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Lectures

1) Concrete motivation
2-3) Universal laws and architectures*
4)  Ateensy bit of math

*have you ever heard of anything more pretentious?



Seriously?

1) Irresponsible speculation
(Feedback from audience)

2-3) Slightly less speculative?

4)  Ateensy bit of math?



Limited
scope

Existing design frameworks
« Sophisticated components

« Poor integration
 Limited theoretical framework

Fix?
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Lectures

1) Concrete motivation
2-3) Universal laws and architectures
4)  Ateensy bit of math

A rant



“Universal laws and architectures?”

Theoretical foundations for complex systems
Universal “conservation laws” (constraints)

Universal architectures (constraints that deconstrain)
Mention recent papers*

Focus on broader context not in paper
Lots of case studies for motivation

*try to get you
to read them?



This paper aims to bridge progress in neuroscience involving
sophisticated quantitative analysis of behavior, including the use
of robust control, with other relevant conceptual and theoretical
frameworks from systems engineering, systems biology, and

mathematics.

Architecture, constraints, and behavior

John C. Doyle®' and Marie Csete™’

Very accessible
No math

*Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125; and "Department of Anesthesiology, University of California,

San Diego, CA 92103

Edited by Donald W. Pfaff, The Rockefeller University, Mew York, NY, and approved June 10, 2011 (received for review March 3, 2011)

This paper aims to bridge progress in neurosdence involving
sophisticated quantitative analysis of behavior, induding the use
of robust control, with other relevant conceptual and theoretical
frameworks from systems engineering, systems biology, and
mathematics. Familiar and accessible case studies are used to illus-
trate concepts of robustness, organization, and architecture (mod-
ularity and protocols) that are central to understanding complex
networks. These essential organizational features are hidden dur-
ing normal function of a system but are fundamental for under-
standing the nature, design, and function of complex biologic and
technoloqic systems.

evolved for sensorimotor control and retain much of that evolved
architecture, then the apparent distinctions between perceptual,
cognitive, and motor processes may be another form of illusion
(9), reinforcing the claim that robust control and adaptive
feedback (7, 11) rather than more conventional serial signal
processing might be more useful in interpreting neurophysiology
data (9). This view also seems broadly consistent with the
arguments from grounded cognition that modal simulations,
bodily states, and situated action underlie not only motor control
but cognition in general (12), including language (13). Further-
minre the mvrad constraints invnlved n the svnlution of ciremit

Doyle and Csete, Proc Nat Acad Sci USA, JULY 25 2011



Human complexity
Robust Fragile



Human complexity

Robust Fragile
© Metabolism ® Obesity, diabetes
© Regeneration & repair @ Cancer
© Healing wound /infect @ Autolmmune/Inflame

Start with physiology

Lots of triage



Benefits

Robust

© Metabolism
© Regeneration & repair
© Healing wound /infect

© Efficient

© Mobility

© Survive uncertain food supply

© Recover from moderate trauma
and infection



Mechanism?

Robust Fragile
© Metabolism ® Obesity, diabetes
© Regeneration & repair @ Cancer
© Healing wound /infect @ Autolmmune/Inflame

—at accumulation
nsulin resistance
Proliferation
nflammation

—at accumulation
nsulin resistance
Proliferation
nflammation

D ® D

D ® D



What’s the difference?

Robust Fragile
© Metabolism ® Obesity, diabetes
© Regeneration & repair ® Cancer
© Healing wound /infect @ Autolmmune/Inflame

® Fat accumulation
® Insulin resistance
® Proliferation
® Inflammation

Controlled Uncontrolled
Dynamic Chronic



- -

Controlled
Dynamic

Low mean
High variability

D ® O

Fat accumulation
Insulin resistance
Proliferation
Inflammation




Controlled
Dynamic

Low mean
High variability

Fat accumulation
Insulin resistance
Proliferation
Inflammation

Uncontrolled
Chronic

High mean
Low variability



Restoring robustness?

Robust Fragile
© Metabolism ® Obesity, diabetes
© Regeneration & repair ® Cancer
© Healing wound /infect @ Autolmmune/Inflame
® Fat accumulation ® Fat accumulation
@ Insulin resistance @ Insulin resistance
@ Proliferation @ Proliferation
@ Inflammation @ Inflammation
Controlled Uncontrolled
Dynamic Chronic
Low mean High mean

High variability Low variability



Human complexity
Robust Yet Fragile

© Metabolism ® Obesity, diabetes
© Regeneration & repair ® Cancer

© Immune/inflammation ® Autolmmune/Inflame

© Microbe symbionts ® Parasites, infection

© Neuro-endocrine ® Addiction, psychosis,...
=] Complex societies 2 Epidemics, war,...

=) Advanced technologies & Disasters, global &!%%$#
=] Risk “management’ é Obfuscate, amplify,...

Accident or necessity?



Robust Fragile
© Metabolism ® Obesity, diabetes

© Regenerall @ Fat accumulation

® Proliferation
® Inflammation

Fragility < Hijacking, side effects, unintended...

Of mechanisms evolved for robustness

Complexity «<— control, robust/fragile tradeoffs

Math: robust/fragile constraints (“conservation laws”)

Both
Accident or necessity?




fragile

robust Some features Other features or
robust to some other

perturbations perturbations




Increased complexity?

robust Some features Other features or
robust to some other

perturbations perturbations



Robust
Modular
Simple
Plastic
Evolvable

Fragile
Distributed
Complex
Frozen
Frozen



1 hands
feet Al

weak skeleton . very
frag”e muscle different.
slow skin

Human aut

evolution long helpless childhood

Apes

strong
robust How is this
fast progress?



Gene networks? essential: 230

nonessential: 2373
E-colilo(o‘EG}QZ.Z)OMmiG“.(]égE 5 ) u n kn Own : 1804
. & total: 4407
90,(4175.3) ] ' / 10,(463.9)
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P _ B ORF(unknown)
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http://www.shigen.nig.ac.jp/ecoli/pec



Steering
Brakes  Anti-skid Wipers Mirrors

Cruise control GPS Radio
raction control

Shifting Headlights

Electronic ignition
Temperature control Seats

lectronic fuel injection Seatbelts

Bumpers Fenders
Suspension (control) Alrbags




Steering
Brakes Anti-skid

Cruise control
raction g

Bumpers Fenders
Suspension (control) Alrbags




» Lots from cell biology
— glycolytic oscillations for hard limits
— bacterial layering for architecture

* Networking and “clean slate” architectures
— wireless end systems
— Info or content centric application layer
— Integrate routing, control, scheduling, coding,
caching
— control of cyber-physical
— PC, OS, VLSI, antennas, etc (IT components)

my case
studies



Cell biology

Networking &"“clean slate™ architectures

Neuroscience
Medical physiology
Smartgrid, cyber-phys
Wildfire ecology
Earthguakes

Lots of aerospace
Physics:

— turbulence,

— stat mech (QM?)
“Toy™:

— Lego,

— clothing,

— buildings, ...

my case
studies



The dangers of
naive biomemetics

Feathers
and

flapping? \} Or lift, drag, propulsion,
o and control?




Getting it (W)right, 1901

* “We know how to construct airplanes...” (lift and drag)
« “... also know how to build engines.” (propulsion)

* “When... balance and steer|ing]... has been worked
out, the age of flying will have arrived, for all other
difficulties are of minor importance.” (control)

e Wllbur anhtqncontrol 190'1*7""’
e ~ (First powered ﬂlght 1903). o oI




Universals?

Lift, drag, propulsion,
and control?




Universals?

« Complexity < control, robust/fragile tradeoffs
 Fragility « Hijacking, side effects, unintended...

« Of mechanisms evolved for robustness

« Math: robust/fragile constraints (“conservation laws”)

Both
Accident or necessity?




“Seeing is dreaming?”

“Seeing is believing?”




Peripheral Central

nervous nervous
System System
e - g o=
1 Sensory
receptor
in skin To Brain
Intermeuron

Dorsal Root

-

2 Afferent

.fzr pathway

Stimulus =

3 Integrating
center

5 Effector
organs

Response



delay=death
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Flexor Reflex

Excitatory
interneurons
z ~ Alpha motor
neurons
| Excitatory
interneurons

Sharp tack



Excitatory
interneurons

Excitatory
interneurons

Excitatory
interneurons







1. Detection of rotation

@)

2. Excitation of

Vestibulo-
ocular {(1
reflex

2. Inhibition of

extraocular el extraocular
muscles " 1 muscles on
Oh one o the other
side. side

=7 e ¥

3. Compensating eye movement






* Act

Same actuators
Delay iIs limiting

- MoVve
hand

¢iseH

Slow> Act




Versus standing on one leg
 Eyes open vs closed
 Contrast

— young surfers

— old football players

Move
head

Act

Sens> Fast
< Slow
g Sense

Slow >

Same actuators
Delay is limiting

== MoOVe
hand




delay=death
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Reflect
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Meta-layers cartoon

™

£\

X »

D Prediction

g Goals

O Actions
errors




There are 10x
feedback neurons

Visual Visual

<

Cortex Thalamus

—




NS

Prediction N\ What are the ’
Goals u) > consequences?
) c

Predicti
Goals

Conscious Actions
perception

There are 10x
feedback neurons

?

<

Cortex Thalamus




Seeing Is dreaming

conscious
perception 3D
+time
Simulation
/1 :
cConsclous
erception



Same size?

2









Same size



N

Same size

Toggle between this slide and
the ones before and after

Even when you “know” they are
the same, they appear different



Same size?

Vision: evolved for complex
simulation and control, not
2d static pictures

Even when you “know” they are
the same, they appear different



Seeing Is dreaming

3D
Conscious| *tme
perce ntion
Simulation
+ complex
models
(“priors™)
/1 :
ﬁonsuqus
erception




Seeing Is dreaming

Conscious
erception
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Seeing Is dreaming

Seeing Is believing
=2 .9
s& | 3D
S 2 +time
)
O a o
simulation | Prediction
+ complex
models
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C
erception

Seeing is dreaming ﬁ&
I | |

Seeing Is believing

2 O
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Which blue line is longer?



Which blue line is longer?



Which blue line is longer?



Which blue line is longer?



Which blue line is longer?



Which blue line is longer?



Which blue line is longer?

With
social
pressure,
this one.

Standard social psychology experiment.






Chess experts

 can reconstruct entire
chessboard with < ~ 5s
Inspection

e can recognize 1e5 distinct
patterns

 can play multiple games
blindfolded and simultaneous
e are no better on random
boards

(Simon and Gilmartin, de Groot)

www. psywww.com/intropsych/ch07_cognition/expertise_and_domain_specific_knowledge.htmi



Specialized Face Learning Is
Associated with Individual
Recognition in Paper Wasps

Michael ]. Sheehan* and Elizabeth A. Tibbetts

AVAAAS

We demonstrate that the evolution of facial recognition in wasps is associated with specialized
face-learning abilities. Polistes fuscatus can differentiate among normal wasp face images more
rapidly and accurately than nonface images or manipulated faces. A close relative lacking facial
recognition, Polistes metricus, however, lacks specialized face learning. Similar specializations for

face learning are found in primates and other mammals, although P. fuscatus represents an
independent evolution of specialization. Convergence toward face specialization in distant taxa as

well as divergence among closely related taxa with different recognition behavior suggests that
specialized cognition is surprisingly labile and may be adaptively shaped by species-specific
selective pressures such as face recognition.

When needed, even wasps can do It.

2 DECEMBER 2011 VOL 334 SCIENCE www.sciencemag.org



* Polistes fuscatus can differentiate among normal wasp
face images more rapidly and accurately than nonface
Images or manipulated faces.

* Polistes metricus is a close relative lacking facial
recognition and specialized face learning.

 Similar specializations for face learning are found iIn
primates and other mammals, although P. fuscatus
represents an independent evolution of specialization.

« Convergence toward face specialization in distant taxa
as well as divergence among closely related taxa with
different recognition behavior suggests that specialized
cognition is surprisingly labile and may be adaptively
shaped by species-specific selective pressures such as
face recognition.



Fig. 1 Images used for training wasps.

P. fuscatus faces Antenna-less faces Rearranged faces

M J Sheehan, E A Tibbetts Science 2011;334:1272-1275 SC]‘E“CE

Published by AAAS LAY



Unfortunately, we're not
sure how this all works.
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Seeing Is dreaming

Seeing Is believing
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But ultimately, only actions matter.

N\

conscious Prediction
perception Goals
NActions
Prediction

Goals /
Conscious

erception SRS




Want to understand the space of
systems/architectures

fragile

Want robust and
efficient systems
and architectures

robust

efficient wasteful



Where we are going

Human'’s have huge capacity for flexibility, to

earn and adapt

High skill is highly automated but less flexible

Mammalian NS seems highly organized to
reduce delays in motor control

Tradeoff between flexi
Building on Turing anc

nility and delay
recent results in control

theory to understand t

ne speed/flexibility tradeoff

and the mind/brain architecture



ensory

Slow Prefrontal
Flexible
Motor.
Ashby & Crossley Striatum
« Acquire
 Translate/

Integrate
* Automate

Thanks to
Bassett & Grafton

Learning



I Slow Prefrontal
Flexible ‘ . ‘{: -
Motor

o L
Ashby & Crossley Striatu ) i”g

ensory

Fast
* Acquire Inflexible

e Translate/
Integrate
« Automate




Build on Turing to show what is

necessary to make this work.
Slow
Flexible

Rrefrontal

« Acquire East
* Translate/ Inflexible
N teg rate Sy

e AUutomate Reflex

nnnnnnnnn



Wolpert, Grafton, etc

Brain as_ostimal controller

« Automate




What I'm not going to talk about

 Connections between robustness and risk
sensitivity

« Asymmetry between false positives and
negatives

* Risk aversion and risk seeking

« Uncertainty is more in models than in
probabillities

 Life is not like a casino

All very important but triaged because of time



Going beyond black box: control is
decentralized with internal delays.

A

Huge theory progress in last
decade, year, mo., ...

4 lecture(after break)

- Andy Lamperski

- Nikolai Matni ) ‘—\\l1
N ” N




Going beyond black box: control is
decentralized with internal delays.

Fast
Inflexible

Slow

Flexible

Mammal NS
seems organized
to reduce delays
In motor control




Requirements on systems and architectures

accessible
accountable
accurate
adaptable
administrable
affordable
auditable
autonomy
available
credible
process
capable
compatible
composable
configurable
correctness
customizable
debugable
degradable
determinable
demonstrable

dependable
deployable
discoverable
distributable
durable
effective
efficient
evolvable
extensible
failure
transparent
fault-tolerant
fidelity
flexible
inspectable
installable
Integrity
interchangeable
interoperable
learnable
maintainable

manageable
mobile
modifiable
modular
nomadic
operable
orthogonality
portable
precision
predictable
producible
provable
recoverable
relevant
reliable
repeatable
reproducible
resilient
responsive
reusable
robust

safetg
scalable
seamless
self-sustainable
serviceable
supportable
securable
simplicity
stable
standards
compliant
survivaple
sustainable
tailorable
testable
timely
traceable
ubiquitous
understandable
upgradable
usable



Simplified, minimal requirements

accessible
accountable
accurate
adaptable
administrable
affordable
auditable
autonomy
available
credible
process
capable
compatible
composable
configurable
correctness
customizable
debugable
degradable
determinable
demonstrable

dependable
deployable
discoverable
distributable
durable
effective
efficient
evolvable
extensible
failure
transparent
fault-tolerant
fidelity
flexible
inspectable
installable
Integrity
interchangeable
interoperable
learnable
maintainable

manageable
mobile
modifiable
modular
nomadic
operable
orthogonality
portable
precision
predictable
producible
provable
recoverable
relevant
reliable
repeatable
reproducible
resilient
responsive
reusable
robust

safet\é
scalable
seamless
self-sustainable
serviceable
supportable
securable
simple
stable
standards
compliant
survivable
sustainable
tailorable
testable
timely
traceable
ubiquitous
understandable
upgradable
usable



Requirements on systems and architectures

accessible
accountable
accurate
adaptable
administrable
affordable
auditable
autonomy
available
credible
process
capable
compatible
composable
configurable
correctness
customizable
debugable
degradable
determinable
demonstrable

dependable
deployable
discoverable
distributable
durable
effectiv_e
effi c,gent
evolvable
extensible
failure
transparent
fault-tolerant
fidelity
flexible
inspectable
installable
Integrity
interchangeable
interoperable
learnable
maintainable

manageable safet?;

mobile scalable
modifiable seamless
modular self-sustainable
nomadic serviceable
operable supportable
ortho ?nality segurablci
portable

precision gallgre‘p €
predictable standards
producible compliant
provable survivaple
recoverable SU tab“‘able
relevant tatlorable
reliable testable
repeatable timely
reproducible  traceable
resilient ubiquitous
responsive understandable
reusable upgradable
robust  usable



Requirements on systems and architectures

efficient .
simple

sustainable

robust



Requirements on systems and architectures

efficient .
simple

sustainable

robust



Requirements on systems and architectures

sustainable

fragile

robust

wasteful

simple efficient

complex



Requirements on systems and architectures

sustainable

fragile

complex

simpl
robust

efficient wasteful



fragile

robust

Want to understand the space of
systems/architectures

AN Case studies?
G \\
O'/,- \ PR
N Strategies:
/(‘ N\
S\
AN
06 \\ ] ,
AN Architectures:

Want robust and Q/,’;.\
efficient systems (}é,)\\\
and architectures L -

efficient wasteful



WHAT WE GET

Unlock Support a Lse
trillion bigger energy from oil,
in savings economy coal, and nuclear

SOURCES - Learn more at rmi.org ROCKy
i | -J‘-T‘:\G 2 2011 Rocky Mountain Institute ” m%%#n-lrrgo

Amory B. Lovins,
Reinventing Fire
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Fire in the Earth System fm interested

in fire...

David M. ]. S. Bowman,* Jennifer K. Balch,>***t Paulo Artaxo,” William ]. Bond,®

Jean M. Carlson,” Mark A. Cochrane,® Carla M. D'Antonio,’ Ruth S. DeFries,*® John C. Duyle,11
Sandy P. Harrison,*® Fay H. Johnston,? Jon E. Keeley,***> Meg A. Krawchuk,*®

Christian A. Kull,*” ]. Brad Marston,*® Max A. Moritz,*® I. Colin Prentice,*” Christopher I. Roos,*°
Andrew C. Scott,?* Thomas W. Swetnam,?? Guido R. van der Werf,%> Stephen ]. Pyma»‘:"’;l

Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of
terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation
distribution and structure, the carbon cycle, and climate. Although humans and fire have always
coexisted, our capacity to manage fire remains imperfect and may become more difficult in the
future as climate change alters fire regimes. This nisk 1s difficult to assess, however, because fires
are still poorly represented in global models. Here, we discuss some of the most important issues
involved in developing a better understanding of the role of fire in the Earth system.

Very accessible
No math AYAAAS

www.sciencemag.org SCIENCE VOL 324 24 APRIL 2009
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Wildfires, complexity, and highly optimized tolerance

Max A. Moritz*, Marco E. Morais®, Lora A. Summerell*, J. M. CarlsonS%, and John Doylel

*Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720; Departments of *Geography and #Physics,
University of California, Santa Barbara, CA 93106; *Department of Earth Sciences, California Polytechnic State University, San Luis Obispo, CA 93407; and
Ipepartment of Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125

Communicated by James 5. Langer, University of California, Santa Barbara, CA, October 19, 2005 (received for review July 26, 2004)

Recent, large fires in the western United States have rekindled
debates about fire management and the role of natural fire
regimes in the resilience of terrestrial ecosystems. This real-world
experience parallels debates involving abstract models of forest
fires, a central metaphor in complex systems theory. Both real and
modeled fire-prone landscapes exhibit roughly power law statis-
tics in fire size versus frequency. Here, we examine historical fire
catalogs and a detailed fire simulation model; both are in agree-
ment with a highly optimized tolerance model. Highly optimized
tolerance suggests robustness tradeoffs underlie resilience in dif-
ferent fire-prone ecosystems. Understanding these mechanisms
may provide new insights into the structure of ecological systems
and be key in evaluating fire management strategies and sensi-
tivities to climate chanae.

| PNAS |

December 13, 2005

Highly optimized tolerance (HOT) is a conceptual framewo
for examining organization and structure in complex systen
(18). Theoretically, HOT builds on models and mathemati
from physics and engineering, and identifies robustness tradeot
as a principle underlying mechanism for complexity and pow
law statistics. HOT has been discussed in the context of a varie
of technological and natural systems, including wildfires (18, 2:
A quantitative prediction for the distribution of fire sizes h
come from an extremely simple analytical HOT model, referre
to as the PLR (probability-loss—resource) model (22). As
precursor to results presented later in this article, Fig. 2 der
onstrates the PLR prediction and truncated power law statisti
(23) for several fire history catalogs. This plot represents the rz

Aata ac rank ar romnlative freananev nf firee PN oreatar the

Accessible ecology
UG math

| vol. 102 | no.50



Wildfire ecosystem as ideal example

Cycles on years to decades timescale
Regime shifts: grass vs shrub vs tree

Fire= keystone “specie”

— Metabolism: consumes vegetation

— Doesn’t (co-)evolve

— Simplifies co-evolution spirals and metabolisms
4 ecosystems globally with convergent evo
— So Cal, Australia, S Africa, E Mediterranean

— Similar vegetation mix
— Invasive species



Today

efficient wasteful

“Physics”



Future evolution of the “smart” grid?

Future?

fragile

Now

robust

efficient wastefu



Current
Technology?

fragile

At best we
get one

robust

efficient wasteful
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fragile
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robust
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efficient wasteful
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robust

efficient wasteful
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When will lamps be 200% efficient?

Solving all

energy
problems?
m e e —m o - = 41100%
. Turbine (a)
| Exponential Stearn Tubine N
|mprovement Charles Parsons Gahs |
] ] Diode (b)
Triple Expansion Fluorescent 10%
Comish rc
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http://phe.rockefeller.edu/Daedalus/Elektron/

Note: this
IS real data!



When will lamps be 200% efficient?

Gas

Oops... never. Turbine (a)

Steam Turbine

Charles Parsons GafAs
. ; Diode (b)
Triple Expansion Fluorescent

1Zomish
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Note: need to
plot it right.
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Universal law
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Universal law?

efficient wasteful
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Control, OR Kalman Comms
Pontryagin

Bode Shannon
Nash Theory?
Deep, but fragmented,
Von incoherent, incomplete
Neumann Carnot
Turing Boltzmann

Godel Heisenberg



Control Comms
Bode Shannon

Each theory = one dimension
Tradeoffs across dimensions
Assume architectures a priori
slow? °* Progressis encouraging, but...
Stovepipes are an obstacle...

fragile?

?

[]
wasteful? c
S arnot
Turing Boltzmann
Godel Heisenberg
Compute Physics

Einstein



« Turing 100%™ birthday in 2012
 Turing
— machine (math, CS)
— test (Al, neuroscience)
— pattern (biology)
« Arguably greatest*
— all time math/engineering combination
- WW2 hero
- “invented” software

Turing (1912-1954)

Compute *Also world-class runner.



Key papers/results

Theory (1936): Turing machine (TM), computability,
(un)decidability, universal machine (UTM)

Practical design (early 1940s): code-breaking, including
the design of code-breaking machines

Practical design (late 1940s): general purpose digital
computers and software, layered architecture

Theory (1950): Turing test for machine intelligence

Theory (1952): Reaction diffusion model of
morphogenesis, plus practical use of digital computers
to simulate biochemical reactions



Cyberphysical theories

Cyber (digital) Physical (analog)

« Turing computation (time) « Bode (latency)

« Shannon compression « Shannon (channels)
(space) « Networked control (AndyL)

« Content centric nets (time, « Redo StatMech and
space, location) efficiency

Lots of challenges not yet addressed
(e.g. Smartgrid, biology, neuro,..)

< Layering as optimization? >




Turing as Essentials:

“new” 0. Model
starting 1 Universal Iaws.
ooint? 2. Unlve.rsal.archltecture.
3. Practical implementation
Software Turmg s 3 step reseath:
0. Virtual (TM) machines
Hardware 1. hard limits, (un)decidability
‘L using standard model (TM)
2. Universal architecture
‘Digital ‘ achieving hard limits (UTM)
Analog 3. Practical implementation in
digital electronics (biology?)




Control Comms
Bode Shannon

Each theory = one dimension
Tradeoffs across dimensions
Assume architectures a priori
slow? °* Progressis encouraging, but...
Stovepipes are an obstacle...

fragile?

?

[]
wasteful? c
S arnot
Turing Boltzmann
Godel Heisenberg
Compute Physics

Einstein
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REVIEW

Reverse Engineering of Biological

Complexity

Marie E. Csete’ and John C. Doyle®*

Advanced technologies and biology have extremely different physical
implementations, but they are far more alike in systems-level organization
than is widely appreciated. Convergent evolution in both domains pro-
duces modular architectures that are composed of elaborate hierarchies of
protocols and layers of feedback regulation, are driven by demand for
robustness to uncertain environments, and use often imprecise compo-
nents. This complexity may be largely hidden in idealized laboratory
settings and in normal operation, becoming conspicuous only when con-
tributing to rare cascading failures. These puzzling and paradoxical fea-
tures are neither accidental nor artificial, but derive from a deep and
necessary interplay between complexity and robustness, modularity, feed-
back, and fragility. This review describes insights from engineering theory
and practice that can shed some light on biological complexity.

Csete and Doyle

ty In components or the
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ing complex networks ofte
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1 MARCH 2002 VOL 295 SCIENCE www.sciencemag.org



RESEARCHARITICLE ‘

v UG biochem, math,

fc ‘
- - - - - W t Ith ;.
Glycolytic Oscillations and Limits 0N .o me sy wo s

. = molecules are consumed upstream and four are

Robust Efficiency prodwed dowmres, which omlizs 0. - |
(each y molecule produces two downstream) with

kamene exponent a = 1 To highhght essential
trade-ofts with the simplest possible analysis, we
nommalize the concentrabom such that the un-
perturbed (& = 0) steady states are ¥ = 1 and
¥ = 1 /k [the system can have one additional
deady state, which is unstable when (1, k) 15 sta-
ble]. [See the supporting onlme materal (S0M)
part ). The basal rate of the PFK reaction and
the consumption rate have been normalized to
1 (the 2 in the numerator and feedback coefh-

Fiona A. Chandra,’* Gentian Buzi,® John C. Doyle®

Both engineering and evolution are constrained by trade-offs between efficiency and robustness,
but theory that formalizes this fact is limited. For a simple two-state model of glycolysis, we
explicitly derive analytic equations for hard trade-offs between robustness and efficiency with
oscillations as an inevitable side effect. The model describes how the trade-offs arise from
individual parameters, including the interplay of feedback control with autocatalysis of network
products necessary to power and catalyze intermediate reactions. We then use control theory to
prove that the essential features of these hard trade-off "laws” are universal and fundamental, in
that they depend minimally on the details of this system and generalize to the robust efficien . . . . )
of anyr‘:’:ﬂucztal',rﬁc nemar?k. The theory also mgge.’;_'i wnrst-cagse condiions that are |:|::|r'|5i5t+e.=nr:'lr {f“mEE of ““““"’““_m“’”‘?” from Lhcwmm"_iluﬂ'_
el s aes . tions). Our results hold for more general systems
'I'ﬂth lmm" Hpenmenm' i iscaimnad halassr and o OOWRT e i

v v b reae

Chandra, Buzi, and Doyle

AYAAAS

Most important paper so far.

www.sciencemag.org SCIENCE VOL 333 8 JULY 2011
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(a)
Fig. 2. Dependence of pattern on flow rate. Experimental time

CSTR, yeast extracts

T tion becomes longer (b—d). and at the highest flow rate (e). the state
15 stationary.

Experiments

M Nielsen, PG Sorensen, F Hynne, H-G

Busse. Sustained oscillations in glycolysis:

an experimental and theoretical study of

mammmmemenmermeenee. CN 2 OtIC aNd complex periodic behavior

and of quenching of simple oscillations.
Biophys Chem 72:49-62 (1998).
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“Standard” Simulation E—y

0 20 40 60 80 100 120 140 160 180 200
2 -
— v=0.1 ’
15
il \/ \
0.5
0 | \ | | | | | | \ |
0 20 40 60 80 100 120 140 160 180 200
1
— v=0.2
0.8 —
0.6 | —
0.4 _
0.2 | \ | | | | | | \
0 20 40 60 80 100 120 140 160 180 200

Figure S4. Simulation of two state model (S7.1) qualitatively recapitulates
experimental observation from CSTR studies [5] and [12]. As the flow of material
in/out of the system is increased, the system enters a limit cycle and then
stabilizes again. For this simulation, we take g=a=Vm=1, k=0.2, g=1, u=0.01, h=2.5.
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Why?

Levels of explanation:

1. Possible
2. Plausible
3. Actual

4. Mechanistic
5. Necessary

Science

Engineering
Medicine



Glycolytic “circuit” and oscillations

* Most studied, persistent mystery in cell dynamics

* End of an old story (why oscillations)
— side effect of hard robustness/efficiency tradeoffs
— NO purpose per se
— just needed a theorem

* Beginning of a new one
— robustness/efficiency tradeoffs
— complexity and architecture
— need more theorems and applications




Theorem!

Fragility

In

Z+p
=P

Savageaumics
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Z and p functions of
enzyme complexity
and amount

simple
enzyme

complex enzyme

Enzyme amount



How general is this picture?

Implications for
human evolution?
Cognition?
Technology?

Basic sciences?

fragile

simple
tech

efficient wasteful




Evolution and architecture

Nothing in biology makes sense except in the light of
evolution

Theodosius Dobzhansky
(see also de Chardin)

Nothing in evolution makes sense except in the light of
biology



natural selection + genetic drift
+ mutation + gene flow

ASCENDING

Ae
TEN GREAT INVENTIONS
o ENXOLUTION

Hlustrated by Jobm Norton = - Sg
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NICK LANE

s 'SQLV!NG DARWIN'S DILEMMA



Gerhart and Kirschner

Facilitated variation

Architecture =
Constraints that deconstrain

* Weak linkage
* Exploratory mechanisms
* Compartmentalization

S ESOLVING DARWIN'S DILEMMA
- “u



Unfortunately, not
intelligent design

vourR INNER FISH

S

NEIL SHUBIN



e

EVOLUTION

/ﬁ

IS TRUE
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P>y 4
,’—/

JERRY A. COYNE




Why? Building humans from fish parts.

Eustachian

/] tube

Vagus nerve
/i

Spiracle Thyroid
cartilage

Arterial

Gill slits arch B0 Superior laryngeal
\M/ nerve
Dorsa \ /
Ventral
aorta )
aorta 5
Vagus Cat 41 Recurrent
Heart nerve laryngeal
nerves
Fourth
branch
of vagus
nBIve Aorta
Pul Pulmonary
u n;onary artery
trun (formerly
ductus
arteriosis)
(a) Fish
(b) Human
FIGURE EII Schematic diagram showing the relationship between the vagus cranial nerve and the arterial arches in fish (a)

and human (b). Only the third, fourth, and part of the sixth arterial arches remain in placental mammals, the sixth acting only
during fetal development to carry blood to the placenta. The fourth vagal nerve in mammals (the recurrent laryngeal nerve) loops

around the sixth arterial arch just as it did in the original fishlike ancestor, but must now travel a greater distance since the rem-
nant of the sixth arch is in the thorax.



It could be worse.

Cerebrum rF 3 \ )

Brain
MNervus laryngeus inferior

Inferior laryngeal nerve

Mervus laryngeus superior
Superior laryngeal nerve

Nervus laryngeus recurrens
Recurrent laryngeal nerve

Arteria corotis
Carotid artery

MNervus vagus .‘
Vagus nerve '

Arcus aortae

Aortic arch
Aorta dorsalis Ductus arteriosus Botalli
Dorsal aorta L Botalli's duct
Arteria pulmonalis & ¢ Cor
Pulmonary artery Heart




1 hands
feet Al

weak skeleton . very
frag”e muscle different.
slow skin

Human aut

evolution long helpless childhood

Apes

strong
robust How is this
fast progress?
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Homo Erectus?

R hands Roughly
feet modern
skeleton

weak . —
. muscle
fragile <kin Very
¢ fragile
This much seems pretty s —
consistent among experts
regarding circa 1.5-2Mya
strong So how did H. Erectus
robust survive and expand globally?
>
efficient Inefficient

(slow) wasteful



weak
fragile

strong
robust
(fast)

endurance

\
\
\
» N speed &
N
« strength
> ~
~ ﬁ Apes
~
~ < _lology
. . . . . )
efficient Inefficient

(slow) wasteful



weak
fragile
(slow)

strong
robust
(fast)

N
Human™ _

hands
feet

skeleton
muscle

skin
gut

. ~
volution
evolutio \\\ ﬁ Apes
~

~

S o - ~B'(),(:)gy
. . . . . )
efficient Inefficient
(slow) wasteful



weak
fragile

strong
robust

Architecture?
Evolvable?

Hard

Apes
tradeoffs? RN

~ BlOIOgy

>
efficient Inefficient
(slow) wasteful



endurance

weak
fragile +
sticks From weak prey
stones to invincible
fire predator?
teams
strong
robust Speculation? There is only
evidence for crude stone tools.
efficient But sticks, fire, teams might

(slow) not leave a record?



weak
fragile

strong
robust

Speculation? With only
evidence for crude stone tools.
But sticks and fire might not
leave arecord?

+ From weak prey to
sticks invincible predator
stones

fire
teams Before much
brain expansion?
. Plausible but speculation?
efficient

(slow)



Cranial capacity (cubic centimetres)

Cranial capacity
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A hands Key point:

foet Our physiology,

Weqk skeleton technology,
fragile muscle and brains
skin have co-

aut evolved

From weak prey

) to invincible

\ e Probably tr

. predator y true
sticks j%éq no matter what
strong |stones

robust | fire Before much

o brain expansion?
efficient

(slow)

+

Huge
implications.
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1 hands Key point needing

feet more discussion:
Weqk skeleton The evolutionary
fragile muscle challenge of big brains
skin is homeostasis, not
gut basal metabolic load.

From weak prey
N

+ /_ to invincible
. ) redator
sticks %éq P
strong |stones
robust | fire Before much
brain expansion?
efficient - Huge
implications.

(slow)



weak
fragile

strong
robust

Architecture?

sticks
stones
fire

>
efficient Inefficient
(slow) wasteful



weak
fragile

strong
robust

+

sticks
stones
fire

efficient
(slow)

hands
feet
skeleton
muscle
skin

gut

From weak prey
A . . .
o to invincible
predator

Before much
brain expansion?
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Architecture?

sticks
stones
fire

>
efficient Inefficient
(slow) wasteful



Human
complexity?

Consequences of

\ \ our evolutionary
\ - 5
SR
\
\
\
sticks
stones
fire
robust

~
= +Technology

efficient wasteful



Constraints
, (that deconstrain)

A

fragile | \

robust Hard
tradeoffs?

efficient wasteful



Layered architectures

Diverse applications

MAC
Switch

Pt to Pt

=i
o
L

Physical



Proceedings of the IEEE, Jan 2007 e
optimization
Layering as
Optimization Decomposition:
A Mathematical Theory of

_ Network Architectures Fo

There are various ways that network functionalities can be alocated t0

What’s
next?

layers and to different network elements, some being more desirable than others.
The intellectual goal of the research surveyed by this article is to provigesy
theoretical foundation for these architectural decisions in networking,
By MUNG CHIAN G, Membe [FEE, STEVEN H. LOow, Semdor Member [EEE,
A. BOoBERT CALDERBANE, Fellw [FEE, avD |[oHN . LRYLE

Chang, Low, Calderbank, Doyle



Layered architectures .
Essentials

Deconstrained _
(Applications) Few global variables

Don’t cross layers

(- h
Constrained | OS Control, share, virtualize,
and manage resources
—
Processing
Memory

Deconstrained /O

(Hardware)




Lavered architectures _
Y Bacterial

biosphere

Deconstrained
(diverse)
Environments

Architecture

Shared Constraints

2 =>re protocols that
Deconstrain

Deconstrained (diverse)
Genomes




Catabolism

Precursors v

Crosslayer
autocatalysis

Inside/\every cell
almoot
AP

Enzymes




What makes the bacterial
biosphere so adaptable?

Deconstrained
phenotype

<

Environment

Action >

Core conserved
constraints facilitate

tradeoffs

+

Active control of
the genome

Deconstrained genome

(facilitated
variation)




How general is this picture?
Very! Constraints!
i.e. hard limits and architecture

fragile

simple
tech

efficient wasteful
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F_lnd and i
fix bugs
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“New sciences” of
“complexity” and

“networks”?
* Edge of chaos

Science as * Self-organized criticality
e Pure fashion * Scale-free “networks”
* Ideology * Creation “science”
e Politica * Intelligent design
» Evangelical * Financial engineering
* Nontech trumps tech * Risk management

* “Merchants of doubt”
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Z and p functions of
enzyme complexity
and amount

Fragility

£*p
Z-p

In simple

enzyme

complex enzyme

. Enzyme amount
Savageaumics



Fragility
hard limits

* General
* Rigorous
 First principle

simple

complex

>

Overhead, waste

* Domain specific
* Ad hoc
* Phenomenological

Plugging in
domain details



Control Wiener Comms

Bode Shannon
robust control

Kalman
e General * Fundamental multiscale physics
* Rigorous * Foundations, origins of
* First principle — noise

— dissipation

— amplification

catalysis Carnot
Boltzmann
Heisenberg

Physics



What I'm not going to talk much about

It's true that most “really smart scientists” think
almost everything in these talks is nonsense

Why they think this
Why they are wrong

Time (not space) is our problem, as usual

Don’t have enough time for what is true, so have
to limit discussion of what isn’t

No one ever changes a made up mind (almost)
But here's the overall landscape



Control Comms

III

Complex Wildly “successfu
networks

Compute

“New sciences” of

complexity and networks
edge of chaos, self-organized Carnot
criticality, scale-free,... Boltzmann

Stat physics

Heisenberg

Physics



Modeling
the Internet
and the Web
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Complex systems?

Fragile

* Scale
Even small « Dynamics
amounts can * Nonlinearity
create * Nonequlibrium

. i ° Open

bewﬂder!ng . Feedback
complexity

« Adaptation
* Intractability
* Emergence



Complex systems?

Robust Fragile

« Scale « Scale

* Dynamics * Dynamics

* Nonlinearity * Nonlinearity

* Nonequlibrium * Nonequlibrium
* Open * Open

* Feedback * Feedback

« Adaptation « Adaptation

* Intractability * Intractability

 Emergence  Emergence



Complex systems?

Robust complexity

« Scale

« Dynamics

* Nonlinearity

* Nonequlibrium
* Open

* Feedback

« Adaptation

* Intractability

* Emergence

Resources
Controlleo
Organizec
Structured
Extreme

Architected




* These words have lost much
of their original meaning, and
have become essentially
meaningless synonyms

* e.g. nonlinear # not linear

« Can we recover these words?

 |dea: make up a new word to
mean “I'm confused but don’t
want to say that”

* Then hopefully we can take
these words back (e.g.
nonlinear = not linear)

Fragile
complexity

« Scale

* Dynamics

* Nonlinearity
* Nonequlibrium
* Open

* Feedback

« Adaptation
 Intractability
« Emergence



New

words Fraglle_

complexity
Emergulent . Scale

* Dynamics

* Nonlinearity
Emergulence « Nonequlibrium
at the edge of . IC:)pe(?b k
chaocritiplexity eedpac

« Adaptation
* Intractability
* Emergence



Alderson & Doyle,
Contrasting Views of
Complexity and Their
Implications for
Network-Centric
Infrastructure,
IEEE TRANS ON
SMC,
JULY 2010

Complex
networks

doesn’t
work

Stat physics
“New sciences” of

complexity and networks
edge of chaos, self-organized
criticality, scale-free,...



Complex systems?

Control Comms
Complex
networks

Compute

Stat physics

Carnot

Boltzmann

Heisenberg

Jean Carlson, UCSB Physics Physics



Alderson &Doyle, Contrasting
Views of Complexity and Their
Implications for Network-Centric

Infrastructure,
Complex IEEE TRANS ON SMC,
JULY 2010
networks
Control
Sandberg, Delvenne,
& Doyle, On Lossless Stat physics
Approximations, the Fluctuation-
Dissipation Theorem, and Carnot
Limitations of Measurement, Boltzmann

IEEE TRANS ON AC, Heisenberg
FEBRUARY, 2011 Physics



“The last 70 years of the 20t century will be viewed as
the dark ages of theoretical physics.” (Carver Mead)

Complex
networks

From prediction
to mechanism
to control

“orthophysics”

Sandberg, Delvenne,

& Doyle, On Lossless Stat physics,

Approximations, the Fluctuation- fluids, QM
Dissipation Theorem, and Carnot
Limitations of Measurement, Boltzmann
IEEE TRANS ON AC, Heisenberg

FEBRUARY, 2011 Physics



J. Fluid Mech. (2010), vol. 665, pp. 99-119.  (© Cambridge University Press 2010 99

doi:10.1017/50022112010003861 J. Fluid Mech (2010)

A streamwise constant model of turbulence
in plane Couette flow

D. F. GAYMEIT, B. J. MCKEONI,
A. PAPACHRISTODOULOUE, B. BAMIEH?
AND J. C. DOYLE!

Turbulence
and drag?




Physics of Fluids (2011)

PHYSICS OF FLUIDS 23, 065108 (2011)

Amplification and nonlinear mechanisms in plane Couette flow

Dennice F. Gayme,' Beverley J. McKeon,' Bassam Bamieh,* Antonis Papachristodoul
and John C. Doyle®

Dennice Gayme,

Beverley McKeon,

Bassam Bamieh (UCSB ME),
Antonis Papachristodoulou,
John Doyle



Physics of Fluids (2011)  ..vsics oF mLubs 23, 065108 (2011)

Amplification and nonlinear mechanisms in plane Couette flow

Dennice F. Gayme,' Beverley J. McKeon,' Bassam Bamieh,? Antonis Papachristodoulou,®
and John C. Doyle®

Coherent structures and turbulent drag
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