

In the much simpler world of the Internet, the details are still bewilderingly complex.

50

- Describe systems/components in terms of constraints on what is possible
- Decompose constraints into component, systemlevel, protocols, and emergent
- Not necessarily unique, but hopefully illuminating nonetheless

Essential ideas

- Listening to engineers and physicians
- Robust yet fragile (RYF)
- "Constraints that deconstrain" (G&K)
- Network architecture
- Layering
- Control and dynamics (C&D)
- Hourglasses and Bowties
- Unity and diversity

Are there universal laws?

Emergent Constraints

Hard constraints: Thermo (Carnot) Info (Shannon) Control (Bode) Compute (Turing)

No networks

Assume *different* architectures a priori.

New unifications are encouraging, but not yet accessible or complete.

Robust Yet Fragile (RYF)

[a system] can have [a property] *robust* for [a set of perturbations]

> Yet be *fragile* for [a different property] Or [a different perturbation]

<u>Proposition</u> : The RYF tradeoff is a *hard limit* that cannot be overcome.

Cyber

- Thermodynamics
- Communications
- Control
- Computation

- Physical
- Thermodynamics
- Communications
- Control
- Computation

<u>Theorems</u> : RYF tradeoffs are hard limits

Robust yet fragile

Biology and advanced tech nets show extremes

- Robust Yet Fragile
- Simplicity and complexity
- Unity and diversity
- Evolvable and frozen

What makes this possible and/ or inevitable?

Architecture (= constraints)

Let's dig deeper.

Is there a simpler example than Internet?

J devil \in details

 \Rightarrow \otimes architecture Jean Jour (alias John Day)

Other examples

Clothing

- weather
- activity
- appearance requirements
- wear and tear
- cleaning

Robust to

- perturbations to clothing
- variety of raw materials
- unraveling

Universal functions?

- Transfer or transform (fastest)
 - Domain specific (data, power, goods, etc)
 - Depends on demand and supply
- Control (middle)
 - Schedule/MUX resources in time and space
 - Flow and error control
- Management (slowest)
 - *What* resources are available?
 - Where are they?
 - Cost? Risk? etc

Sewing function?

- Transfer or transform (fastest)
 - Transform cloth to garments
 - Depends on demand and supply
- Control (middle)
 - Schedule/MUX resources in time and space
 - Flow and error control
- Management (slowest)
 - *What* resources are available?
 - Where are they?
 - Cost? Risk? etc

- artificial and domain specific
- Ctrl/Mgmt in NetME:
 - More complex as the "Net" part grows
 - Will be our focus/goal of a unified theory
 - From physics to information to computation to control

Domain specific, local

Universal strategies?

Prevents unraveling of lower layers

Money

New fragilities

- Theft, counterfeiting, fraud, and "creative accounting" are now possible
- The beginning of a growing complexity-fragility spiral
- Complex legal infrastructure
- Law, banking, finance, Ponzi schemes, derivatives, credit default swaps, ...

Robust yet fragile

Extremes of

- Robust yet fragile
- Simplicity and complexity
- Constrained and flexible
- Frozen and evolvable
- Digital and analog
- Diverse and conserved

Lego system requirements

	Alternative designs?			
Performance				
Trauma				
Allowed connections				
Reuse				
Evolvable parts				
Evolvable systems				
Labor cost				
Parts cost				

Alternatives

No interface. Simple blocks.

Standard interface. (Wild type.)

Add glue to hold the parts together.

Injection mold the whole toy from scratch.

Diverse

Lessons from Lego:

- Infinitely *diverse* toys from
- moderately diverse parts
- Hourglass organization of control
- Conserved control mechanisms
- Bowties within layers
- **Complexity** is overwhelmingly in conserved control parts, but
- largely hidden in ordinary operation
- Greater internal complexity means more *robust yet fragile* external behavior

control

Conserved

assembly

Diverse

We'll come back to this aspect later.

Why bowties?

- Metabolism, biosynthesis, assembly
 - **1.** *Carriers*: Charging carriers in central metabolism
 - 2. *Precursors*: Biosynthesis of precursors and building blocks
 - *3. Trans**: DNA replication, transcription, and translation
- Signal transduction
 - 4. 2CST: Two-component signal transduction

Carriers
Precursors
Trans*
2CST

Constraints

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Layering, modularity
- Hourglass with bowties
- Dynamics
- Feedback
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, selforganized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >3B years of evolution

"Central dogma"

Protein

Analog/continuous dynamics

Specialized enzymes for each reaction

This is just charging and discharging

Think of AMP as a battery, and ATP as the charged battery. There are two autocatalytic processes requiring the feedback of resources:

- manufacturing the "battery" (slower process)
- and then repeatedly charging/using the "battery" (very fast)

We know what's going on here, but it's hard to draw the layers neatly.

• The carrier (AMP) must be both synthesized (in nucleotide biosynthesis), and then charged in a controlled way.

• The protein must be both synthesized and then its form and activity controlled.

ATP supplies energy to all layers

Lots of RNA ways to DNA

So X-layer interactions are highly structured

Recursive control structure

Reactions

Flow

Horizontal gene transfer

- Not a static database
- Not only point mutations

More complete picture ?

Network motifs in the transcriptional regulation network of *Escherichia coli*

Shai S. Shen-Orr¹, Ron Milo², Shmoolik Mangan¹ & Uri Alon^{1,2}

Network motifs in the transcriptional regulation network of *Escherichia coli*

1. anaerobic/aerobic metabolism DOR

Transcription factors

Special purpose proteins that control gene expression

Operons

Small groups of co-regulated genes

Transcription factor

Network motifs in the transcriptional regulation network of *Escherichia coli*

The greatest complexity here is primarily in the control of *rates*

This is all part of controlling protein level

All at the DNA layer

fan-in of diverse inputs

fan-out of diverse outputs

Diverse function

Highly robust

- Diverse
- Evolvable
- Deconstrained

Diverse components

Robust yet fragile Constraints that deconstrain

Highly fragile • Universal

- Frozen
- Constrained

Robust yet fragile

Constraints that deconstrain

What theory is relevant to these more complex feedback systems?

New fragilities

- Theft, counterfeiting, fraud, and "creative accounting" are now possible
- Need complex legal infrastructure to protect
- The beginning of a growing complexity-fragility spiral

