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A Receding Horizon Generalization of Pointwise
Min-Norm Controllers

James A. Primbs, Vesna Nevistand John C. DoyleMember, IEEE

Abstract—Control Lyapunov functions (CLF's) are used in cientto design stabilizing control schemes. Once again, system-
conjunction with receding horizon control (RHC) to develop a atic techniques for finding CLF'’s for general nonlinear systems
new class of receding horizon control schemes. In the Process,qq not exist, but this approach has been applied successfully to

strong connections between the seemingly disparate approaches . ,
are revealed, leading to a unified picture that ties together the many classes of systems for which CLF's can be found [15], [8],

notions of pointwise min-norm, receding horizon, and optimal

control. This framework is used to develop a CLF based receding  In contrast to the emphasis on guaranteed stability that
horizon scheme, of which a special case provides an appropriatejs the primary goal of CLF's, another class of nonlinear
extension of Sontag’s formula. The scheme is first presented asontrol schemes that go by the names receding horizon

an idealized continuous-time receding horizon control law. The moving horizon. or model predictive control place importance
issue of implementation under discrete-time sampling is then ving 1zon, predictiv p Imp

discussed as a modification. These schemes are shown to posse§ optimal performance [17], [16], [20], [11], [13]. These
a number of desirable theoretical and implementation properties. techniques apply a receding horizon implementation in an

An example is provided, demonstrating their application to attempt to approximately solve the optimal control problem
a nonlinear control problem. Finally, stronger connections 10 ,r4,gh on-line computation. For systems under which on-line
both optimal and pointwise min-norm control are proved in the L : . .
Appendix under more restrictive technical conditions. computaugn is feasible, receding horizon CO"‘”F’_' (RHC) has
proven quite successful [27], [26]. But both stability concerns

and practical implementation issues remain a major research
focus [20], [23], [3], [24].

Based on their underlying connection with the optimal
I. INTRODUCTION control problem, in this paper we show that both CLF-based

HE OPTIMAL control of nonlinear systems is one of thénethods and receding horizon control can be cast in a single
T most challenging and difficult subjects in control theory. Iynn‘ylng framework where the advantages of both can be

b%xploited. The strong stability properties of CLF's can be
F_arried into a receding horizon scheme without sacrificing the
xcellent performance advantages of receding horizon control.
ith this flexible new approach, computation can be used to its
gstto approach optimality while stability is guaranteed by
fgg presence of the CLF. This approach, in essence, combines
and unites the best properties of CLF’s and receding horizon
89ntro|.

Index Terms—Control Lyapunov functions, nonlinear optimal
control, predictive control, receding horizon control.

is well known that the nonlinear optimal control problem can
reduced to the Hamilton—-Jacobi—Bellman (HJB) partial diffe
ential equation [2], but due to difficulties in its solution, this i
not a practical approach. Instead, the search for nonlinear ¢
trol schemes has generally been approached on less ambit
grounds than requiring the exact solution to the HJB patrtial d
ferential equation.

In fact, even the problem of stabilizing a nonlinear system r . . . . .
mains a challenging task. Lyapunov theory, the most success u'll'he paper is organized as follows. Section Il briefly reviews

and widely used tool for stability analysis, is a century old. péne optimal control problem, CLF-based pointwise min-norm

spite this, systematic methods for obtaining Lyapunovfunctioﬁgnt:jc.)"er‘; apd our t\k/‘aréatlmn 0; S?ntaﬁ;s,thformula, a?dtr:he
for general nonlinear systems still do not exist. Nevertheless, fif&©¢!Ng horzon methodology. Section €n connects these
ideas put forth by Lyapunov nearly a century ago continue proaches by providing a unified framework in which to view

. From this common vantage point, a new RHIF

be used and exploited extensively in the modern theory of cotﬁ'—em

trol for nonlinear systems. One notably successful use of tﬁg\heme Is introduced in Section IV. We first present this new

Lyapunov methodology is its generalization to control system}?heme in an idealized continuous-time receding horizon

known as a control Lyapunov function (CLF) [30], [31], [6], ramel\_/vork. Ifrs],ues oft_lmpldementamzjr_lf_ ur:_dertdlzcrete tmled
[10], [15], [8], [7]. The knowledge of such a function is suffi->3"PING areé then mentioned as a moditication to the presente
scheme. Various theoretical and implementation properties
possessed by the scheme are discussed, including a special
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[I. BACKGROUND This problem is often reduced to the Euler-Lagrange ordinary
Let R denote the reals arfél, the nonnegative real numbers.d'fferentlal equations [2]

Gradients will be written in shorthand &3, i.e., &= Hy(x, u*, \) 2(0) = ¢

LoV _Jov v A=—Hy(z,w* \)  NT) =95 («(D))

T 0z |0z Omn ] u* = argmin H(x, u, \)

We consider nonlinear systems of the form whereH (z, u, \) = g(z) + vT'u + AT(f(z) + g(z)u) is re-

) ferred to as thélamiltonian These equations represent a neces-

i=flx)+glx)u  f(0)=0 (1)  sary condition for optimality and are much easier to solve than

the HIB equation. But, this problem is not equivalent to the in-
finite horizon problem given in (2) unless the terminal weight
¢(-) is the value functio*(-) (which is found by solving the
HJB equation). Furthermore, this problem is solved feirgle
initial conditionand produces aopen-loopcontrol law, in con-
trast to theglobal, closed-loopsolution that the HIB approach
The standard nonlinear optimal control problem is formulatgstovides. For a detailed discussion of both HIB and Euler-La-

with z € R™ denoting the statey € R the control, and
f(z): R — R™ andg(z): R® — R™™ continuously dif-
ferentiable in all arguments.

A. Nonlinear Optimal Control

as follows: grange equations, the reader is referred to [2].
Below, we present two suboptimal approaches to the optimal
(Optimal Control Problem) control problem; the first of which corresponds well to the HIB
inf / > (@) + uTu) dr gpproach, .wr_\ile .the second exploits Euler—Lagrange type tra-
u() 0 jectory optimizations.

st &= f(z)+ glz)u 2
f(@) +9(x) @ B. Control Lyapunov Functions (CLF’s)
for q(x) continuously differentiable and positive semidefinite A control Lyapunov functiofCLF) is a continuously differ-

with the desired solution beingssate-feedbackontrol law. We  entiable, proper, positive definite functidf: R* — R + such
will also assume that the systef{x), ¢(x)] is zero-state de- that
tectable (i.e., for allx € R™, g(¢(t, x)) =0 = ¢(t, z) — 0
ast — oo whereg(t, ) is the state transition function of the inf[V,.(2) f(z) + Va(z)g(x)u] <O (6)
systemi = f(z) from the initial conditionz(0) = z.) . o
1) Hamilton—-Jacobi-Bellman  EquationsA  standard for all x # 0.[1], [30], [31]. Techmqges for _the derlvatllon of
dynamic programming argument reduces the above optinfafcLF is an important research topic and is cc_)vere_d in many
control problem to the HJB partial differential equation [2] ~ references (see, e.g., [29] and references therein). Given a CLF,
a stabilizing controller may be designed by posing the following
Vif—32(WVigg" Vi) +q(z) =0 (3) optimization [6], [7]:
whereV'* is commonly referred to as thalue functiorand can (P ointwise Min'Nomll) .
be thought of as the minimum cost to go, i.e., nf -t (7)

st Va(f(z)+g(z)u) < —o(x) (8)

V*(2(t)) = inf / Tl )+l () dr. (@)

ul’) whereo () is some continuous, positive definite function satis-

If a positive semidefinite, continuously differentiable solutio%Ing Vi f(z) < —o(x) wheneverzg(z) = 0. The pointwise

to the HIB equation (3) exists, then the optimal state—feedbab'l?" for eache) solution to the probl_em _produ_ces a state-feed-
C ack control law, referred to as a pointwise min-norm controller
control law is given by

[7]. The name derives from the fact that this formula point-

w =1 TyT (5) wise minimizes the control energy used while requiring that

2 7 V' be a Lyapunov function for the closed-loop system and de-

Unfortunately, the HJB equation (3) is extremely difficult t¢"réase at a rate of at every point. Under proper technical

solve and, in general, precludes any hope of an exact solutfsiditions, pointwise min-norm controllers angerse optimal

to the optimal control problem. which means that they correspond to the solution of the HIB

2) Euler—Lagrange EquationsA related optimal control equation for a meaningful cost [7]. A particularly special case
problem is the finite horizon problem with a terminal weigh®f Pointwise min-norm controllers results whefw) is chosen

and specified initial condition: as:
o : 0u(2) = \/ (Va2 + alx) (VaggTVT). (9)
inf / (g{z) +u" ) dr + o(x(T))
ul) o The result is a slight variation of Sontag’s CLF formula, shown
st &= f(z)+g(z)u in (10)at the bottom of the next page [31].In addition to pos-

z(0) = xo. sessing the continuity properties enjoyed by Sontag’s formula
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(i.e., for ¢(x) positive definite it is continuous everywhere excontrol (2) and pointwise min-norm control (7), (8) as limiting
cept possibly at = 0, [31]), it also leads to an interpretationcases of receding horizon control.

in terms of the optimal control problem. It can be thought of as Our starting point will be to consider the standard open-loop
using the gradient direction of the CLF, but scaled to satisfy tlogtimization that is solved on-line at every time instance in re-
HJB equation. In particular, if the CLF has the same shape lewelding horizon control, but without the terminal weigit)
curves as the value function, this formula recovers the optimal

t+7T
controller [10]. / (q(z) + uTu) dr. (11)
t
C. Receding Horizon Control (RHC)

In receding horizon control (cf. [17], [16], [11], [20], and
[13]), the current control at state and timet is obtained by
determining on-line the optimal open-loop control trajectary
over the intervalt, ¢ + T’ respecting the following objective:

First, we make the trivial observation that as the horiZdends
to infinity, the objective in the optimal control problem (2) is
recovered

/ (q(z) +ur'w) dr. (12)
(Receding Horizon Control) ¢
] T T At the other extreme, consider what happens as the hofizon
inf /t (q(a(n) +u” (Nu(r)) dr + (z(t + 1)) tends to zero. First, note that for affiyan equivalent objective

u(-) > 10 zerc
st &= f(z)+ g(x)u. function is given by

fashion, exploiting the fact that a solution is needed only for the T
current state as the initial condition. The optimizing control tra- dividing bvZ" h ftoct h timizing. N
jectory # is implemented until a new state update is receive INce dividing by.L "has no eftect on the optimizing. Now,

These computations are repeated at each time step, updal 'Nlﬂqu — 0yields

The above problem is solved in an open-loop/Euler-Lagrange 1 /t+T (q(z) + uTu) dr (13)
t

the initial condition with the current state and resolving and im- T
plementing the solution to the above optimization, producing a a(@(8)) + u” (Bult). (14)
state-feedback control law. Sincex(t) is known, there is no need to include the terfa(¢)),

In essence, receding horizon control attempts to compute ?Bﬁving
value function and optimal control actions on-line for those
states encountered along its trajectory. In this way, receding W7 ()u(t)
horizon techniques approach optimal control in a local fashion,
as opposed to the more global-in-nature CLF methodologieswhich is recognized as the objective function used in the
The philosophical underpinnings of CLF and recedingointwise min-norm formulation (7). Hence, this indicates that
horizon techniques lie in the two approaches (HJB ange may heuristically view the pointwise min-norm problem
Euler-Lagrange) to the optimal control problem. CLF's cags a receding horizon optimization with a horizon length of
be interpreted as a global approximation to the value functiofero. These considerations suggest the following interpretation:
especially when used in conjunction with Sontag’s formula (1@ptimal control and pointwise min-norm formulations should
and pointwise min-norm schemes (7), (8). On the other hangpresent extreme cases of a properly conceived receding
receding horizon control solves Euler-Lagrange type trajectdfirizon scheme. This is pictured in Fig. 1. Ideally, we would
optimizations and exploits the receding horizon methodologiype to incorporate the best properties of each approach
to convert open-loop trajectories into a state-feedback contiglo a single scheme parameterized by horizon length. These
law. properties should include:

1) Stability for any horizor{.
[ll. LIMITS OF RECEDING HORIZON CONTROL 2) Pointwise min-norm controllers faf = 0.

While CLF’s and receding horizon control have connections 3) Optimality forZ" = oc.
to the optimal control problem, a deeper look at the actual forAdditionally, there should exist an extension of Sontag’s for-
of the underlying optimization involved in the following threemula that will recover the optimal controller if the level curves
schemes (optimal control, pointwise min-norm, and recedimmgthe CLF correspond to those of the value function, regardless
horizon) leads to even more striking connections. In this seafthe horizon lengtlf’. With these goals in mind, we present a
tion, we develop a heuristic framework for viewing both optimatew class of CLF-based receding horizon control schemes.

Vel +V/ Ve ) +a(@)(Vagg™ VE)| 1
- z VT V,g#0
vy = V,ggTVT g Ve, Vag#

0, Veg=20

(10)



PRIMBS et al. GENERALIZATION OF POINTWISE MIN-NORM CONTROLLERS 901

Pointwise Receding Horizon Optimal T (tx) ....... . A
min-norm Control Control N
0 - T = 00 N
1‘,(-)'
' Level curve
. Viz(t+T)) =V(z,(t+T))
0 i - it IR
Horizon T XTG4 T) ..
Fig. 1. Unified framework. 1 2 =
\ I
\ ,’
IV. RECEDING HORIZON GENERALIZATION OF POINTWISE S - -
MIN-NORM CONTROLLERS I

In this section, a new class of control schemes is introducglg_ 5
that retain the global stability properties of CLF methods while

tallklngd "?‘d"a”t"’:jge Or: the on—hm;: olp}lmlzatlon teihnlques etrf%frge values of the final predicted state, this constraint explicitly
ployed in receding horizon control. In €SSeNCe, It FepreSenty dy o the final state. It is obtained by first simulating the con-

natural extension of the CLF-based pointwise min-norm Cofiey o fom the solution to the pointwise min-norm problem for

cept to a receding horizon methodology, including an aPPrime T, which results in a predicted state trajectory that ends at

priate interpretation as a conceptual blend of HIB and EuIer—La—(tJrT) then evaluating the CLF at this poift [z, (t+T))]

grange philosophies. This interaction of approaches is foundftﬂe constraint then requires that all other potential sequences
ach a final state that obtains a smaller valu& ofA nice in-

inherit not only the theoretical advantages of each methodologé(
but l:nte_zxpectedlyt_r esults in practical and advantageous 'mpggr'pretation is in terms of level curves. The constraint (17) re-
mentation properties. quires that the final state of all potential sequences lie inside the

Let V.be a .CLF anq le, andxf, denote the cpntro! and level curve ofV that passes through, (¢ + T') (see Fig. 2). As
state trajectories obtained by solving the pointwise MIN-NOTMy| be seen later. when the pointwise min-norm problem cor-
problem with parametes(z) [cf. (7), (8)]. Consider the fol- ’

lowi dina hori biective: responding to Sontag’s formula is used [ie.= o, (9)], this
owing receding horizon objeclive. constraint preserves the property that when the level curves of

Performance constraint (17).

(RHC+CLF) the CLF () correspond to those of the value functidfi‘j, the
t+T optimal controller is recovered.
11(1f) / (q(z) + uF'w) dr This combination of CLF and receding haorizon control yields
v .

a number of theoretically appealing properties, as listed below.

a?}t' &= f@) + gl (15) 1) Stability is guaranteed for any horizdh. The constraint
9 [f + gu(t)] < —eo(z(t)) (16) (16) requires thal” is a Lyapunov function for the re-
V@t +T)) <V(w,(t+T)) 17) g;aa(jk;ﬂﬁ]yhor|zon controlled system and, hence, guarantees
with 0 < e < 1. This optimization is solved on-line and imple-  2) Inthe limit as the horizon goes to zdf5 — 0), the point-
mented in a receding horizon fashion. wise min-norm optimization problem is recoverttdvas

The preceding scheme is best interpreted in the following  already shown that &8 — 0, the limiting performance
manner. It is a standard receding horizon formulation with two  objective is given by."+. We only need to show that the
CLF constraints. The first constraint (16) is a direct stability constraints reduce to the pointwise min-norm constraint
constraint in the spirit of that which appears in the pointwise  (8). SubtractingV’(z(¢)) from both sides of the perfor-
min-norm formulation (8). The parametelis merely used to mance constraint (17) gives
relax this constraint as compared to its counterpart in the point-
wise min-norm formulation. Note that this constraint need only V(z(t+ 1)) = V((t) < Vieo(t + 1)) = V(a())-

apply to the implemented control actions, which, if the opti- Dividing by 7" and taking the limit a§” — 0 yields
mizations are solved “continuously,” is only th@tial control

action. The above RHECLF optimization corresponds to this v [f(x) + g(z)u(t)]

ideal case. On the other hand, since most practical implemen- dx

tations of receding horizon control solve the optimization at < 2_‘/ [f(x) + g(x)uq(z(t))]
X

discrete sampling instances, the constraint (16) should apply at

least over the entire sampling interval in which each optimizing < —o(x(t).

control solution to the RHECLF problem is implemented. In In fact, it is simple to see that the constraints

essence, this constraint requifésto be a Lyapunov function

for the closed-loop system. 4 [f(z) + g(z)u®)] < 4 [f(2) + g(x)ug(x(t))]
In contrast to the first constraint which is a direct stability o Az

constraint, the second constraint (17) is oriented toward perfor- and

mance and replaces the terminal weight used in the standard re- 1%

ceding horizon formulation. While a terminal weight penalizes 5 (@) T 9l@)u(®)] < —o((t))
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produce the same control actions in the pointwiggroblem [see (9)], the optimality property of Sontag’s formula
min-norm formulation. is preserved.

Since we require that < 1 in the stability constraint  Theorem IV.1:Leto(z) = o, () [cf. (9)]. If V has the same
(16), the above constraint supersedes the stability cafiape level curves as those of the value function then the
straint in the limit. Hence, the receding horizon optimizasptimal controller is recovered for any horizon length.
tion problem is reduced to Proof: Assume thal” has the same shape level curves as
. T the value functiori’*. In this case, Sontag’s formula results in

u}bf u (Hult) an optimal state trajectory,, and control actions,, [10]. Let
av us assume that,, andu,, do not solve the RHECLF op-
st oo @) +g(@u®)] < —o(w). timization problem (15)—(17). Hence, feasible trajectoriés
3) If V is a Lyapunov function for the closed-loop systendu(-) exist such that
under the optimal controk.*, and constraint (16) is al- t+T t+T
ways satisfied, then an infinite horizon length will always/ (g(x)+u"uw)dr < / (9(zq,)+uy uo,) dr. (18)
recover the optimal controlleWith an infinite horizon t t
(T = o), the objective becomes an infinite horizon obFurthermore, since(-) andu(-) satisfy (17), we have that

jective V(a(t + 1)) < V(,, (t+ 1))
oo or using the fact that” has the same shape level curved’ds
+ ulw) dr.
| )+ Vet + 1) <V (ea (1), 19)

With no constraints, the solution to this is the optimatombining (18) and (19) and the fact that Sontag’s formula is
controller«*. We only need to show that under the aseptimal [10] gives

sumptions, the optimal controller is feasible. By assump- AT

tion, it is feasible for the first constraint (16). For an in- (q(z) + v u) dr + V¥(z(t+T))

finite horizon, the performance constraint (17) becomes Jt

that the state must approach zerotaapproaches in- s T "

finity. Clearly, this is satisfied under the optimal con- < . ((@0.) + g, o, ) d7 + V7 (20, (t+T)
troller. Hence, the optimal unconstrained controller is a = V*(x(t)

feasible solution and, therefore, optimal. o o ] ] o o

The second stability property given above helps to clarify tHIéth:h is a contradiction, sinc&* is the minimum infinite
role of the direct stability constraint (16) and the relaxation p&0rizon cost. _ _ _ u
rametere. Note that the stability constraint (16) is identical to Before addressing some of the implementation properties of
the constraint (8) in the pointwise min-norm problem, althouq‘ﬁ'S new RHG-CLF scheme, let us summarize the key ideas be-
with an added parameter it applies over the entire range of ind this approach. From apractlcgl viewpoint, |t|nvolyes amix
implemented control actions. The relaxationdiy allowed for ©f the guaranteed stability properties of CLF’s combined with
the following reason. From the justification of the second sti?€ on-line optimization and performance properties of receding
bility property given above, we saw that when the horizon ten@®rizon control. Conceptually, it blends the phllosophle§ behind
to zero, the performance constraint (17) actually reduces to (§)¢ HIB and Euler-Lagrange approaches to the nonlinear op-
which guarantees stability in the pointwise min-norm formuldimal control problem. The CLF represents the best approxi-
tion. Unfortunately, as the performance constraint (17) in tigation to the value function in the HIB approach. The on-line
RHC+CLF scheme, it does not guarantee stability anymor@Ptimization then proceeds in an Euler-Lagrange fashion, op-
Hence, we mustimpose the additional constraint (16) to directijizing over trajectories emanating from the current state, im-
guarantee stability. But, in some sense the information from tREPVing the solution by using as much computation time as is
parametew is already contained in (17), so the stability con2vailable.
straint (16) is more of a “backup” and does not need to be as
restrictive as (8); hence, the relaxation parameter ’

While we have been somewhat informal about our justifi- In addition to the theoretical properties of the previous sec-
cation of the above properties, in the Appendix, a rigorodi®n, the RHG-CLF scheme possesses a number of desirable
treatment is given. The argument above that the optimizatiBRPlementation properties.
problem reduces to the optimal infinite horizon problem or 1) An initial feasible trajectory for the optimization is pro-
the pointwise min-norm formulation as the horizon tends vided by the solution to the pointwise min-norm problem.
to infinity or zero is strengthened to show that the receding  For the performance constraint (17), it is necessary to

Implementation Issues

horizon control action obtained from the RHCLF problem simulate the solution to the pointwise min-norm problem
will converge to the optimal control actiarf or the pointwise over the horizor?” to obtainz, (¢ + T'). Additionally, the
min-norm controlleru,, as the horizon extends to infinity or control and state trajectory from this pointwise min-norm
shrinks to zero. Details are contained in the Appendix. problem provide an initial feasible trajectory from which
Additionally, for the parameter choice(z) = o.(x) to begin the optimization. Note that this pointwise

corresponding to Sontag’s formula in the pointwise min-norm min-norm trajectory is automatically feasible for the
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constraint (16), even when it is applied over a samplingLF and the RHG-CLF control scheme as introduced above.

interval, and hence, guarantees that the optimization\Mghile beyond the scope of this paper, readers interested in

always feasible. the issue of constraints are referred to [18], [21], and [9] for
2) The optimization may be preempted without loss of stadvances in the determination of constrained CLF's, and [25]

bility. Since (16) ensures th&twill be a Lyapunov func- for an extension of the RHECLF scheme in this paper to

tion for the closed-loop system, any control trajectorinput constrained systems.

that satisfies this constraint will be stabilizing. In partic- In the next section, we demonstrate the RHCLF approach

ular, if the optimization cannot be completed, one magn a two-dimensional (2—-D) oscillator example.

implement the current best solution and proceed without

any loss of stability. Hence, there is no requirement of a V. EXAMPLE

global optimum to the generally noncorvex optimization In this section we present an example that illustrates some

3 '(I'th)_rfl?) to guaragtee st_azmty. i ithout | f tof the key properties and limitations of Sontag’s formula (10)
) The horizon may be varied on-line without loss of &nd receding horizon control, as well as an application of the

bility. This is again due to the stability constraint (16) : -~ : :
Since stability is guaranteed by the constraint (16) and ﬁesHC—i_CLF scheme. Consider the 2-D nonlinear oscillator

independent of the objective function, it is clear that the L1 =22 -

horizon may be varied on-line without jeopardizing sta- Tg = —a1 (5 + arCtan(5$1))
bility. In particular, one could imagine a situation where 5x2

the amount of time available for on-line computation is _m + 4wz + 3u

not constant. When more time is available, the horizon, )
can be extended on-line to take advantage of this. On t&h performance index
other hand, if at various times no on-line computation is R J
available, the horizon can be drawn in to zero where the o (@3 +u”) dr.
control is given by the p0|ntW|s§ min-norm SOI.UUO”.' InThis example was created using the so-called converse HJB
essence, one may use the available computation time to : T .
) LY . . . méethod [5] so that the optimal solution is known. For this
its fullest by adjusting the horizon on-line, all without any e
; - problem, the value function is given by
concern of losing stability.

A; mel_"ntioned pr_eviously, in practice,_ recedir_ng horizon con- V* =] (g + arctan(Sa:l)) + 3
trol is typically not implemented in continuous time, but rather _ .
at discrete sampling times. Over each sampling interval, the Wgaich results in the optimal feedback law
ceding horizon control problem is solved and the optimizing W= —31,
control solution is applied until a new state update is received '
at the next sampling time and the process repeats. Furthermérsimple technique for obtaining a CLF for this systemis to ex-
(16) applies over the entire sampling interval so that all coploit the fact that it is feedback linearizable [12]. In the feedback
trol actions that are implemented conform¥obeing a Lya- linearized coordinates, a quadratic function may be chosen as a
punov function. There may even be cases in which it is co@LF. In order to ensure that this CLF will at least produce a lo-
venient to simply impose the constraint (16) over the entially optimal controller, we chose a quadratic CLF that agrees
horizon[t, ¢t + T (e.g., when sampling intervals are not regwith the quadratic portion of the true value functibfThis re-
ularly spaced). Beyond this, when a finite sampling tifadés sulted in the following CLF

being used¢ can even be a function of timér), 7 € [¢, t+T] T o
V= 5 %1 + z5.

satisfying:
1) e(r) < Lforallr € [t, t 4+ T7; As mentioned earlier, Sontag’s formula relies heavily on the
2) e(r) > 0forallr e [t, t + T3] shape of the level curves of the CLF. If those shapes are the same

The amount of relaxation of the stability constraint (16), detef® the level curves from the value function, then Sontag’s for-

mined bye, is a design freedom. We typically employ Smalrnula is optimal. We have chosen the CLF in this case so that ex-

values ofe, since this allows more freedom in the on-line o actly the opposite is true, and the level curves of the CLF deviate

timizations, placing greater emphasis on on-line computatior%r from_the I_eveI curves of the value function away from the
origin. Fig. 3 is a plot of the level curves of the true value func-

Larger values ot will have the opposite effect, restricting the .
g bp g on V* versus those of the CLF. The result is that Sontag’s

on-line optimizations to trajectories that are closer to the poirﬂ | ; | lati ¢ of 250 f th
wise min-norm solution over the sampling time. ormuia performs poorly, accumutating a cost o rom the

We should point out that other approaches to guaranteeingrhis can be done without knowledge of the true value function by performing

stability under sampling that do not require extending the Cm]]a_(:obian linearization and designing an LQR optimal controller for the lin-
earized system.

straint in (16) may exist. In particular, results in [4] and refer- 2This function is actually not a CLF in the strict sense in that there exist points
ences therein may be relevant to such an approach. wherel” may only be made equal to zero and not strictly less than zero. This is

FinaIIy we mention that receding horizon schemes apametimes referred to asweakCLF. Nevertheless, we will use this CLF since it
’ e only quadratic function that locally agrees with our value function (which

. . . Ist]
often uged .to address ConStra'ned_ systems. The 'ndus'or\t&&fis not even a strict CLF for this system). Furthermore, asymptotic stability
constraints in our framework complicates both the search fou@der Sontag’s formula is guaranteed by LaSalle’s invariance principle.
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Fig. 4. Phase portrait of RHECLF controllers.
initial condition 3, —2], in contrast to the optimal controller’s
cost of31.7. o N _ TABLE |
The same initial condition[§, —2]) also produces nonintu- SUMMARY OF CONTROLLER COSTS FROMINITIAL CONDITION [3, —2]
itive behavior from receding horizon control. Consider a re-

ceding horizon scheme with no terminal weight [ise(z) = 0] Controller Cost
applied for various values of the horizdh At 7" = 0.2, the Sontag 258
closed-loop trajectory is unstable frgfy —2]. As the horizon RHC+CLF (T =0.2) | 353
is increased t& = 0.3, the results change dramatically and RHC+CLF (7' =0.3) | 37.9

RHC+CLF (T =0.5) | 33.6
RHC+CLF (T =1.0) | 36.8
Optimal 31.7

near optimal performance is achieved by the receding horizon
controller. At this point, one might be tempted to assume that
a sufficient horizon for stability has been reached and longer
horizons would only improve the performance. In actuality the
opposite happens,_ and as the horizon IS mcre_a_\sed furthe_r, é[\gewell as the RHECLF scheme from the initial condition
performance deteriorates and returns to instability by a horiz

of T = 0.5. This instability remains present even past a horichﬁr’|

of T = 1.0.

. .._guarantee stability [13], [16], [19], [20], [22]-[24] as well as
The RHGHCLF scheme, by combining both the Stab'l't)gtherCLF—based schemes, represent viable alternatives. Never-

. . S formula and thg perform'ance ?dvantagr?éless, the RHECLF methodology uses both the information
of receding horizon techniques, avoids the difficulties of tr\ﬂ

. . - the CLF and receding horizon computation, and intuitively
pure CLF and re(_:edmg_horlgon controlle_r_ Bundlng UPOthis should provide it with an advantage over each technique in-
Sontag’s formula [i.e., using; in (9)], a horizon was intro- dividually.
duced in accordance with the RHCLF scheme (as described
in Section 1V). In our implementation, the optimizations were
resolved at discrete time instances using a sampling time of
0.1. Furthermore, the stability constraint (16) was applied over The ideas behind CLF-based pointwise min-norm controllers
this entire0.1 intersample time using = 0.01. As shown and receding horizon control were combined to create a new
in Fig. 4, the erratic behavior demonstrated by the recediotass of control schemes. These new results were facilitated by
horizon controllers, and the poor performance of Sontagle development of a framework within which both optimal
formula are both absent for all of the tested horizons. Tableahd pointwise min-norm controllers served as limiting cases
summarizes the costs accumulated for each of the horizarigeceding horizon control. This led us to propose a natural
T = 0.2, 0.3, 0.5, and1.0. extension of the pointwise min-norm formulation to allow for

The fact that the cost does not decrease monotonically asraline computation in a receding horizon implementation. In
function of horizon length is attributable to the erratic behavigrarticular, this even provided a receding horizon “extension”
that receding horizon control by itself displays. Note that whilef Sontag’s formula, and resulted in numerous theoretical and
the RHC+CLF scheme produces excellent costs, they are rintplementation advantages over present CLF and receding
guaranteed to be an improvement over a pure receding horizamizon methodologies. These were demonstrated on a simple
or CLF-based scheme. In fact, the simple receding horizon c@b nonlinear oscillator example. In the end, we hope that
troller with no terminal weight and horizofi = 0.3 performs these results will help to spawn new directions of research

—2], even though for other horizons it is unstable. Addi-
ionally, other formulations of receding horizon control which

VI. SUMMARY



PRIMBS et al. GENERALIZATION OF POINTWISE MIN-NORM CONTROLLERS 905

that reveal and exploit the synergistic relationships that exshte trajectoryir(-) from the RHCG-CLF problem beginning
between many of the current approaches to nonlinear controat state:(0) and assume Al), then for small enough

APPENDIX

&7 (t) — =(0)]

In this Appendix, we show that the control actions from t
the RHGH-CLF scheme converge to those of the pointwise = / (f(&r(s) + g(@r(s))ur(s))ds
min-norm controller and the optimal infinite horizon controller ?
as the horizon is brought to zero and infinity, respectively. ' - - .
But first, we begin by establishing some required notation and = / (F@Er )+ lg(@z(s))ir(s)]) ds
assumptions. to

Let| - | and| - |« denote the standard Euclidean and infinity < /0 |F(@r(s))|ds
norms onR™. We will assume that both the CLF and the ¢
value functiort’* areC! and proper. As before;, (-) andu, (+) + / [lg(27(s)) — g(z(0)) + g(x(0))]ir(s)| ds
will denote the state and control corresponding to the pointwise to
min-norm problem, and*(-) andw*(-) will represent the state < (1f(@7(s)) — F(z(0))| + | £(z(0))]) ds
and control of the optimal infinite horizon controller. For any 0
optimization with a nonzero horizon, the positive semi-definite /t

0

cost parametey(-) will be at leastC?, the initial condition will + < |lgi(2x(s)) — gs (x(o))]@iT(8)|> ds

be denotedr(0), and the optimization will be taken over all =1

piecewiseC® functions with the assumption that the infimum is *

achieved and is unique. The notat@f\ will be used to denote /

the optimal cost of the RHECLF problem with horizoff". The '

corresponding optimizing state and control trajectories will be < / (|f(@r(s)) — f(2(0)] + | f(z(0)]) ds
0

denoted byir(-) andir(-). As before, the dynamics are

|gi (x(0))d;r(s) |> ds

+ m
. +/ |9i (@7 (s)) — gi(@(O)||tir(s)] | ds
&= fz) + g +Zg7 0 <i=1
+ m
with = € R™ andu = [ur, us, -, un]” € R™. We will +/0 < |9i($(0))||@iT(S)|> ds
assume thaf: R™ — R" is globally Lipschitz with Lipschitz . =1
constantky and eacty;: R™ — R” is globally Lipschitz with < (|f (&1 (s)) (z(0))] + | f(z(0)])
common Lipschitz constari,. —Jo
For the pointwise min-norm problem (7) we will assume the t [ )
parameterr(z) is continuous, locally Lipschitz, positive defi- "‘/0 |9:(22(s)) — gi(=(0))[(|ax(0)| + K's) | ds
nite, and satisfies =1
+ m
av av (2O ([ (0)| + Ks) | d
20 Vg0 = <ot + <= )l (0)] + s>> .

Under these conditions, the pointwise min-norm controller < /t (K f|7(s) — 2(0)| + | f(z(0))]) ds
us(x) is also continuous and locally Lipschitz everywhere ~Jo

except possibly at the origin [6]. Hence, for small enougit t [m X
satisfies + [ 3 Kofirts) =a@l(ar @)+ 5) ) a
=1
[us(2(0)) — uq(z(t))| < Kt L X
X eI in)] + Ks) ) ds
for somekK. 0 \=1

To prove connections between the pointwise min-norm t R R
problem and the RHECLF problem, we will require a similar = /0 ((Kg +mE,(Jar(0)] + Ks))lEr(s) - 2(0)]) ds
assumption on the control trajectories from the RHTLF t m
problems, stated as follows. +/ <|f(a:(()))| + (|ar(0)] + Ks) Z |g7;(a:(0))|> ds
Al) Given a fixed initial conditionz(0), for all horizons 0 i=1
T sufficiently smalliir(¢) is C° and satisfies the fol-
lowing Lipschitz condition:

lir(0) — arp(t) < Kt,  Vte[o,T] (20) + <|f( N| + |z (0 |Z g (= )

< / (Ky + mE [z (0)] + Ks))|2x(s) — 2(0)]) ds
0

for somekK.

The assumption Al) also provides some regularity on the KZ |gi((0))] ﬁ
variation of the state trajectoriés (-). To see this, consider the 2
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where we have used assumption Al) and thandg are Lip- By the definition of a derivative and the chain rule, taking the

schitz. If we let limit as 7" — 0 gives (22). Henceiy is feasible for the zero-
m horizon (pointwise min-norm) problem.

At) = [ |F(z(0)] + |ag (0)| |lg:(z(0))] | ¢ Now, assume thaty # u,(z(0)). Sincety is feasible, we

< ; must have that iy > vl (x(0))u, (z(0)) (otherwise, this con-

m 2 tradicts that:,, (x(0)) is the unique solution to the zero horizon
+ <K Z |gi(a:(0))|> ) [pointwise min-norm] problem [6]). This means that for some
i=1 ¢ > 0, we can find a horizoff” small enough so that

and q((0)) + 1z (2(0))u, (2(0)) + ¢ < (x(0)) + tiz: (0)itz (0).
p(s) = (Ky +mKy(lar(0)] + Ks)) But, by the Lipschitz condition (20) ait-(-) and the bound (21)
on the rate of variation of the state trajectdry(-) a similar in-
equality must hold over a small enough horiZzbh [Note that

t o
. . (21) actually depends aiy-(0) throughA(t) andu(t). Further-
|2z (t) = 2(0)] < /0 ) (s) = 2(O)] ds + AH)- more, a7 (0) is different for each horizofi”. Nevertheless, we
know thatiz(0) converges tdiy and, hence, can still guarantee
a bound on the rate of variation 8% which is independent of
the horizoril".] Hence, there exists# sufficiently small so that

then we have that

An application of the Gronwall-Bellman Lemma [14] gives

-t -t

ix(t) = a1 < A0+ [ Ao | [ utr)ar| as.
0 : 1) 1)+ (o () (o (1) < gl (1) + 0 (B (1

This provides an explicit bound for the amount by whighis ¢, 4 ¢ € [0, 77]. Integration from zero tdl” completes

alloyvgd tovary in time. Fir_1a||y, we will implicitly assume that 1o contradiction sincéi- (t) was assumed optimal for this
all limits, when stated, exist. horizon. Hencedo = 1, m
. = Uy

A further justification for some of the above assumptions Before exploring the solution to the RHELF problem as
can be made as follows. Optimal control problems are typicalme horizon is increased t&, we remind the reader of the fol-
solved by representing the control trajectory over a finite dimen)'wing definition.
sional spline space. This involves the choice &hatsequence  pafinition 1: A function Iv: R, — R, is said to belong to
[i.e., a nondecreasing sequeri¢g] with respect to which the classk.. if:
splines are defined. Most splines will allow discontinuities only 1) it is continuous:
on the knot sequence and can be chosen to be smooth in beé) W(0) = 0: ’
tween. The optimization is carried out by using the coefficient of 3) itis stri_ctl); increasing;
each spline basis function as a decision variable. If these coeffi- '

cients are restricted to lie in some compact set, then Assumption4) W{(s) — oo whens — oo,

A1) will necessarily be satisfied. These considerations help ¢ Will require the nonlinear system to satisfy an additional
make the continuity and Lipschitz assumptions a bit more n&2ndition. Using notation from [13], we refer to the following
ural. aspropertyC.

The first theorem shows that the control actions obtained fromP€finition 2: The systend: = f(z) +g(x)u is said to satisfy

the RHG-CLF problem converge to the pointwise min-nornProPertyC if there exists a timé™, and aks function. such
solution as the horizon is brought to zero. that for anyz, € R™, there exist continuous state and control

Theorem A.1:Denote the initial condition for the rajectoriesa®(?), u“(¢)) suchthar<(0) = o andz*(1*) = 0
RHC+CLF optimization problems byz(0), and assume Wt
thatlimy_¢ %7 (0) = 4. Under the assumptions stated above, T
G0 = u,(2(0)) whereu,(x(0)) solves the corresponding / |(z°(2), w ()] < We(|ol)-
pointwise min-norm problem. 0

Proof: First we show thatii, is feasible for the zero  We will say that the system = f(x) + g(x)u locally has

horizon problem [i.e., the pointwise min-norm problem witlpropertyC if property C' holds for some neighborhood of the
parametew () as in (8)]. For this purpose, it is sufficient toorigin. Note that forg(-) locally Lipschitz, local satisfaction of
show that propertyC implies that

av . av e
% [f +9U0] < % [f +guo(l’(0))]- (22) /T q(xc(t)) + |uc(t))|2 < Wé(|l’0|) (23)
0

Since it is known that eaclar satisfies (17) . o )
is also satisfied locally for som&,, function .

V(zr(T)) < V(z.(T)) Remark: PropertyC can be thought of as a weak controlla-
) o ) bility condition. Consider a linear system:= Ax + Bu with
subtracting¥’ (z(0)) and dividing byT" gives (A, B) controllable. Then from any initial condition the state
1 1 can be brought to the origin using the minimum energy control.

= V(@ (1)) = V(=(0))] <

T 7 V(o (1)) = V(=(0)]. It can be shown that this will satisfy proper€y[13].
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Theorem A.2:Assume thag(x) is continuous, locally Lip-
schitz and thay(z) > «(|x|) where« is K,. Additionally,
assume that the optimal infinite horizon controllgr satisfies
the CLF stability constraint (16). Furthermore, assume that the
nonlinear systemi: = f(x) + g(z)u locally satisfies property
C. Then over any compact sét

Vr(z)=3°V*(z) uniformly.
Furthermore, if there exists an intenjal 3] on whichir(7)
is continuous for eac” andiir(7) — @o(7) uniformly, then
ftoo(T) = w*(7) for r € [0, A].

Proof: To establish notation, recall th&t* is the value
function corresponding to the optimal cost of the unconstrained
infinite horizon optimal control problem with state and control
trajectoriess™ andw™. LetV): denote the cost of applying the in-
finite horizon optimal control action*, but only over a horizon
of length7". Finally, recall thatVz is the optimal cost of the
RHC+CLF problem with horizoril” and state and control tra-
jectorieszr andir.

Choose: > 0 and consider the s&¢ = {z: W/(|z|) < €}
[with W/(-) as in (23)], which contains a neighborhood of the
origin. Furthermore, lef > 0 be the infimum ofg(z) outside
of V. Now, letS be any compact set and denote the maximum
of V* overS by wv. Then, forl' > T* = v/§, at € [0, T'] exists
such that the state"(¢) € V. Thatis, from any initial condition
in S, afterl™ seconds itis guaranteed that the optimal trajectory
z*(-) has intersected’. This is because if there does not exist a
t € [0, T| with z*(t) € N, theng(z*(¢)) > gforall ¢ € [0, T
and, hence

2)

V*(z)>Vi(x) :/0 (q(x* ) + T (t)u* (t)) dt>Tqg>v

which is a contradiction.

Now, for the RHG-CLF problem with horizo’™ > T*+1,
consider the following feasible control actions. Apply (this
is feasible by assumption) until the state entgisthen use:©
(cf., Definition 2) to drive the state to the origin. 7V < T*
denotes the first time that"(-) entersV, then the cost of this
trajectory is less than or equal 1§ + W!(|z*(TV)]) which
is less than or equal t6;: 4 ¢. Furthermore, this trajectory ends
at the origin, and hence, also provides an upper bound for the
optimal infinite horizon costy*. From this we can assert the
following: for every horizoril’ > T + T, we have

Vi+ex2 V"> Vr
and
VitexVp>Vy
which implies
Ve —Vr| <e

proving the first part of the theorem.
The second portion of the theorem follows in three steps:
1) Z.. exists and is unique and continuous[onj]: By as-
sumption, an interval0, /] exists whereir(r) is con-
tinuous andir(7) — .o(7) uniformly. Hence/i, is

<

907

continuous or0, 4]. Since[0, ] is compacti..(¢) is
bounded. Letnax;cio, g [ico (t)]|co = M.

Now, letz ., be the state trajectory corresponding to the
input .. over the interval0, J]. If we definef(z, ¢) =

Fz)+g(x)ioo(t) ont € [0, 4], thenf(x, t) is Lipschitz
since
|, 8) = f(y, 1)

|
=[f(=) = f (W) +[9(2) — 9()]ioo (D)
< |fx) = fly )|+|[ ( ) = 9(W)]ieo (D)
) )=

e |+Z ll96() — g:(Nition ()]

< [f(e) = Fw)l+ Z M|lgi(=)

<|f(z) = f)+ Y MEgle —y|
=1

< Kjle —y|+mMKg |z —y
= (Ky+mMK;)lx -y

|J} gz

— gVl

where we have used thtandg are Lipschitz with Lip-
schitz constant#(; and K;, and thatii..(-) is bounded

in infinity norm by M. Therefore, by standard existence
and uniqueness theorems for differential equations (see
[14, p. 81]), the state trajectory., exists and is unique
and continuous ofD, 3].

Zr converges td:.. on [0, J3]: Let us show that con-
verges pointwise té., on[0, []. This is basically an ex-
ercise in using Lipschitz constants, and an application of
the Gronwall-Bellman lemma ([14, p. 68]).

|Boo(t) — &7 (t)]

/0 (F(iaols)) — F(r(s))) ds

+ / (0 o())itao(s) — gl (s))iip(s)) ds
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¢ . . which tends to zero asapproaches zero. Hencg; con-

= /0 (KylEool(s) = 2(s)]) ds verges pointwise té.., on [0, 4] asT — oo (in fact, the
convergence is uniform).

/ <Z 19i (Z oo (8))[|[thioo (8) — thir (s )]I) 3) (Zoo, i) Satisfies the principle of optimalitBy defini-

tion, the cost/z-(:(0)) can be written in terms af;- and

U as

/ <Z [9i(Zoo(s)) — gi(Zr(s ))]||a’iT(3)|> ds.

Now, note that each|g;(Z..(s))| is bounded from

A T
Vp(2(0)) = / (g(ir(t)) + B (1) (1)) dt

above on [0, 3] since it is a continuous function where#; andi satisfy (16) and (17). By the principle
over a compact set. Hence, choose fafy such that of optimality, () andir(r) for 7 € [3.T] solves the
maxycpo,g |9:(Tec(t)] < M, for i = 1---m. optimization problem

Furthermore, by the fact thafir converges uni- o
formly to #.,, by choosingT large enough we can mlnény]ze
bound max;¢fo g lir ()| by M + 1 [recall that v

/;T(q(x) +ul'w) dr

maxyeo g [oo(-)|oc = M]. Hence, returning to our
bound subject to
. . = f(@) + g(z)u
Toolt) — xr(t -
[2oc(t) = 12 mzxu
< [ Uslints) = ar() ds V(@(T)) < V(e (D)),
' [The only difference between this problem and the
/ Z |9 (Zoo ()| [hico(s) — iz (s)]] RHC+CLF problem is that the stability constraint (16) is
absent since it applies only to the initial control action at

this problem byr_ (27 (/3)). By an argument identical

. time zero (i.e.fir(0)).] Let us denote the optimal cost of
/ <Z [9:(e(5)) — giliir (s >>1||uiT<s>|> ds ne zero (e iz (0))1 ptirmia) cos
to that given foiV, we can also prove thdf converges

.
g/ (KjlZoo(s) — @x(s)|) ds uniformly to V* on any compact set. Furthermore, a
restatement of the principle of optimality is that
t m
i=1 3 _
e — [ ater )+ F @i (®) de+ Vo_s(ir (). @4)
+/ > UM + 1)K ylioo(s) — 22(s)| | ds 0
0 \i=1 Now, take the limit ag” — oo. On the left-hand side of

(24), from the first part of this theorem, we have that

Vi (2(0)) — V*(x(0)).

t
+/0 (mMglitec(s) = it (s)loc) ds- Now, consider the right-hand side of (24). We can show
that the second term on the right-hand side converges to
V*(2.0(3)) as follows:

< / (K +m(M + 1)K, |oo(s) — #7(s)]) ds

Now, lete = max;co, g)|tioo(t) — tr(t)]oc. SiNCEUT
converges uniformly t@.., thene — 0 as7” — 0. So

|0 (t) — 27(t)| [V (2ee(B)) = Vr_p(@r(8))]
! A ) < VH(E0o(B)) = V7 (@7 (8))]
< /0 (Kj+m(M+1)K,)|Eo0(s) — 27(s)]) ds + mM set. IV Gr(B)) — Vi SGEr (B

By an application of the Gronwall-Bellman lemma, we The term

obtain
|Eoo(t) — 21 ()] [V*(Z0o(B) = V* (@1 (5))]

< mMgct tendsto zero sjnc@* is continuous and(3) converges
to #..(3). Additionally, the term

V*(@1r(8)) = Vr-p(@r(8))]

. tends to zero since by choosifiglarge enough, we can
— ¢ [mMgt +/ (mM,s(K; +m(M +1)K,) assert _thal%T(/i) lies in a compact set [this_ is becaus_e
0 #r(f) is a convergent sequence]. As mentioned earlier,
by the same argument as fgf in the first portion of this
theorem, we can assert tHgt_ 3 convergesiniformlyto

+ /t(mMges(Kf +m(M+1)K,)
0

. C(Kf-f—nl(l\l-f—l)l(g)(tfs))ds

_C(Kf+rn(1\l+l)Kg)(tfs)) d$:|
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