily to the extent that they effect action (8–12).
Each theme (1–12) provides a separate constraint on the system
as a whole, and therefore, seemingly dissimilar viewpoints can
prove complementary and synergistic.
Our initial focus is how circuit (1) and system (2, 3) fragilities

are necessarily the consequence of (not merely consistent with)
implementing robust controllers (7) in such circuits. If brains

evolved for sensorimotor control and retain much of that evolved
architecture, then the apparent distinctions between perceptual,
cognitive, and motor processes may be another form of illusion
(9), reinforcing the claim that robust control and adaptive
feedback (7, 11) rather than more conventional serial signal
processing might be more useful in interpreting neurophysiology
data (9). This view also seems broadly consistent with the
arguments from grounded cognition that modal simulations,
bodily states, and situated action underlie not only motor control
but cognition in general (12), including language (13). Further-
more, the myriad constraints involved in the evolution of circuit
and network mechanisms efficiently implementing robust control
are essential to explaining the resulting fragilities, which vary
from largely benign illusions (2) to dangerous dysfunction (3, 4,
16, 33–37) to potential catastrophes (16, 34–40).
In parallel to its broadening application in neuroscience,

control theory and technology have expanded widely into net-
worked, distributed, nonlinear, and hybrid systems in engineer-
ing and systems biology (e.g., ref. 16 and references therein and
refs. 19 and 20). All these systems are of potentially great but as
yet unrealized relevance to neuroscience as a source of both
metaphors and new mathematics. Unfortunately, there is little
shared language and few popular expositions (41). Thus, our
next focus is to more broadly relate the studies in refs. 1–12 with
the studies in refs. 16–20 while minimizing math and technical
details. Using familiar case studies, we aim for accessible and
concrete treatment of concepts such as constraints, tradeoffs,
and layered architectures. Here, layering is functional and not
necessarily mapping directly onto brain anatomy or physical
architecture. An important example of layering is between
computer hardware and software, but additional layering is a
ubiquitous and essential architectural feature in complex net-
works of all types.

Neuroscience and Robust Control
A recent claim (7) is that human motor control is better
explained as a robust rather than optimal controller, an expla-
nation with a long tradition in neuroscience. Controllers optimal,
on average, to only additive noise can be arbitrarily fragile to
other uncertainties (21), motivating the development of robust
control theory (22–24). Robust control is risk-sensitive, opti-
mizing worst case (rather than average or risk-neutral) perfor-
mance to a variety of disturbances and perturbations. Robust
control theory formalized and extended best practice in control
engineering and coincided with a massive expansion into active
control in robots, airplanes, automobiles, smart weapons, com-
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munication networks, etc. Therefore, robust control is now
ubiquitous but hidden, evidenced largely by what does not hap-
pen, such as skids, stalls, crashes, missed targets, dropped
packets, etc. Similarly, most CNS activities are hidden from
conscious awareness (4–6), implementing the sensing, decision-
making, and actuation necessary for robust control in complex
environments.
Control theory makes strong predictions about how robust

circuits must necessarily be implemented largely independent of
the device technology, all perfectly consistent with observations
in neural circuits (1). Such claims are easily checked by experts
in math, but hopefully, they are intuitively plausible to neuro-
scientists generally. In particular, any natural parameterization
of functional control circuits (e.g., lobster somatogastric ganglia)
(1) is well-known to be large (high dimension), thin (even higher
codimension), and nonconvex (24). If it were otherwise, engi-
neering design would be much easier. As a simple analogy to
explain these terms, consider a 2D piece of paper with lengths
that are large by some measure sitting in a 3D square box of
comparable lengths. The larger that these lengths are, the
smaller that the fraction of volume that the paper will occupy in
the box is. Therefore, the paper can be both large and thin as
a fraction of the box volume. If the paper is bent or wrinkled,
then it is also nonconvex within the box, because most straight
lines between two different points on the paper will not remain
in the paper.
An even simpler example is the set of words in most languages,

which is large but vanishingly thin as a fraction of all possible
meaningless sequences of letters. There are 9! = 362,880 dif-
ferent permuted sequences from just the nine distinct letters
adeginorz, roughly the total number of English words, but only
organized is a word. Humans would have some difficulty
checking this claim, but computers do so easily (and make for-
midable Scrabble opponents). The set of English words is, thus,
large and thin. The set of functional parameter values of any
circuit will also typically be large but vanishingly thin and non-
convex in the set of all possible (mostly nonfunctional) circuits.
This fact is largely independent of the notions of function, cir-
cuit, or parameter, provided that they are sufficiently complex
and realistic. Much of engineering theory is devoted to con-
structing special (higher-dimensional, nonphysical, and abstract)
parameter embeddings that are convex and thus, algorithmically
searchable for robust and functional design values. This idea that
robust systems are large but thin and nonconvex in the space of
all systems is a theme discussed below.
Another general feature of control systems is hard limits on

robustness and efficiency (20). If the brain as controller has
evolved to control action, then conscious thought may be, in
some sense, a late evolutionary addition or byproduct (6–12).
Both robust control theory and experimental evidence suggest
that complex internal dynamic models are needed to resolve
ambiguities in noisy sensations as well as plan for uncertain ac-
tion, all in an uncertain, perhaps hostile, environment. When
these models are implemented in slow neural hardware, manage-
ment of the resulting delays almost certainly requires a heavily
layered organization, a concept central to the network archi-
tecture emphasized here. (Delay has little ill effect if there is
truly no uncertainty, because then, open-loop control is ade-
quate; however, this ideal is never seen in practice.)
Pain and reflexes illustrate the sophisticated interplay of cen-

tral and peripheral control, and fast action receives priority. Fast,
thick, myelinated, general purpose sensory fibers initiate with-
drawal from painful stimuli, whereas slow, thin, specialized fibers
provide delayed, but detailed, information about the source of
pain. This pattern is seen throughout the organization of the
nervous system, and throughout behavior, we see this mix of
reflex (fast, automatic, hidden, and expensive) and reflect (slow
and conscious), with reflex receiving priority in resources. The

acquisition of skill (playing instruments, ball sports, chess,
reading, etc.) involves shifting down into fast reflex processes
that start high and slow. Indeed, the more expert that we are in
an activity, the less that we necessarily rely on conscious pro-
cesses to perform, and such evidence for layering is found ev-
erywhere (4–6).
If brains are doing robust control using internal models, then

illusions may be intrinsic. What reaches conscious awareness is
the state of a simulation, not a direct perception of the world (9–
12). However, seeing is believing, because what we see is not only
a remarkably robust, integrated, dynamic state estimate of the
external world blending multiple senses but one that automati-
cally focuses attention on information that we need to take ro-
bust actions. That we can be almost arbitrarily fooled is one of
the many unavoidable tradeoffs of our physiology, evolution, and
brain architecture. Therefore, it is equally true that seeing is
dreaming, which is known from a variety of well-studied illusions
(3), dreams, and hallucinations. Functional losses because of
CNS lesions (4, 6) are often highly specific and reproducible,
making us aware of myriad unconscious processes that were
previously taken for granted and showing that our internal sim-
ulations use a distributed and parallel implementation to miti-
gate the effects of hardware delays. The extreme gain and loss of
capabilities in savants also suggest powerful but constrained
simulation capabilities.

Computer and Control Technology
Modern robust control systems are typically implemented using
digital hardware and software, and most computers are embed-
ded in this way and thus, are permanently hidden. Examples are
ubiquitous from antilock brakes to automated collision avoid-
ance to global positioning systems in cars to fly by wire aircraft.
Networks and cloud computing that connect the relatively fewer
(but still billions worldwide) personal computers and smart
phones have hidden routers and servers that control the flow of
packets and files. The internal mechanisms are again manifest
largely in the rarity of crashes, losses, errors, and failures and in
the catastrophic nature of rare crashes. However, despite enor-
mous progress, robots struggle to navigate the real world as ef-
fectively as rodents or even insects, and computers continue to
fail in Turing tests, although in fascinating ways that reveal much
about both humans and computers (42). This enormous, hidden,
cryptic complexity, driven by robustness, is both the greatest
initial obstacle in using advanced information and control tech-
nologies as metaphors for biology and also ultimately, the key to
important insights and theories (16, 19).
As a starting point, human memory layering seems to be very

different from computers, which is shown by various syndromes,
lesions, and laboratory studies (6) as well as competitions
pushing the extremes of human memory (14). A standard tech-
nique among competitors memorizing sequences of meaningless
symbols is to embed them in previously prepared complex and
vivid 3D dynamic simulations (called palaces) that can then be
replayed to retrieve the symbols. For example, such methods
allow experts to memorize a single pack of 52 shuffled playing
cards with no errors in less than 22 s. Palaces are reused after
the memories are actively purged. This finding illustrates that
humans can repurpose innate (dynamic, modal, and grounded,
etc.) simulation capability in lower layers for purely symbolic
higher-layer memory and (it is claimed) the lack of real al-
ternatives for rapidly storing and retrieving large amounts of
symbolic data (14). That it works so poorly is perhaps less re-
markable than that it works at all.
Computers have opposite memory capabilities from humans in

that massive amounts of purely symbolic, meaningless data are
nearly instantaneously found, stored, searched, and retrieved,
and as a result, Google is now a verb. This finding is possible,
because computers and networks have, arguably, the canonical
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layered architecture in engineering from very-large-scale inte-
gration (VLSI) chip design to the transmission control protocol/
internet protocol (TCP/IP) protocol stack (16, 19), and a brief
look at such architecture is a rich source of insights. Near the
bottom is analog circuitry that is exquisitely organized (extremely
large/thin/nonconvex) to create digital behavior when inter-
connected appropriately but at the expense of speed and effi-
ciency. These analog and digital hardware layers are functionally
distinct but physically coincident. Importantly, these hidden
layers and interfaces are fundamental to the more obvious plug
and play modularity that they enable.
Many devices can be built purely out of hardware, but a soft-

ware layer gives much greater flexibility at even more expense of
speed and efficiency. As with the digital layer and its analog
substrate, software only exists when embodied in hardware, but
because software can be moved across hardware platforms, it
also has an existence that transcends any individual physical in-
stantiation. Software is a very special organization of hardware,
and similarly, digital hardware of analog circuitry, but no simple
terminology captures the full richness of this layering. Never-
theless, there are no mysteries here, just an impoverished lan-
guage for description. Software, also, is richly layered. An
operating system (OS) often has a kernel layer that manages and
virtualizes the various hardware resources for higher-layer ap-
plication programs. For example, the hardware memory typically
has its own separate layering of memories from small, fast, and
expensive to large, slow, and cheap. This layering is within the
hardware, and therefore, it is orthogonal to that of analog to
digital to software.
By managing the use of layered memory cleverly, the OS

kernel can provide applications programs with a virtual memory
that has nearly the speed of the fastest hardware, with the cost
and size of the cheapest hardware. Such virtualization is a fa-
miliar and essential element of layering. Therefore, applications
can use abstractly named variables and higher-level languages,
and the kernel then translates these names into virtual addresses
and ultimately, physical addresses; however, the name to address
translation process is hidden from the applications. This OS
architecture provides a variety of robustness features from scal-
ability of the name and virtual address spaces to resource sharing
between applications to security of the physical memory from
application failures or attacks.
At the most basic level, the Internet TCP/IP protocol stack

extends the functionality of the OS kernel across the network to
multiple machines, allowing much broader resource sharing and
creating the illusion to users of near infinite resources. Un-
fortunately, TCP/IP was designed decades ago not as a general
purpose platform but primarily to be robust to physical attacks
on hardware in relatively small networks with trusted users
running minimal applications. It did this brilliantly, especially
compared with the alternatives at the time, but modern use is
largely the opposite. Hardware is more reliable than software,
which is more trustworthy than users, and the network is large
and supports a bewildering range of applications. In essence,
TCP/IP is not strongly layered enough. It lacks a modern naming
and virtual addressing mechanism, leading to problems with se-
curity, performance, scalability, multihoming, and mobility for
which resolution is hotly debated even among experts (43). That
TCP/IP is in some ways inadequate is less surprising than that it
works at all given the astonishing change that it has enabled.
TCP/IP is an example of how architectures that are well-

designed for extreme robustness can create evolvability as a side
benefit, perhaps the essential benefit of good architectures and
the focus of the rest of this paper. Networked and embedded
control computers may ultimately be a good source of metaphor
and theory for neuroscience, because we know exactly how the
system behavior depends on the technical details, and a rich and
growing body of mathematics formalizes the insights (19). Un-

fortunately, these details are, by design, largely hidden from
users, and although experts will find the previous discussion
trivial and obvious, many readers may not. Also, despite abun-
dant relevant tutorial material on computer architecture (less on
networks), there is little discussion on which of its features arose
from fundamental design vs. historical accidents of rapid evo-
lution. For these reasons, we explore some additional case
studies that are transparent and familiar but illustrative of the
fundamental concepts of complexity, architecture, layering, and
robustness.

Layered Architectures Simplified
Clothing and textiles represent a simple case study in network
architecture and the role of robustness and layering, with paper
as a special case. Although clothing may seem a frivolous illus-
trative example, it is based on many levels of complex technol-
ogies and reveals universal organizational principles, with details
that are easily accessible to nonexperts. On the surface, each
clothing module or garment (coat or socks) looks fairly similar,
hiding chemical and physical differences in weave, elasticity,
water-resistance, breathability, UV protection, and even insect
repulsion. The constraints imposed by fashion trends on the
success of clothing as a technology illustrate important points but
will be deemphasized, and our consideration of the architecture
of an outfit focuses more on essential function and robustness in
harsh environments. The basic function of clothing is protection,
providing comfort over a wide variety of external (weather and
temperature) and internal perturbations (physical activity). Like
other complex systems, complexity in clothing is driven by ro-
bustness to extremes more than by need to provide minimal
function. Human skin seems optimized by evolution for dissi-
pating heat during endurance running in the tropics (44–46), and
it offers little protection compared with heavy fur. Clothing
provides that protection when needed.
Four fairly universal layers exist within textile architecture: (i)

fibers that are spun into (ii) yarn or thread, which are woven or
knitted into (iii) cloth that is sewn into (iv) garments. Cotton
fibers are about 12–20 μm in width and several centimeters in
length, roughly comparable with large neurons but with very
different morphologies; 1 kg cotton has less than 1 billion fibers,
large but still much less than the number of neurons in 1 kg
brain, and the way in which fibers are interconnected is much
simpler than neurons. Thus, in this simple but easily understood
example of layering, the properties of textiles are not obvious
from those properties of fibers. Tens to hundreds of fibers are
spun into yarn and thread of essentially arbitrary length, which
are woven or knitted into cloth that is nearly 2D and sewn into
garments, also of arbitrary size.
This layered construction is much simpler, but it parallels

analog to digital hardware to software and the polymerization of
metabolic building blocks to macromolecules that assemble into
networks and cells. In all of these examples, the layered archi-
tecture illustrates universal principles of organization and pro-
tocols for construction. Each layer has the large/thin property
for which functional alternatives are almost unaccountably nu-
merous but are nevertheless a vanishingly small fraction of all
possible (e.g., random) configurations. Each layer must be ex-
quisitely organized to produce the layer above it, which is not
necessarily physically distinct. Garments are functionally distinct
from the fibers from which they are physically composed, which
is the same for cloth and yarn.
The complexity of the textile architecture is driven by ro-

bustness tradeoffs, because all of the layers from fiber to cloth
can be completely collapsed to make paper, a nearly random
connection of fibers with no intermediate layers. Paper is an
extreme example of a degenerate special case of a layered ar-
chitecture. Here, degenerate simply means that the constraints
that define the architecture are relaxed or removed entirely.
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Additionally, with minimal additional complexity, paper can be
sewn into specialized but unavoidably fragile garments. This
finding makes clear that the complex internal, hidden layering is
only for robustness and is not needed for minimal functionality,
because paper can easily stand in for cloth in idealized envi-
ronments. Similarly, small bio-inspired networks of metabolites
and enzymes can be used to manufacture valuable chemicals, but
they lack the robustness and evolvability of whole organisms. The
overall textile architecture has persisted for many thousands of
years (the bacterial cell for billions of years), whereas technol-
ogies within layers evolved rapidly.
One feature of the fiber to garment (i.e., garment/sew/cloth/

weave/thread/spin/fiber) layered architecture is that it is robust
enough that we can temporarily defer its study and focus on
something even simpler, which is how individual garments are
also layered to make outfits. Outfits for harsh environments
typically have three kinds of layers. The outer shell layer protects
from wind and water, the middle or insulation layer provides
warmth, and the inner or base layer is comfortable next to the
skin and keeps it dry. These three layers each are composed of
garments, which have within them the fiber to garment layers.
Therefore, the garment to outfit layering and the fiber to gar-
ment layering are, in some sense, orthogonal, although there is
no standard terminology. This finding illustrates an almost trivial
but nevertheless crucial feature of organized complexity. Be-
cause this overall architecture is intrinsically so robust, we can
temporarily take 1D (fiber to cloth layering) for granted and view
it as a platform for another simpler dimension of clothing, but
one that also connects with more popular views of modularity,
while still introducing some essential elements of architecture.
Layering of garments to make outfits is one obvious architec-

tural feature of clothing providing robustness to environments.
These modular layers are physically distinct (unlike fiber to cloth)
and can be shed or reincorporated as needed. This finding has
obvious parallels with software. Good programming practice
includes breaking large algorithms into smaller subroutines with
simple interfaces; this modularity is more familiar but less fun-
damental than the layering of analog to digital hardware to
software that makes it possible in the first place. In the absence of
robustness requirements, the necessary engineering aspects of
architecture can recede, and clothing can become considerably
simplified or elaborate (as dictated by fashion). In perfect envi-
ronments, little or no clothing is required.
Similarly, even the most complex architectures allow for much

simpler degenerate special cases (analogous to paper) under
idealized circumstances. Tradeoffs abound within each layer in
fabric, weight, cost, durability, and fasteners, etc. With changes
in technology or conditions, garments can become obsolete or
evolve (e.g., body armor and Velcro, etc.). Highly optimized,
robust, and efficient garments that are finely specialized for
a specific layer, body part, and individual are typically fragile to
other uses (other layers, body positions, or wearers of different
size and shape) and may be costly. Simple wraps or rags are very
versatile but at best, yield outfits that are fragile to environment
and movement. Most garments fall between these extremes.
If we knew nothing about the layering of garments, we might

learn little from observing intact outfits, but we could begin re-
verse-engineering the architecture through lesions or knockouts
in controlled experiments. These experiments might require harsh
experimental conditions and perhaps, appropriately instrumented
crash dummies. Damage or loss of a garment layer can cause
very specific loss of robustness: outer layer to wind and/or water,
middle layer to cold, and inner layer to comfort. Changes to fiber
types, yarn, or sewing could be lethal at different levels, revealing
their functional role. Most informative would be small changes
with large consequences, such as unraveling a seam to reveal the
role of sewing in garment construction or disruption of a weave
or knit to reveal its role in cloth integrity.

Architecture as Constraints That Deconstrain
The view of architecture as constraints that deconstrain (17, 18)
originated in biology, but it is consistent with engineering (16)
and illustrated by clothing. A robust architecture is constrained
by protocols, but the resulting plug and play modularity that
these shared constraints enable deconstrain (i.e., make flexible)
systems designed using this architecture. Constraints give a con-
venient starting language to formalize and quantify architecture
and ultimately, a mathematical foundation (19). Concretely,
consider a given wardrobe that is a collection of garments and
the problem of assembling an outfit that provides suitable ro-
bustness to the wearer’s environment. Three distinct but in-
terrelated types of constraints are universal in clothing as in all
architecture (16): (i) component (garment) constraints, (ii) sys-
tem (outfit) constraints, and (iii) protocol constraints. Therefore,
in combination, diverse, heterogeneous components (garments)
that are constrained by materials and construction combine
synergistically (through protocols) to yield outfits that satisfy
system constraints not directly provided by any single component.
We will use outfit to describe a functional, robust set of garments,
and heap (Craver uses aggregates) (47) to describe a random
collection not required to have any other system features.
The protocols that constrain how garments make outfits are

simple and familiar, and a minimal view is that each of g garment
categories (e.g., socks, sweaters, coats, boots, and hats) is con-
strained to a specific layer and body position and thus, to a spe-
cific and essentially unique location within an outfit. Suppose, for
simplicity, that a wardrobe has n garments of each type for a total
of ng garments. If any of the n garments of a specific type can be
part of an outfit, then there are a total of F = ng possible outfits.
For example, for n = g = 10, there are ng = 100 total garments
but 1010 (10 billion) distinct outfits that obey the layered archi-
tecture. However, there are 2ng subsets or heaps of ng garments,
and therefore, if protocols are ignored, the number of uncon-
strained garment heaps is vastly larger. For n = g = 10, there are
2ng > 1030 such heaps, and therefore, heaps chosen without
regard to protocols have a vanishingly small chance of being
outfits (another example of large/thin).
The discussion of clothing so far provides only a static view of

architecture. In reality, the core of good architecture is ability to
facilitate change over many timescales, including overall archi-
tecture (millennia), manufacturing technology (centuries), gar-
ments (decades), and outfits (daily). This example can be
expanded to hint at the dynamic and control dimensions of both
us and our clothing. Well-constructed outfits respond so auto-
matically to movement that wearers can normally ignore the
hidden internal complexity that makes this possible, just as we do
the control of movement itself.
The roughly minute to hour timescales needed to assemble

outfits also illustrate the role of dynamic control within archi-
tecture. The most obvious control is the actual forward assembly
of a specific choice of g garments into a layered outfit. Most of
the protocols that govern this process are readily learned by
children, although specialized garments may require complex
control (e.g., bowties and shoe laces). Ideally, the protocols are
complete enough that any outfit made that obeys them will au-
tomatically satisfy system constraints (this is rare in engineering,
because it is hard to design protocols with such guarantees).
Humans easily visualize (simulate) what an outfit will look like
from seeing the separate garments, but often, they still need to
try them on to be sure of details of fit and appearance. Our
simulators are robust but imperfect.
More subtle and complex (and less easily learned) is the

backward process of choosing these garments to match the day’s
specific systems constraints, which are most dependent on
weather and the wearer’s activities. This process takes simulation
to another level. Because layering allows dynamic reconfiguring
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of an outfit in real time, this backward selection control or
management process potentially interacts with forward assembly
control on all time scales. The backward process of choosing
components is typically much more complex (and less obvious)
than the forward assembly process, and this process can lead to
confusion about the role of control and feedback in architectural
design. Hopefully, in this concrete example, the processes are
obvious, even if the language for describing it is inadequate.
On longer time scales (days to decades), the user might as-

semble a wardrobe of garments, again guided by the overall
architecture by which garments make outfits. Manufacturing
technologies can change on year to century timescales but must
both reflect the architecture and only slowly change aspects of it.
New technologies (such as spandex and Velcro) relax component
constraints and allow new systems without fundamentally chang-
ing the architecture of clothing, which has persisted for millennia.
Here again, in the engineering context, robustness largely drives
complexity, because without changing system and component
constraints, the protocols and control processes for connecting
and reconciling them could be vastly simpler (e.g., standardized
uniforms).

Bowties, Hourglasses, Pathways, Flows, and Control
Another aspect of constraints that deconstrain is the relatively
small diversity in the protocols and processes that connect layers
and enable vastly greater diversity in the materials that constitute
a layer. This aspect of architecture can be visualized as a bowtie
or hourglass (depending on whether layers are visualized hori-
zontally or vertically) (27). For example, the fairly universal,
homogeneous process of sewing (the bowtie knot or hourglass
waist) takes an almost unaccountably greater and extremely
heterogeneous diversity of cloth (fanning in to the knot) into an
even greater diversity of garments (fanning out of the bowtie).
Similarly, the reactions and metabolites of core metabolism
are largely universal, connecting extremely diverse layers of
catabolism to moderately diverse biosynthesis. The basic pro-
cesses and codes underlying transcription and translation are
highly conserved, but the specific genes and gene products are
extremely diverse.
After the diverse garments sewn from cloth become compo-

nents in the layered outfit architecture, they are categorized into
the much less diverse types of garments and assembly protocols
that, in turn, make a hugely diverse set of outfits. Threads and
yarns are more diverse than the few canonical weaves, knits, or
knots that create diverse textiles. The least diversity is in the
fibers (from plant, animal, mineral, and synthetic origins) and the
spinning processes that make yarn and thread. (What are vastly
diverse are the geographic origins of these fibers.) Thus, the
great diversity and heterogeneity within each layer also varies
among layers, and it even depends on the categories used to
define diversity. Garments (or cells) are unaccountably diverse
and deconstrained when viewed in detail as the result of the
garment/cloth/yarn/fiber (or DNA/RNA/protein) architecture
but much less so when viewed as satisfying system constraints of
that architecture, the component constraints of the outfit archi-
tecture, or the constraints on cells or cell types. The protocols
between layers are typically more fixed and much less diverse by
any measure than the layers that they connect.
Because they are the fixed points in robust architecture, when

protocols are subject to attack, the system can fail catastrophi-
cally. Seaming is the protocol that sews fabric into garments,
providing structure and function. Seams make the important
difference between wraps and clothes, but they are the main
source of clothing’s fragile robustness. If the seam connecting the
shoulder to sleeve unravels, a coat is useless. The greatest fra-
gility of universal knots/waists is that they facilitate hijacking and
attack by parasites and predators. Viruses hijack cellular tran-
scription/translation machinery, and predators exploit the fact

that they share universal and essential metabolic building blocks
with their prey. In neuroscience, the role of dopamine in a robust
and flexible reward system (knot of the bowtie) is fragile to
hijacking by addiction (5). The stitches used in seams are not as
tight as fabric weave and therefore, seams are internalized and
often protected by lining, illustrating how good architectures
allow hiding of necessary fragilities as much as possible. Our
skulls, cardiovascular system, blood–brain barrier, and immune
systems similarly protect fragilities of our brains to trauma, in-
tense activity, and infection at the expense of the overhead to
maintain them.
In both textiles and biology, obvious natural pathways and

flows of materials and information assemble systems from com-
ponents. Indeed, depicting these architectures in terms of path-
ways rather than layers has been the dominant view in science
(and until recently, in engineering as well). Although not in-
consistent with layering, the emphasis on a pathway view has
limited our understanding of control, complexity, and robust-
ness. Although the interplay between computational complexity,
constrained optimization, and robust control has been deeply
explored in the last decade, with broad applications including the
Internet (19), power grids, and systems biology, no universal and
accessible taxonomy for describing these various flows and their
various complexities has emerged, even within engineering.
We already saw that the backward process of deciding on an

outfit that satisfies the constraints of a given activity and envi-
ronment is vastly more complex than the forward process that
assembles the outfit from a set of garments. Similarly, the
feedback control (e.g., of looms and sewing machines) within
each layer of textile manufacturing is vastly more complex than
the forward flow of materials from fibers to textiles. Additional
complexity comes from the backward flow of textile design that
turns constraints on textiles into specifications on the manu-
facturing processes as well as the supply chain management of
the resulting process in response to customer demand.
Biology has similarly complex feedbacks. There are 10 times as

many fibers feeding back from the primary visual cortex to the
visual thalamus as there are in the forward flow (6). Wiring
diagrams that include both autocatalytic (e.g., of ATP, NADH,
etc.) and control feedback in metabolism are so much more
complex than the usual depictions of relatively simple tree-like
flows of metabolites that they are rarely drawn in detail except at
the level of small circuits. Even complete wiring diagrams do not
reflect the true complexity of control (20). The control of tran-
scription and translation is vastly more complex than the basic
forward polymerization processes themselves. Although we have
no difficulty understanding the basic nature of these feedbacks
and their roles in these specific architectures, the lack of an
adequate language to generalize and/or formalize is still a road-
block, especially because engineering jargon is domain-specific
and heavily mathematical.

Hidden Complexity, Illusions, and Errors
Related but important research themes can be mentioned only
briefly while recapping the main points. For example, the em-
phasis on dynamic and mechanistic explanations in the philoso-
phy of neuroscience (47–49) is compatible, is complementary,
and hopefully, can help lead to a more coherent and consistent
shared language, which is desperately needed. The dangerous
illusions and errors that plague individuals are often amplified by
institutions, and this finding is relevant to engineering as well,
because policy and politics often trump technology (39). Argu-
ably, the most dangerous and pervasive of popular illusions is
that our actions are unconstrained by hard tradeoffs, a problem
increasingly acute in everything from teaching evolution to
dealing with global warming. A unique case study in human er-
ror, because it is entirely within science, is the genre of research
that has dominated mainstream literature for decades under the
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rubric of new sciences of complexity and networks (NSCN).
NSCN is relatively new in neuroscience, but it already has an
appealing narrative (50) and extensive and accessible reviews
(51, 52). Claims that NSCN has been a success in other fields
(50–52) are supported by impact factor measurements, but
NSCN has led to persistent and systematic errors and confusion
that show no sign of abating (refs. 16 and 30–32 and references
therein). Although the goals of NSCN research are somewhat
consistent with our goals, particularly in neuroscience, the
methodology is not. Most concepts and terminology in NSCN do
not overlap with control theory, but those terms that do overlap
can have opposite meaning. A thorough discussion is beyond the
scope of this paper, but a simple instance is illustrative.
Engineered and biological systems necessarily make ubiqui-

tous use of nonlinearity, recursion, feedback, and dynamics,
which in NSCN, are almost synonymous with unpredictability,
fractals, self-similarity, or chaos (16). In engineering, quite the
opposite is true. For example, the amplifiers in the sensors and
actuators that enable robust controllers are necessarily extremely
nonlinear. Digital computers are recursive and also extremely
nonlinear (i.e., switching using transistor amplifiers in hard sat-
uration) but are the most repeatable complex systems that we
build. Ironically, to a naïve observer, the analog behavior of the
billions of transistors (each much smaller and simpler than
a neuron) per chip in a computer might seem bewilderingly
noisy, chaotic, and unpredictable, with no hint of the almost
perfectly robust, repeatable digital behavior that results at the
interfaces and that engineers use to build systems. Of course, this
finding is exactly the purpose of the very special large/thin/non-
convex organizations that constitute digital/analog and other
forms of layering. This finely tuned, hidden diversity and com-
plexity underlying robust systems are also the opposite of com-
plexity in NSCN, which emphasizes minimally tuned, mostly
random interactions of large numbers of homogeneous compo-
nents that yield surprising emergent self-organization and order
for free (50–52).
Recall that, in the clothing example, for a fixed number of

garment types g, the number of outfits F = ng is constrained to
polynomial growth in the number n of each garment type,
whereas all possible heaps grow exponentially in n. A related
source of confusion in biology is whether biology is fine-tuned vs.
robust, as if these types were mutually exclusive. There is ro-
bustness in the large (polynomial growth) sets of structured and
functional networks and fine-tuning that makes these sets
a thinly small subset of the vastly larger (exponential growth) set
of random nonfunctional networks. Highly evolved biological
systems are large/thin and both fine-tuned (obey strict and far
from random protocol constraints) and robust. Indeed, this
finding is the essence of constraints that deconstrain and a ne-
cessity, not a paradox. The connection between the large/thin
feature of neural circuits (1) and robust control is even deeper,
which is sketched above.
In a completely different direction, research on human evo-

lution has recently exploded in both depth and accessible expo-
sition (44–46), and the picture emerging is also complementary
and compatible to ours. Compared with other great apes and top
predators, humans are physically weak and slow with thin skin,
no protective fur, and small guts that digest raw food poorly, all
possibly fragile side effects of evolved robustness to running long
distances in hot weather (46). When paired with even minimal
technologies of weapons (e.g., simple sticks and stones), fire (for
cooking, protection, and warmth), and teamwork, we go from
helpless prey to invincible top predators (45), whose main threat
then comes from other, similarly equipped humans. Our layered
biological architecture of brain to mind is now augmented by
layered technological architectures such as fiber to garment to
outfit, metal to tool, weapon, machine, analog to digital, hard-

ware to software, all of which expand the cognitive niches (44) in
which we can robustly function. We have now eliminated our
fragilities to our environment but replaced them with new and
potentially catastrophic fragilities of our own making.
The tradeoffs that we see throughout these architectures and

systems between efficiency and robustness, as well as between
robustness to various different perturbations, are necessities and
not accidents, although choices are still abundant within the
resulting constraints. Versions of such tradeoffs can be formalized
and made mathematically precise (20), and SI Text presents a
simplified tutorial on the mathematics and model systems. More
speculative but plausible is the claim that layered architectures
are also necessary to effectively balance these tradeoffs, which is
evidenced by their ubiquity in biology, physiology, and technol-
ogy. That is, inner/lower layers are large/thin/nonconvex and must
remain hidden within the system for robustness. For example,
inner and middle garments must remain hidden behind the outer
shell to provide comfort and warmth in a harsh environment,
whereas the middle and outer layers must be segregated from skin
for comfort. Because each garment maintains a separate identity
that can be easily recovered by disassembling an outfit (or heap),
this finding is perhaps the paradigm for modularity (51), but it is
a very special case and on its own, quite misleading without
considering the protocol and component constraints.
The component constraints on garments within the shell/

insulation/base layering of outfits depend on material properties
that derive from the orthogonal garment/cloth/yarn/fiber layering
of textiles. In these orthogonal layers, garments are very special
large/thin/nonconvex organizations of fibers/threads that must
lose their individual identity. Loose threads (disobeying proto-
cols even minimally) make garments fragile. Similarly, cells are
a special organization of macromolecules, digital hardware of
analog circuitry, software of hardware, brains of cells, and per-
haps, minds of brains. If the brain is layered at the highest
modular level (6, 15), roughly analogous to outfits/garments,
then there is an orthogonal layering of tissues down to cells down
to macromolecules that occurs within each of the macro brain
layers, analogous to the garment to fiber layering.
In all of these layered architectures, the virtualization of the

lower layer resources is an illusion that can be maintained almost
perfectly in normal operations of minds, outfits, machines, and
computers. The hidden complexity is primarily needed to create
this remarkable robustness and evolvability, not minimal func-
tion, and it is only revealed by pushing systems to their extremes
by perturbing the environment or components in lower layers
outside the constraints that the systems evolved to handle (3–6).
After the layered architectures are in place, both our minds and
software are free to rapidly evolve independently given the right
environment, although the large differences between digital and
brain hardware imply very different constraints (6). This plas-
ticity is one of the main benefits deconstrained by the constraints
of the bowtie/hourglass protocols that create the layering (17, 18,
27). The mind/brain layering is much more complex than the
most complex current technology of embedded and/or net-
worked software/hardware/digital/analog, but the latter would be
utterly incomprehensible without the right conceptual frame-
work, mathematics, and tools, most of which are still unknown or
relatively new to neuroscience (7). We hope that the connections
between neural and technological architectures will help to de-
mystify some aspects of this complex continuum.
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This supporting information has some very elementary tutorial
introductions to minimal control theory, with details that are
easily checked and experiments that are easily performed. The
larger research program that we are pursuing can be summarized
as if you accept the empirical and theoretical claims in neuro-
science, then what is the right mathematical framework to con-
nect the mechanistic details with the behavior? Tremendous
theoretical progress is being made on what we believe is the right
combination of robust, layered, distributed, and nonlinear con-
trol, integrated as needed with communication and computation
theories. At best, the state of the art is nascent and promising but
technically inaccessible, and it has been focused on computer and
energy networks, not neuroscience. Because the core theory is
being developed and vetted among control theorists, we will aim
to build language (not standardized or well-thought out so far)
that can be used to connect the theory with real behavior and
known constraints on the components. Essential to this dialogue
is a shared understanding of layered architectures, robustness,
feedback, dynamics, and optimization as well as why a constraints-
based theory is both theoretically and biologically natural.
What follows are simple examples that complement the layering
ideas in the text.

Minimal Control Theory
The amplifier circuit in Fig. S1 is the simplest feedback system
possible, and it will be used as a minimal starting point to start
formalizing aspects of the constraints view of architecture moti-
vated by the case studies in the paper. Then, we will briefly sketch
out the theory underlying the pendulum case study, which is much
more technical but still uses only undergraduate mathematics.
There are amplifiers loosely based on the principle described

below all around us. Most familiar might be the audio amplifiers
and tuning knobs for radios and audio equipment. The large/thin
element is that, say, a high-tech radio has many knobs to adjust to
get the station, volume, compensation for room acoustics, etc.
Thus, there is a nearly infinite range of functional parameter
values for the radio that can be explicitly tuned with just a few
knobs. However, if you break open the box, there is a much larger
number of hidden parameters whose variation can destroy the
function inside. These variations are not allowed in normal use,
and this use would be breaking the system. Even minor but
random rewiring of the internal connections will ruin the radio.
Also, if you make a math model of the circuit, the internal
parameters are infinitely more numerous than the external tun-
able ones, and the math model will have the property that the set
of functional parameters is both vastly large in absolute terms
and also vanishingly thin as a fraction of all possible (random)
perturbations.
Fig. S1 is the simplest possible math model that illustrates

roughly how real feedback amplifiers work. The signals are an
external input r and output z, an amplifier noise n, internal
measurement y, and control u. The components are an (open-
loop) amplifier A and controller C, giving the interconnected
system output/input z/r gain G and noise response S. All of these
quantities are assumed to be (possibly uncertain) real numbers,
which capture the small signal (linear) steady state features of
the circuit. It is the interplay between feedback and dynamics
that is, ultimately, of most interest but also most confusing;
therefore, we will first explore feedback without dynamics as
a small step.

The basic properties of this circuit can all be derived using
elementary algebra, including solving for the relationship among
the external signals z = Gr + Sn as (Eq. S1)

z ¼ Aðr þ uÞ þ n ¼ Aðr þ CzÞ þ n

⇒ z ¼
�

1
1−AC

�
ðAr þ nÞ≜ Gr þ Sn:

[S1]

Powerful but precise amplifiers seem to be essential throughout
technology and biology and are, in any case, ubiquitous. What is
typically desired in electrical, mechanical, and/or hydraulic
technologies as well as in control muscles (A) with nerves (C) is
that the gain G be large and precise and the noise response S
small. This model is an extremely abstracted and minimal model
of such systems.
If there are no constraints and no uncertainty (i.e., A and C can

be specified arbitrarily and exactly and the noise n = 0), then
feedback is unnecessary, and any gain G can be realized perfectly
with amplifier A = G and C = 0. Real high-gain amplifiers un-
avoidably have both noise and limits on their gains, and there-
fore, feedback is necessary; there are also limits on the
achievable closed-loop performance and robustness that we will
explore. There are, again, three distinct but interrelated types of
constraints: (i) component constraints, (ii) system constraint,
and (iii) protocol constraints. Mathematically, a minimal set of
components constraints would be (S2)

Component: A≥ Amin; 0< −C< 1; n≠ 0: [S2]

Typically, the noise n would have more characterization, but for
our purposes here, its presence or absence is all that will be
considered. Also, A ≥ Amin >> 1 would be a high but uncertain
amplifier gain, with only the lower-bound Amin assumed to be
known (and thus, an upper bound on A is not assumed), whereas
C is a (negative) feedback that has small gain, which can be
tuned exactly to any desired value 0 < −C < 1. In practice, C
might be implemented with a potentiometer to give a (precisely)
variable gain amplifier, and this finding is roughly what a volume
knob on a radio does. These are typical tradeoffs that appear in
real elementary components that can have either high or precise
gains but not both. In all cases, larger Amin would be more costly
(e.g., larger and/or require a larger power supply), and therefore,
the choice of Amin would be a key design decision involving
tradeoffs between these factors. The amplifier is also assumed to
have noise n ≠ 0, which will force constraints on S.
The corresponding minimal constraints on the system can be

expressed as (Eq. S3)

System: S≤ Smax;G∈ ½Gmin;Gmax� ¼ Gmax½ð1− SmaxÞ; 1�: [S3]

What is typically required is to have moderately large and
bounded gain G ∈ [Gmin, Gmax], with small gain S ≤ Smax on the
noise n. Note that, in this simplified formulation, S (called the
sensitivity function in control theory) measures both the effects
of noise on the output and the uncertainty in the gain G ∈ [Gmin,
Gmax] = Gmax[(1 − Smax), 1], whereas in general, these numbers
could be different. Robust systems would have Smax << 1, which
rejects noise and has small gain error, and high-performance
systems would also have Gmin >> 1. The protocol constraints,
which are described algebraically as (Eq. S4)
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Protocol: G ¼ AS; S ¼ 1
1−AC

; [S4]

are depicted schematically in Fig. S1 (deliberately drawn to
emphasize that lower and higher are purely conventional and
have no intrinsic meaning).
If we start with the component and protocol constraints in

expression S2 and Eq. S4, we can easily derive the resulting
system constraints as (Eq. S5)

S≤ Smax ¼ 1
1−AminC

; G∈ ½Gmin;Gmax�¼ 1
−C

½ð1− SmaxÞ; 1�:
[S5]

Engineers call this process analysis, because it takes a given set of
component constraints and their interconnections (from the
protocols) and analyzes the resulting system properties, which are
also naturally expressed as constraints. It is the obvious forward
flow from components through protocols to systems described
above for textiles and biology. In this context, the constraints in
Eq. S5 are the consequences of those constraints in expression
S2 and Eq. S4. However, we can also go the other way (back-
wards), starting with the system constraints in Eq. S3 and using
the protocol constraints in Eq. S4 to synthesize or design the
component constraints by solving for A and C to get (Eq. S6)

S≤ Smax < 1;G∈ ½Gmin;Gmax�; 1<Gmax;Gmin ¼ ð1− SmaxÞGmax

⇒C ¼ − 1
Gmax

⇒Amin ≥
− 1
C

�
1

Smax
− 1

�
:

[S6]

Engineers call this synthesis, because it involves starting with
system requirements and architecture (i.e., protocol constraints)
and synthesizing the necessary component constraints. Analysis
can then be used to verify that this synthesis was successful. In this
case, both directions are trivial, but synthesis is typically vastly
harder and more complex than analysis, an issue not well-illus-
trated by this simplified example. Recall that this example is
similar to the case studies in the paper where the feedbacks
were far more complex than the more obvious forward assembly
pathway. The iterative process of synthesis (usually using great-
ly simplified models and constraints) and analysis (with more
complete models) contributes to system design, which in real-
istic situations, can involve many additional processes not con-
sidered here.
Where causality arises in Fig. S1 is in certain relationship

between signals and systems. For example, the control input u
can reasonably be said to be caused by the combination of
controller C and signal y through u = Cy. A more subtle point
that we are glossing over here is that the signals and systems in
Fig. S1 are abstract objects, and they correspond to a functional
decomposition of the system, not a physical one. That is, a
physical circuit implementing Fig. S1 would not break up into the
physical modules of controller and amplifier any more than
a digital circuit is physically distinct from its analog im-
plementation. Fortunately, this is a subject with abundant tuto-
rial material, and therefore, the interested reader can easily find
accessible explanations.
Beyond this trivial sense, the scientific jargon of causation and

emergence provides little here, whereas the processes of analysis
and synthesis are clearly defined after the three types of con-
straints are clarified. Neither controller nor amplifier causes the
system behavior, and the protocols in this particular architecture
imply a logical connection between component and systems
constraints that can be used in either direction (i.e., analysis vs.
synthesis). If we ask why there are the specific component con-
straints in expression S2, a proximal answer is that the underlying

technology makes it possible to fabricate components with these
constraints and features. A more complete answer is that this
technology also allows the systems constraints in Eq. S5 to be
realized through the protocols in Eq. S4. If these constraints are
not compatible, the architecture as specified is not viable, and
much of engineering involves evaluating this possibility. Al-
though it is possible to describe this idea in terms of up and down
causation or emergence, these terms seem to add nothing to our
understanding.
With these preliminaries, we can now briefly discuss design

tradeoffs and parameter spaces. Fig. S2 plots the tradeoffs be-
tween system performance in terms of Gmin, Gmax, and Smax as
a function of C for Amin = 100. In Fig. S2 Right, note that,
for positive feedback C > 0, Smax > 1 and noise is amplified.
Thus, C < 0 is necessary and sufficient for Smax < 1, a minimal

robustness requirement. Given C < 0, then
1

Amin
<< jCj (equiva-

lently |CAmin| >> 1) is necessary and sufficient for Smax << 1, in

which case Smax ¼ jSmaxj≈j 1
CAmin

j<< 1. However, for a given

Amin, there is a tradeoff between making |Smax| small and Gmin
large. Robust and functional amplifiers, thus, have both 1 <<

Amin and − 1<<C<<
− 1
Amin

to keep both |Smax| small and Gmin

large. The result is a tiny sliver of acceptable values of (C, A) in
parameter space as shown in Fig. S3, which is nonetheless
compatible with real engineering components.
This simple model shares key features with the textile and

biological architectures sketched above. There is no great com-
plexity here, but what little there is (i.e., C ≠ 0) is needed only for
robustness, not minimal functionality in an idealized setting with
no uncertainty. The functional parameters are an infinitely large
(deconstrained) set but a very small, thin (constrained) fraction
of all possibly parameter values, and thus, random circuits are
vanishingly unlikely to be robust or functional. What is missing
completely is any notion of dynamics, the addition of which, in
the final case study, adds enormously to the nature of the con-
straints involved. Also, the functional parameter sets in Fig. S3
are convex, which is emphatically not true in general. Indeed,
reparameterizing problems to make them convex is the heart of
research in robust, distributed, and nonlinear control. Con-
trollers are almost never convex in natural coordinates. This
trivial math model also illustrates that complexity is hidden in
normal function. One cannot tell from the outside what exactly is
going on inside unless one knows the architecture and probes it
for robustness with perturbations. This finding seems true of
biology as well.

Simple Motor Control Example
For the last case study, we will consider a simple feedback motor
control experiment that can easily be explored without specialized
equipment, and it illustrates additional important constraints.
The cartoon in Fig. S4 depicts the basic setup of a stabilization
problem. The component constraints are that a mass m at lo-
cation y on top of an inverted pendulum of length l is controlled
by a muscle force u acting on a hand at position x, which is as-
sumed to have effective mass M. The system constraint (and the
main experimental problem) is that the hand must be controlled
in such a way as to stabilize the up pendulum around θ = 0 using
the eyes to see the location y of the pendulum’s top. This ex-
periment is a standard experiment in human motor control and
undergraduate engineering, replacing the hand with an actuated
cart, but for our purposes, it illustrates important concepts that
can be formalized and made rigorous mathematically.
Simple variations in the constraints can yield radically different

properties. If the pendulum is sufficiently long, then it is easy to
learn to stabilize the up position, but if too short, it is impossible
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for humans (although robots can be built that will outperform
humans in this simple task). Eyes closed, sensing only through
contact with the hand, is a more severe component constraint, and
it is apparently impossible for humans to stabilize with any length
pendulum. Finally, the down position is naturally stable and
comparably easy to control. The easiest experimental demon-
strations of these extreme differences are obtained with pendu-
lums of widely varying lengths and tip masses, but they can also be
performed with a standard mechanical extendable pointer.
These three cases are summarized in the cartoon in Fig. S5 in

a way that can be made rigorous and precise using robust control
theory (see below for details). Here, we will summarize the re-
sults and explain their significance for constraints that decon-
strain. The idea in Fig. S5 is that there are hard constraints that
depend on the structure of the interconnection (up vs. down
and eyes open vs. closed). To make Fig. S5 quantitative, fragility
is defined in terms of the net sensitivity of the closed-loop con-
trol system (see below). These constraints are in the form of
tradeoffs between the fragility of the controlled system and the
length l. The tradeoffs plotted in Fig. S5, however, apply only to
the unavoidable part of the fragility that depends just on the
dynamics of the pendulum and the measurement and actuation
point. This portion of fragility is independent of any additional
uncertainty (e.g., noise in nerves and muscles) that arises in the
controller implementation. Robust control design must treat
both sources of uncertainty, but this use of robust control pro-
vides additional insights that we expect will be crucial to un-
derstanding robustness in biology.
The theory then predicts that, with eyes closed, the up system is

far too fragile to be stabilized by humans, whereas the down case
is trivially stable without control, although there are still lower
limits on achievable fragility in response to external disturbances.
This theory also predicts that, for up/open and a sufficiently short
length l, the system is also too fragile to be stabilized. Although
exact prediction of that length depends on the noise and time
delays within the human controller, the qualitative dependence
summarized in Fig. S5 of the unavoidable fragility on up/down,
open/closed, and length l allows for a variety of conclusions to be
rigorously inferred. One conclusion is the obvious benefit to this
control task of remotely sensing the tip using vision rather than
relying on hand contact alone, independent of additional details.
This perhaps intuitively obvious observation can, thus, be ele-
gantly and rigorously formalized.
Another interesting prediction of the theory that can be tested

experimentally is that the hand will tend to oscillate at lengths
near the limit of control. There is no purpose to these oscillations
per se, and they are simply side effects of the hard constraints on
robust control (in contrast to myriad oscillatory phenomena with
obvious benefits such as clocks, wheels, pistons, cell cycles, radio
carriers, etc.) Furthermore, this increase in control effort ob-
served as l is shortened is a universal telltale sign of system ap-
proaching breakdown, although in other systems, it may be
manifested as loss of control variability because of actuator
saturations. Similarly, the illusions described in the paper may
similarly be side effects of the kind of robust control, revealing
not simple flaws but the consequences of intrinsic tradeoffs when
systems are pushed near limits.
Another immediate consequence of robust control theory is

that the controller parameterization, no matter what the imple-
mentation substrate (human or robot), necessarily is large/thin
as well as nonconvex. The technical details of what constitutes
large/thin/nonconvex parameterizations are not simple, but the
intuition is simple. The set of controllers that robustly stabilizes
the up/open case is a vast and essentially infinite set of dynamical
systems, but it is a vanishingly small subset of all controllers (just
as with outfits vs. heaps). In other words, random controllers will
almost surely not stabilize. Tuning parameters in a robotic con-
troller without computer-aided design tools is essentially im-

possible. Furthermore, if two parameter sets each are robustly
stabilizing, their mean may not be stabilizing, and this non-
convexity is another universal property of robust controllers.
Indeed, this information is all very well-known, because a major
element of robust control theory is constructing embeddings of
controller parameters in higher-dimensional abstracted param-
eter spaces that are convex and thus, searchable. Thus, the (non)
convexity of parameter spaces has been a subject of intense study
and is entirely consistent with the other case studies in the paper.

Pendulum Details
The pendulum example in Fig. S4 would correspond in Fig. S1 to
r = 0 and A modeling the combination of hand and pendulum,
with C being the controller, including the eyes, brain, nervous
system, and muscle actuator. The noise n is assumed to model all
of the internal noises in the controller as well as any external
disturbances (e.g., air currents) in the environment, but we will
not aim for a detailed characterization. All of the signals are now
functions of time, and A and C have dynamics that will be ex-
plored in more detail later. We will consider a simple model that
is standard in undergraduate courses and laboratories, where the
cart moves in a line and the pendulum moves in a plane. This
example ignores all of the 3D motion that makes the problem
only moderately more difficult to control but vastly more difficult
to explain in any detail. This problem is seemingly unavoidable.
Algorithms that underlie robust control scale well (polynomially)
with problem size but are rarely solvable analytically. The kind of
analytic theory that we will do here, helpful for gaining insight
into the nature of feedback and dynamics, is only possible with
extremely simplified examples.
The standard equations of motion for a cart and pendulum in

a plane are (Eqs. S7–S9)

ðM þmÞ€xþml
�
u€ cos θ− _θ

2
sinθ

�
¼ u;

€x cosθ þ lu€± g sin θ ¼ 0; and
y ¼ xþ l sin θ:

[S7–S9]

The force of gravity is g. The up position equations correspond to
the −g in the ±g term, and if the whole diagram is flipped upside
down (and the pendulum is grasped lightly by the hand), then the
down equations are for the +g case. It is not easy in practice to
actually confine motion to a plane; however, this simplification
will not hinder our use of this model, because we will be proving
hard bounds on achievable robustness, and full 3D motion would
simply make things more difficult. The pendulum stick is as-
sumed to lack mass, with all of the mass concentrated at the tip.
The system in Eqs. S7–S9 can be linearized to get the transfer

functions from the control input u(t) to both the output y(t) and
the hand position x(t) [with transforms U(s), Y(s), and X(s)]. If
we denote the transfer functions from U(s) to Y(s) and X(s) as
AY(s) and AX(s), then we can solve analytically for (Eq. S10)

AX ðsÞ ¼ ls2 ± g
DðsÞ AY ðsÞ ¼ ± g

DðsÞ DðsÞ ¼ s2
�
Mls2 ± ðM þmÞg�;

[S10]

where− and+ are for up and down, respectively. Note that, in the
up case, both transfer functions are unstable, with a pole P> 0 that
solves D(p) = 0, and the X transfer function has a zero z > 0 with
(Eq. S11)

p ¼ z
ffiffiffiffiffiffiffiffiffiffi
1þ r

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
l
ð1þ rÞ

r
; z ¼

ffiffiffi
g
l

r
;   r ¼ m

M
: [S11]

A standard control theory result is that the sensitivity function
S(s) in Eq. S4 has the property that, if C is stabilizing, then
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S(p) = 0, because SðsÞ ¼ 1
1−CðsÞAY ðsÞ and AY (p) = ∞. This

result can be combined with standard results in complex analysis
to show that, for all stabilizing controllers C (S12),

1
π

ð∞

0

lnjSðjωÞjdω≥ p> 0: [S12]

Here, ln|S (jω)| is the natural logarithm of |S (jω)|, which measures
the amplification from the noise n to the output y at frequency ω.
Ideally, |S (jω)| is small, or equivalently, ln|S (jω)| is negative for
a wide range of frequencies; however, from expression S12, the
total integral of ln|S (jω)| is not only positive but is bounded below
by p. Note also that p scales inversely with

ffiffi
l

p
, and therefore, as

l → 0, the instability and the lower bound has p → ∞. Intuitively,
the pendulum eventually becomes too unstable and the feedback
system becomes too fragile for a human controller to stabilize it.
Thus, expression S12 is a hard constraint on the achievable ro-
bustness of the system and is depicted in Fig. S5, where fragility is
now defined as the left hand side integral in expression S12.
This constraint also suggests what must happen on the way to

instability, because as the length l is reduced, ln|S (jω)| will neces-
sarily have at least one peak at some frequency ω that corresponds
to oscillations in y(t) [and also, x(t)]. This finding can be verified
experimentally by finding the shortest length l that can be stabilized
and noticing that the hand tends to oscillate with a period that
corresponds roughly to the speed of response of the human nervous
system. There is no purpose per se to these oscillations, which are
simply unavoidable side effects of the stabilization problem and
hard constraints. This finding seems to be a common source of
confusion in biology, where purpose and meaning are sought for
oscillatory or variable dynamics that are likely to be simply the
result of hard constraints, partly because there are so many ex-
amples in biology and technology where oscillations are functional.
The down position has no instability even for small lengths,

where any oscillations will be primarily because of the natural
frequency of the pendulum, a rather different mechanism than in
the up case. The constraint now becomes simply (S13)

1
π

ð∞

0

lnjSðjωÞjdω≥ 0; [S13]

which is still interesting, because it says that the total reduction in
sensitivity over all frequencies is zero. Thus, all noise rejection
must be matched by an equal amount of noise amplification.
This finding is arguably the most important general constraint
on feedback control, and it goes back to Bode in the 1940s
(refs. 1–5 have related results). This finding will manifest itself
experimentally in controlling the down pendulum, which is
difficult when simultaneously controlling rapid hand and tip
movement, but this finding also will depend somewhat on length
and mass.
Perhaps the most interesting constraints occur when the eyes

are closed and the only sensing occurs through the hand position
(and also, the force of the pendulum on the hand). This constraint
is most severe in the up case, which experimentally seems to be
impossible to stabilize for any pendulum length. With the hand
position x as the controlled output, the system AX(s) has not only
an unstable pole at p > 0 but also a zero z > 0 as shown above. In
contrast, the transfer function AY(s) to y has no zeros and thus, is
only constrained by expression S12. The zero z > 0 causes the
constraint to strengthen to (Eq. S14)

1
π

ð∞

0

lnjSðjωÞj
�

z
z2 þ ω2

�
dω≥ ln

				zþ p
z− p

				 ¼
ffiffiffiffiffiffiffiffiffiffi
1þ r

p þ 1ffiffiffiffiffiffiffiffiffiffi
1þ r

p
− 1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þm

p þ ffiffiffiffiffi
M

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þm

p
−

ffiffiffiffiffi
M

p ; [S14]

which is more complicated and harder to interpret but muchmore
severe than expression S12. The system is simply inherently too
fragile to be stabilized by a human controller, and even auto-
matic cart–pendulum experiments require at least a sensor of θ
to stabilize.
All of the constraints on robustness here are in the form of hard

limits on the achievable sensitivity |S (jω)| that can be derived
from but do not trivially reduce to the other constraints on
components, the system as a whole, and the protocols of in-
terconnection. The term emergent has been so overused and
misused as to become almost meaningless, but if we want to
recover some useful meaning, emergent constraint could be
taken to be just such a nontrivial derived constraint.
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Fig. S1. (A) Block diagram of a minimal feedback amplifier circuit with reference input r, output z, noise n, measurement y, control u, amplifier A, and
controller C. The system constraints are on r, z, and n in terms of z = Gr + Sn, which is implemented with amplifier and controller layers. The diagram is
a visualization of the equations and usually would be different from a schematic of physical signals and connections. (B) A unipartite labeled graph model of
the same system.
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Fig. S2. System performance Gmax (green), Gmin (red), and Smax (blue) as a function of component values C for Amin = 100. Left has logarithmic units for C. In
Right, note that, for positive feedback C > 0, Smax > 1 and noise is amplified.

Fig. S3. Plot of the thin sliver 1 << Amin ≤ A and − 1<<C <<
− 1
Amin

of functional parameter values for A and C in the space of all parameter values. Left is

a log–log plot of a region blown up around the functional parameter values in red. Right is linear scaling, also focusing on the (red) functional region.

Fig. S4. Cartoon of the idealized stabilization problem with mass m at location y on top of an inverted (massless) pendulum of length l controlled by a control
force u acting on the hand at position x and assumed to have effective mass M. The force of gravity is g. The up position equations correspond to the −g in the
±g term, and if the whole diagram is flipped upside down (and the pendulum is grasped lightly by the hand), then the equations are for the +g case. The best
experimental results are obtained with pendulums of widely varying lengths and masses, but they can also be performed with a standard mechanical ex-
tendable pointer (details in the text).
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Fig. S5. Plots of hard constraint showing the net fragility as a function of the length of the pendulum and the structure of the controlled system. These
cartoons can be made to be precise.
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