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A Receding Horizon Generalization of Pointwise
Min-Norm Controllers

James A. Primbs, Vesna Nevistic´, and John C. Doyle, Member, IEEE

Abstract—Control Lyapunov functions (CLF’s) are used in
conjunction with receding horizon control (RHC) to develop a
new class of receding horizon control schemes. In the process,
strong connections between the seemingly disparate approaches
are revealed, leading to a unified picture that ties together the
notions of pointwise min-norm, receding horizon, and optimal
control. This framework is used to develop a CLF based receding
horizon scheme, of which a special case provides an appropriate
extension of Sontag’s formula. The scheme is first presented as
an idealized continuous-time receding horizon control law. The
issue of implementation under discrete-time sampling is then
discussed as a modification. These schemes are shown to possess
a number of desirable theoretical and implementation properties.
An example is provided, demonstrating their application to
a nonlinear control problem. Finally, stronger connections to
both optimal and pointwise min-norm control are proved in the
Appendix under more restrictive technical conditions.

Index Terms—Control Lyapunov functions, nonlinear optimal
control, predictive control, receding horizon control.

I. INTRODUCTION

T HE OPTIMAL control of nonlinear systems is one of the
most challenging and difficult subjects in control theory. It

is well known that the nonlinear optimal control problem can be
reduced to the Hamilton–Jacobi–Bellman (HJB) partial differ-
ential equation [2], but due to difficulties in its solution, this is
not a practical approach. Instead, the search for nonlinear con-
trol schemes has generally been approached on less ambitious
grounds than requiring the exact solution to the HJB partial dif-
ferential equation.

In fact, even the problem of stabilizing a nonlinear system re-
mains a challenging task. Lyapunov theory, the most successful
and widely used tool for stability analysis, is a century old. De-
spite this, systematic methods for obtaining Lyapunov functions
for general nonlinear systems still do not exist. Nevertheless, the
ideas put forth by Lyapunov nearly a century ago continue to
be used and exploited extensively in the modern theory of con-
trol for nonlinear systems. One notably successful use of the
Lyapunov methodology is its generalization to control systems,
known as a control Lyapunov function (CLF) [30], [31], [6],
[10], [15], [8], [7]. The knowledge of such a function is suffi-
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cient to design stabilizing control schemes. Once again, system-
atic techniques for finding CLF’s for general nonlinear systems
do not exist, but this approach has been applied successfully to
many classes of systems for which CLF’s can be found [15], [8],
[29].

In contrast to the emphasis on guaranteed stability that
is the primary goal of CLF’s, another class of nonlinear
control schemes that go by the names receding horizon,
moving horizon, or model predictive control place importance
on optimal performance [17], [16], [20], [11], [13]. These
techniques apply a receding horizon implementation in an
attempt to approximately solve the optimal control problem
through on-line computation. For systems under which on-line
computation is feasible, receding horizon control (RHC) has
proven quite successful [27], [26]. But both stability concerns
and practical implementation issues remain a major research
focus [20], [23], [3], [24].

Based on their underlying connection with the optimal
control problem, in this paper we show that both CLF-based
methods and receding horizon control can be cast in a single
unifying framework where the advantages of both can be
exploited. The strong stability properties of CLF’s can be
carried into a receding horizon scheme without sacrificing the
excellent performance advantages of receding horizon control.
With this flexible new approach, computation can be used to its
fullest to approach optimality while stability is guaranteed by
the presence of the CLF. This approach, in essence, combines
and unites the best properties of CLF’s and receding horizon
control.

The paper is organized as follows. Section II briefly reviews
the optimal control problem, CLF-based pointwise min-norm
controllers and our variation of Sontag’s formula, and the
receding horizon methodology. Section III then connects these
approaches by providing a unified framework in which to view
them. From this common vantage point, a new RHCCLF
scheme is introduced in Section IV. We first present this new
scheme in an idealized continuous-time receding horizon
framework. Issues of implementation under discrete time
sampling are then mentioned as a modification to the presented
scheme. Various theoretical and implementation properties
possessed by the scheme are discussed, including a special
choice of parameters that corresponds to Sontag’s formula. This
approach is tested on an example in Section V and conclusions
are drawn in Section VI. Finally, in the Appendix, technical
assumptions including global Lipschitzness are used to prove
results demonstrating stronger connections with optimal and
pointwise min-norm controllers.

0018–9286/00$10.00 © 2000 IEEE
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II. BACKGROUND

Let denote the reals and the nonnegative real numbers.
Gradients will be written in shorthand as, i.e.,

We consider nonlinear systems of the form

(1)

with denoting the state, the control, and
and continuously dif-

ferentiable in all arguments.

A. Nonlinear Optimal Control

The standard nonlinear optimal control problem is formulated
as follows:

s.t. (2)

for continuously differentiable and positive semidefinite
with the desired solution being astate-feedbackcontrol law. We
will also assume that the system is zero-state de-
tectable. (i.e., for all ,
as where is the state transition function of the
system from the initial condition .)

1) Hamilton–Jacobi–Bellman Equations:A standard
dynamic programming argument reduces the above optimal
control problem to the HJB partial differential equation [2]

(3)

where is commonly referred to as thevalue functionand can
be thought of as the minimum cost to go, i.e.,

(4)

If a positive semidefinite, continuously differentiable solution
to the HJB equation (3) exists, then the optimal state-feedback
control law is given by

(5)

Unfortunately, the HJB equation (3) is extremely difficult to
solve and, in general, precludes any hope of an exact solution
to the optimal control problem.

2) Euler–Lagrange Equations:A related optimal control
problem is the finite horizon problem with a terminal weight
and specified initial condition:

s.t.

This problem is often reduced to the Euler–Lagrange ordinary
differential equations [2]

where is re-
ferred to as theHamiltonian. These equations represent a neces-
sary condition for optimality and are much easier to solve than
the HJB equation. But, this problem is not equivalent to the in-
finite horizon problem given in (2) unless the terminal weight

is the value function (which is found by solving the
HJB equation). Furthermore, this problem is solved for asingle
initial conditionand produces anopen-loopcontrol law, in con-
trast to theglobal, closed-loopsolution that the HJB approach
provides. For a detailed discussion of both HJB and Euler–La-
grange equations, the reader is referred to [2].

Below, we present two suboptimal approaches to the optimal
control problem; the first of which corresponds well to the HJB
approach, while the second exploits Euler–Lagrange type tra-
jectory optimizations.

B. Control Lyapunov Functions (CLF’s)

A control Lyapunov function(CLF) is a continuously differ-
entiable, proper, positive definite function such
that

(6)

for all [1], [30], [31]. Techniques for the derivation of
a CLF is an important research topic and is covered in many
references (see, e.g., [29] and references therein). Given a CLF,
a stabilizing controller may be designed by posing the following
optimization [6], [7]:

(7)

s.t. (8)

where is some continuous, positive definite function satis-
fying whenever . The pointwise
(i.e., for each ) solution to the problem produces a state-feed-
back control law, referred to as a pointwise min-norm controller
[7]. The name derives from the fact that this formula point-
wise minimizes the control energy used while requiring that

be a Lyapunov function for the closed-loop system and de-
crease at a rate of at every point. Under proper technical
conditions, pointwise min-norm controllers areinverse optimal,
which means that they correspond to the solution of the HJB
equation for a meaningful cost [7]. A particularly special case
of pointwise min-norm controllers results when is chosen
as:

(9)

The result is a slight variation of Sontag’s CLF formula, shown
in (10)at the bottom of the next page [31].In addition to pos-
sessing the continuity properties enjoyed by Sontag’s formula
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(i.e., for positive definite it is continuous everywhere ex-
cept possibly at , [31]), it also leads to an interpretation
in terms of the optimal control problem. It can be thought of as
using the gradient direction of the CLF, but scaled to satisfy the
HJB equation. In particular, if the CLF has the same shape level
curves as the value function, this formula recovers the optimal
controller [10].

C. Receding Horizon Control (RHC)

In receding horizon control (cf. [17], [16], [11], [20], and
[13]), the current control at state and time is obtained by
determining on-line the optimal open-loop control trajectory
over the interval respecting the following objective:

s.t.

The above problem is solved in an open-loop/Euler–Lagrange
fashion, exploiting the fact that a solution is needed only for the
current state as the initial condition. The optimizing control tra-
jectory is implemented until a new state update is received.
These computations are repeated at each time step, updating
the initial condition with the current state and resolving and im-
plementing the solution to the above optimization, producing a
state-feedback control law.

In essence, receding horizon control attempts to compute the
value function and optimal control actions on-line for those
states encountered along its trajectory. In this way, receding
horizon techniques approach optimal control in a local fashion,
as opposed to the more global-in-nature CLF methodologies.

The philosophical underpinnings of CLF and receding
horizon techniques lie in the two approaches (HJB and
Euler–Lagrange) to the optimal control problem. CLF’s can
be interpreted as a global approximation to the value function,
especially when used in conjunction with Sontag’s formula (10)
and pointwise min-norm schemes (7), (8). On the other hand,
receding horizon control solves Euler–Lagrange type trajectory
optimizations and exploits the receding horizon methodology
to convert open-loop trajectories into a state-feedback control
law.

III. L IMITS OF RECEDING HORIZON CONTROL

While CLF’s and receding horizon control have connections
to the optimal control problem, a deeper look at the actual form
of the underlying optimization involved in the following three
schemes (optimal control, pointwise min-norm, and receding
horizon) leads to even more striking connections. In this sec-
tion, we develop a heuristic framework for viewing both optimal

control (2) and pointwise min-norm control (7), (8) as limiting
cases of receding horizon control.

Our starting point will be to consider the standard open-loop
optimization that is solved on-line at every time instance in re-
ceding horizon control, but without the terminal weight

(11)

First, we make the trivial observation that as the horizontends
to infinity, the objective in the optimal control problem (2) is
recovered

(12)

At the other extreme, consider what happens as the horizon
tends to zero. First, note that for anyan equivalent objective
function is given by

(13)

since dividing by has no effect on the optimizing. Now,
letting yields

(14)

Since is known, there is no need to include the term ,
leaving

which is recognized as the objective function used in the
pointwise min-norm formulation (7). Hence, this indicates that
we may heuristically view the pointwise min-norm problem
as a receding horizon optimization with a horizon length of
zero. These considerations suggest the following interpretation:
optimal control and pointwise min-norm formulations should
represent extreme cases of a properly conceived receding
horizon scheme. This is pictured in Fig. 1. Ideally, we would
hope to incorporate the best properties of each approach
into a single scheme parameterized by horizon length. These
properties should include:

1) Stability for any horizon .
2) Pointwise min-norm controllers for .
3) Optimality for .

Additionally, there should exist an extension of Sontag’s for-
mula that will recover the optimal controller if the level curves
of the CLF correspond to those of the value function, regardless
of the horizon length . With these goals in mind, we present a
new class of CLF-based receding horizon control schemes.

(10)
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Fig. 1. Unified framework.

IV. RECEDING HORIZON GENERALIZATION OF POINTWISE

MIN-NORM CONTROLLERS

In this section, a new class of control schemes is introduced
that retain the global stability properties of CLF methods while
taking advantage of the on-line optimization techniques em-
ployed in receding horizon control. In essence, it represents a
natural extension of the CLF-based pointwise min-norm con-
cept to a receding horizon methodology, including an appro-
priate interpretation as a conceptual blend of HJB and Euler–La-
grange philosophies. This interaction of approaches is found to
inherit not only the theoretical advantages of each methodology,
but unexpectedly results in practical and advantageous imple-
mentation properties.

Let be a CLF and let and denote the control and
state trajectories obtained by solving the pointwise min-norm
problem with parameter [cf. (7), (8)]. Consider the fol-
lowing receding horizon objective:

s.t. (15)

(16)

(17)

with . This optimization is solved on-line and imple-
mented in a receding horizon fashion.

The preceding scheme is best interpreted in the following
manner. It is a standard receding horizon formulation with two
CLF constraints. The first constraint (16) is a direct stability
constraint in the spirit of that which appears in the pointwise
min-norm formulation (8). The parameteris merely used to
relax this constraint as compared to its counterpart in the point-
wise min-norm formulation. Note that this constraint need only
apply to the implemented control actions, which, if the opti-
mizations are solved “continuously,” is only theinitial control
action. The above RHCCLF optimization corresponds to this
ideal case. On the other hand, since most practical implemen-
tations of receding horizon control solve the optimization at
discrete sampling instances, the constraint (16) should apply at
least over the entire sampling interval in which each optimizing
control solution to the RHCCLF problem is implemented. In
essence, this constraint requiresto be a Lyapunov function
for the closed-loop system.

In contrast to the first constraint which is a direct stability
constraint, the second constraint (17) is oriented toward perfor-
mance and replaces the terminal weight used in the standard re-
ceding horizon formulation. While a terminal weight penalizes

Fig. 2. Performance constraint (17).

large values of the final predicted state, this constraint explicitly
restricts the final state. It is obtained by first simulating the con-
troller from the solution to the pointwise min-norm problem for
time , which results in a predicted state trajectory that ends at

, then evaluating the CLF at this point [ ].
The constraint then requires that all other potential sequences
reach a final state that obtains a smaller value of. A nice in-
terpretation is in terms of level curves. The constraint (17) re-
quires that the final state of all potential sequences lie inside the
level curve of that passes through (see Fig. 2). As
will be seen later, when the pointwise min-norm problem cor-
responding to Sontag’s formula is used [i.e., (9)], this
constraint preserves the property that when the level curves of
the CLF ( ) correspond to those of the value function (), the
optimal controller is recovered.

This combination of CLF and receding horizon control yields
a number of theoretically appealing properties, as listed below.

1) Stability is guaranteed for any horizon. The constraint
(16) requires that is a Lyapunov function for the re-
ceding horizon controlled system and, hence, guarantees
stability.

2) In the limit as the horizon goes to zero( ), the point-
wise min-norm optimization problem is recovered.It was
already shown that as , the limiting performance
objective is given by . We only need to show that the
constraints reduce to the pointwise min-norm constraint
(8). Subtracting from both sides of the perfor-
mance constraint (17) gives

Dividing by and taking the limit as yields

In fact, it is simple to see that the constraints

and
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produce the same control actions in the pointwise
min-norm formulation.

Since we require that in the stability constraint
(16), the above constraint supersedes the stability con-
straint in the limit. Hence, the receding horizon optimiza-
tion problem is reduced to

s.t.

3) If is a Lyapunov function for the closed-loop system
under the optimal control, , and constraint (16) is al-
ways satisfied, then an infinite horizon length will always
recover the optimal controller.With an infinite horizon
( ), the objective becomes an infinite horizon ob-
jective

With no constraints, the solution to this is the optimal
controller . We only need to show that under the as-
sumptions, the optimal controller is feasible. By assump-
tion, it is feasible for the first constraint (16). For an in-
finite horizon, the performance constraint (17) becomes
that the state must approach zero asapproaches in-
finity. Clearly, this is satisfied under the optimal con-
troller. Hence, the optimal unconstrained controller is a
feasible solution and, therefore, optimal.

The second stability property given above helps to clarify the
role of the direct stability constraint (16) and the relaxation pa-
rameter . Note that the stability constraint (16) is identical to
the constraint (8) in the pointwise min-norm problem, although
with an added parameter, it applies over the entire range of
implemented control actions. The relaxation byis allowed for
the following reason. From the justification of the second sta-
bility property given above, we saw that when the horizon tends
to zero, the performance constraint (17) actually reduces to (8),
which guarantees stability in the pointwise min-norm formula-
tion. Unfortunately, as the performance constraint (17) in the
RHC CLF scheme, it does not guarantee stability anymore.
Hence, we must impose the additional constraint (16) to directly
guarantee stability. But, in some sense the information from the
parameter is already contained in (17), so the stability con-
straint (16) is more of a “backup” and does not need to be as
restrictive as (8); hence, the relaxation parameter.

While we have been somewhat informal about our justifi-
cation of the above properties, in the Appendix, a rigorous
treatment is given. The argument above that the optimization
problem reduces to the optimal infinite horizon problem or
the pointwise min-norm formulation as the horizon tends
to infinity or zero is strengthened to show that the receding
horizon control action obtained from the RHCCLF problem
will converge to the optimal control action or the pointwise
min-norm controller as the horizon extends to infinity or
shrinks to zero. Details are contained in the Appendix.

Additionally, for the parameter choice
corresponding to Sontag’s formula in the pointwise min-norm

problem [see (9)], the optimality property of Sontag’s formula
is preserved.

Theorem IV.1:Let [cf. (9)]. If has the same
shape level curves as those of the value function, then the
optimal controller is recovered for any horizon length.

Proof: Assume that has the same shape level curves as
the value function . In this case, Sontag’s formula results in
an optimal state trajectory and control action [10]. Let
us assume that and do not solve the RHCCLF op-
timization problem (15)–(17). Hence, feasible trajectories
and exist such that

(18)

Furthermore, since and satisfy (17), we have that

or using the fact that has the same shape level curves as

(19)

Combining (18) and (19) and the fact that Sontag’s formula is
optimal [10] gives

which is a contradiction, since is the minimum infinite
horizon cost.

Before addressing some of the implementation properties of
this new RHC CLF scheme, let us summarize the key ideas be-
hind this approach. From a practical viewpoint, it involves a mix
of the guaranteed stability properties of CLF’s combined with
the on-line optimization and performance properties of receding
horizon control. Conceptually, it blends the philosophies behind
the HJB and Euler–Lagrange approaches to the nonlinear op-
timal control problem. The CLF represents the best approxi-
mation to the value function in the HJB approach. The on-line
optimization then proceeds in an Euler–Lagrange fashion, op-
timizing over trajectories emanating from the current state, im-
proving the solution by using as much computation time as is
available.

A. Implementation Issues

In addition to the theoretical properties of the previous sec-
tion, the RHC CLF scheme possesses a number of desirable
implementation properties.

1) An initial feasible trajectory for the optimization is pro-
vided by the solution to the pointwise min-norm problem.
For the performance constraint (17), it is necessary to
simulate the solution to the pointwise min-norm problem
over the horizon to obtain . Additionally, the
control and state trajectory from this pointwise min-norm
problem provide an initial feasible trajectory from which
to begin the optimization. Note that this pointwise
min-norm trajectory is automatically feasible for the
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constraint (16), even when it is applied over a sampling
interval, and hence, guarantees that the optimization is
always feasible.

2) The optimization may be preempted without loss of sta-
bility. Since (16) ensures that will be a Lyapunov func-
tion for the closed-loop system, any control trajectory
that satisfies this constraint will be stabilizing. In partic-
ular, if the optimization cannot be completed, one may
implement the current best solution and proceed without
any loss of stability. Hence, there is no requirement of a
global optimum to the generally nonconvex optimization
(15)–(17) to guarantee stability.

3) The horizon may be varied on-line without loss of sta-
bility. This is again due to the stability constraint (16).
Since stability is guaranteed by the constraint (16) and is
independent of the objective function, it is clear that the
horizon may be varied on-line without jeopardizing sta-
bility. In particular, one could imagine a situation where
the amount of time available for on-line computation is
not constant. When more time is available, the horizon
can be extended on-line to take advantage of this. On the
other hand, if at various times no on-line computation is
available, the horizon can be drawn in to zero where the
control is given by the pointwise min-norm solution. In
essence, one may use the available computation time to
its fullest by adjusting the horizon on-line, all without any
concern of losing stability.

As mentioned previously, in practice, receding horizon con-
trol is typically not implemented in continuous time, but rather
at discrete sampling times. Over each sampling interval, the re-
ceding horizon control problem is solved and the optimizing
control solution is applied until a new state update is received
at the next sampling time and the process repeats. Furthermore,
(16) applies over the entire sampling interval so that all con-
trol actions that are implemented conform tobeing a Lya-
punov function. There may even be cases in which it is con-
venient to simply impose the constraint (16) over the entire
horizon (e.g., when sampling intervals are not reg-
ularly spaced). Beyond this, when a finite sampling timeis
being used, can even be a function of time
satisfying:

1) for all ;
2) for all .

The amount of relaxation of the stability constraint (16), deter-
mined by , is a design freedom. We typically employ small
values of , since this allows more freedom in the on-line op-
timizations, placing greater emphasis on on-line computations.
Larger values of will have the opposite effect, restricting the
on-line optimizations to trajectories that are closer to the point-
wise min-norm solution over the sampling time.

We should point out that other approaches to guaranteeing
stability under sampling that do not require extending the con-
straint in (16) may exist. In particular, results in [4] and refer-
ences therein may be relevant to such an approach.

Finally, we mention that receding horizon schemes are
often used to address constrained systems. The inclusion of
constraints in our framework complicates both the search for a

CLF and the RHC CLF control scheme as introduced above.
While beyond the scope of this paper, readers interested in
the issue of constraints are referred to [18], [21], and [9] for
advances in the determination of constrained CLF’s, and [25]
for an extension of the RHCCLF scheme in this paper to
input constrained systems.

In the next section, we demonstrate the RHCCLF approach
on a two-dimensional (2–D) oscillator example.

V. EXAMPLE

In this section we present an example that illustrates some
of the key properties and limitations of Sontag’s formula (10)
and receding horizon control, as well as an application of the
RHC CLF scheme. Consider the 2–D nonlinear oscillator

with performance index

This example was created using the so-called converse HJB
method [5] so that the optimal solution is known. For this
problem, the value function is given by

which results in the optimal feedback law

A simple technique for obtaining a CLF for this system is to ex-
ploit the fact that it is feedback linearizable [12]. In the feedback
linearized coordinates, a quadratic function may be chosen as a
CLF. In order to ensure that this CLF will at least produce a lo-
cally optimal controller, we chose a quadratic CLF that agrees
with the quadratic portion of the true value function.1 This re-
sulted in the following CLF2

As mentioned earlier, Sontag’s formula relies heavily on the
shape of the level curves of the CLF. If those shapes are the same
as the level curves from the value function, then Sontag’s for-
mula is optimal. We have chosen the CLF in this case so that ex-
actly the opposite is true, and the level curves of the CLF deviate
far from the level curves of the value function away from the
origin. Fig. 3 is a plot of the level curves of the true value func-
tion versus those of the CLF . The result is that Sontag’s
formula performs poorly, accumulating a cost of 250 from the

1This can be done without knowledge of the true value function by performing
Jacobian linearization and designing an LQR optimal controller for the lin-
earized system.

2This function is actually not a CLF in the strict sense in that there exist points
where _V may only be made equal to zero and not strictly less than zero. This is
sometimes referred to as aweakCLF. Nevertheless, we will use this CLF since it
is the only quadratic function that locally agrees with our value function (which
itself is not even a strict CLF for this system). Furthermore, asymptotic stability
under Sontag’s formula is guaranteed by LaSalle’s invariance principle.
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Fig. 3. Contours of the value function (solid) and CLF (dashed).

initial condition , in contrast to the optimal controller’s
cost of .

The same initial condition ( ) also produces nonintu-
itive behavior from receding horizon control. Consider a re-
ceding horizon scheme with no terminal weight [i.e., ]
applied for various values of the horizon. At , the
closed-loop trajectory is unstable from . As the horizon
is increased to , the results change dramatically and
near optimal performance is achieved by the receding horizon
controller. At this point, one might be tempted to assume that
a sufficient horizon for stability has been reached and longer
horizons would only improve the performance. In actuality the
opposite happens, and as the horizon is increased further, the
performance deteriorates and returns to instability by a horizon
of . This instability remains present even past a horizon
of .

The RHC CLF scheme, by combining both the stability
properties of Sontag’s formula and the performance advantages
of receding horizon techniques, avoids the difficulties of the
pure CLF and receding horizon controller. Building upon
Sontag’s formula [i.e., using in (9)], a horizon was intro-
duced in accordance with the RHCCLF scheme (as described
in Section IV). In our implementation, the optimizations were
resolved at discrete time instances using a sampling time of

. Furthermore, the stability constraint (16) was applied over
this entire intersample time using . As shown
in Fig. 4, the erratic behavior demonstrated by the receding
horizon controllers, and the poor performance of Sontag’s
formula are both absent for all of the tested horizons. Table I
summarizes the costs accumulated for each of the horizons

, and .
The fact that the cost does not decrease monotonically as a

function of horizon length is attributable to the erratic behavior
that receding horizon control by itself displays. Note that while
the RHC CLF scheme produces excellent costs, they are not
guaranteed to be an improvement over a pure receding horizon
or CLF-based scheme. In fact, the simple receding horizon con-
troller with no terminal weight and horizon performs

Fig. 4. Phase portrait of RHC+CLF controllers.

TABLE I
SUMMARY OF CONTROLLERCOSTS FROMINITIAL CONDITION [3; �2]

as well as the RHCCLF scheme from the initial condition
, even though for other horizons it is unstable. Addi-

tionally, other formulations of receding horizon control which
guarantee stability [13], [16], [19], [20], [22]–[24] as well as
other CLF-based schemes, represent viable alternatives. Never-
theless, the RHCCLF methodology uses both the information
in the CLF and receding horizon computation, and intuitively
this should provide it with an advantage over each technique in-
dividually.

VI. SUMMARY

The ideas behind CLF-based pointwise min-norm controllers
and receding horizon control were combined to create a new
class of control schemes. These new results were facilitated by
the development of a framework within which both optimal
and pointwise min-norm controllers served as limiting cases
of receding horizon control. This led us to propose a natural
extension of the pointwise min-norm formulation to allow for
on-line computation in a receding horizon implementation. In
particular, this even provided a receding horizon “extension”
of Sontag’s formula, and resulted in numerous theoretical and
implementation advantages over present CLF and receding
horizon methodologies. These were demonstrated on a simple
2-D nonlinear oscillator example. In the end, we hope that
these results will help to spawn new directions of research
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that reveal and exploit the synergistic relationships that exist
between many of the current approaches to nonlinear control.

APPENDIX

In this Appendix, we show that the control actions from
the RHC CLF scheme converge to those of the pointwise
min-norm controller and the optimal infinite horizon controller
as the horizon is brought to zero and infinity, respectively.
But first, we begin by establishing some required notation and
assumptions.

Let and denote the standard Euclidean and infinity
norms on . We will assume that both the CLF and the
value function are and proper. As before, and
will denote the state and control corresponding to the pointwise
min-norm problem, and and will represent the state
and control of the optimal infinite horizon controller. For any
optimization with a nonzero horizon, the positive semi-definite
cost parameter will be at least , the initial condition will
be denoted , and the optimization will be taken over all
piecewise functions with the assumption that the infimum is
achieved and is unique. The notation will be used to denote
the optimal cost of the RHCCLF problem with horizon . The
corresponding optimizing state and control trajectories will be
denoted by and . As before, the dynamics are

with and . We will
assume that is globally Lipschitz with Lipschitz
constant and each is globally Lipschitz with
common Lipschitz constant .

For the pointwise min-norm problem (7) we will assume the
parameter is continuous, locally Lipschitz, positive defi-
nite, and satisfies

Under these conditions, the pointwise min-norm controller
is also continuous and locally Lipschitz everywhere

except possibly at the origin [6]. Hence, for small enough, it
satisfies

for some .
To prove connections between the pointwise min-norm

problem and the RHCCLF problem, we will require a similar
assumption on the control trajectories from the RHCCLF
problems, stated as follows.

A1) Given a fixed initial condition , for all horizons
sufficiently small is and satisfies the fol-

lowing Lipschitz condition:

(20)

for some .
The assumption A1) also provides some regularity on the

variation of the state trajectories . To see this, consider the

state trajectory from the RHC CLF problem beginning
at state and assume A1), then for small enough
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where we have used assumption A1) and thatand are Lip-
schitz. If we let

and

then we have that

An application of the Gronwall–Bellman Lemma [14] gives

(21)
This provides an explicit bound for the amount by whichis
allowed to vary in time. Finally, we will implicitly assume that
all limits, when stated, exist.

A further justification for some of the above assumptions
can be made as follows. Optimal control problems are typically
solved by representing the control trajectory over a finite dimen-
sional spline space. This involves the choice of aknotsequence
[i.e., a nondecreasing sequence] with respect to which the
splines are defined. Most splines will allow discontinuities only
on the knot sequence and can be chosen to be smooth in be-
tween. The optimization is carried out by using the coefficient of
each spline basis function as a decision variable. If these coeffi-
cients are restricted to lie in some compact set, then Assumption
A1) will necessarily be satisfied. These considerations help to
make the continuity and Lipschitz assumptions a bit more nat-
ural.

The first theorem shows that the control actions obtained from
the RHC CLF problem converge to the pointwise min-norm
solution as the horizon is brought to zero.

Theorem A.1:Denote the initial condition for the
RHC CLF optimization problems by , and assume
that . Under the assumptions stated above,

where solves the corresponding
pointwise min-norm problem.

Proof: First we show that is feasible for the zero
horizon problem [i.e., the pointwise min-norm problem with
parameter as in (8)]. For this purpose, it is sufficient to
show that

(22)

Since it is known that each satisfies (17)

subtracting and dividing by gives

By the definition of a derivative and the chain rule, taking the
limit as gives (22). Hence, is feasible for the zero-
horizon (pointwise min-norm) problem.

Now, assume that . Since is feasible, we
must have that (otherwise, this con-
tradicts that is the unique solution to the zero horizon
[pointwise min-norm] problem [6]). This means that for some

, we can find a horizon small enough so that

But, by the Lipschitz condition (20) on and the bound (21)
on the rate of variation of the state trajectory a similar in-
equality must hold over a small enough horizon. [Note that
(21) actually depends on through and . Further-
more, is different for each horizon . Nevertheless, we
know that converges to and, hence, can still guarantee
a bound on the rate of variation of which is independent of
the horizon .] Hence, there exists a sufficiently small so that

for all . Integration from zero to completes
the contradiction since was assumed optimal for this
horizon. Hence, .

Before exploring the solution to the RHCCLF problem as
the horizon is increased to , we remind the reader of the fol-
lowing definition.

Definition 1: A function is said to belong to
class if:

1) it is continuous;
2) ;
3) it is strictly increasing;
4) when .

We will require the nonlinear system to satisfy an additional
condition. Using notation from [13], we refer to the following
asproperty .

Definition 2: The system is said to satisfy
property if there exists a time , and a function such
that for any , there exist continuous state and control
trajectories such that and
with

We will say that the system locally has
property if property holds for some neighborhood of the
origin. Note that for locally Lipschitz, local satisfaction of
property implies that

(23)

is also satisfied locally for some function .
Remark: Property can be thought of as a weak controlla-

bility condition. Consider a linear system: with
controllable. Then from any initial condition the state

can be brought to the origin using the minimum energy control.
It can be shown that this will satisfy property[13].
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Theorem A.2:Assume that is continuous, locally Lip-
schitz and that where is . Additionally,
assume that the optimal infinite horizon controller satisfies
the CLF stability constraint (16). Furthermore, assume that the
nonlinear system locally satisfies property

. Then over any compact set

uniformly

Furthermore, if there exists an interval on which
is continuous for each and uniformly, then

for .
Proof: To establish notation, recall that is the value

function corresponding to the optimal cost of the unconstrained
infinite horizon optimal control problem with state and control
trajectories and . Let denote the cost of applying the in-
finite horizon optimal control action , but only over a horizon
of length . Finally, recall that is the optimal cost of the
RHC CLF problem with horizon and state and control tra-
jectories and .

Choose and consider the set
[with as in (23)], which contains a neighborhood of the
origin. Furthermore, let be the infimum of outside
of . Now, let be any compact set and denote the maximum
of over by . Then, for , a exists
such that the state . That is, from any initial condition
in , after seconds it is guaranteed that the optimal trajectory

has intersected . This is because if there does not exist a
with , then for all

and, hence

which is a contradiction.
Now, for the RHC CLF problem with horizon ,

consider the following feasible control actions. Apply (this
is feasible by assumption) until the state enters, then use
(cf., Definition 2) to drive the state to the origin. If
denotes the first time that enters , then the cost of this
trajectory is less than or equal to which
is less than or equal to . Furthermore, this trajectory ends
at the origin, and hence, also provides an upper bound for the
optimal infinite horizon cost, . From this we can assert the
following: for every horizon , we have

and

which implies

proving the first part of the theorem.
The second portion of the theorem follows in three steps:

1) exists and is unique and continuous on : By as-
sumption, an interval exists where is con-
tinuous and uniformly. Hence, is

continuous on . Since is compact, is
bounded. Let .

Now, let be the state trajectory corresponding to the
input over the interval . If we define

on , then is Lipschitz
since

where we have used thatand are Lipschitz with Lip-
schitz constants and , and that is bounded
in infinity norm by . Therefore, by standard existence
and uniqueness theorems for differential equations (see
[14, p. 81]), the state trajectory exists and is unique
and continuous on .

2) converges to on : Let us show that con-
verges pointwise to on . This is basically an ex-
ercise in using Lipschitz constants, and an application of
the Gronwall–Bellman lemma ([14, p. 68]).



908 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 5, MAY 2000

Now, note that each is bounded from
above on since it is a continuous function
over a compact set. Hence, choose an such that

for .
Furthermore, by the fact that converges uni-
formly to , by choosing large enough we can
bound by [recall that

]. Hence, returning to our
bound

Now, let . Since
converges uniformly to , then as . So

By an application of the Gronwall–Bellman lemma, we
obtain

which tends to zero asapproaches zero. Hence, con-
verges pointwise to on as (in fact, the
convergence is uniform).

3) satisfies the principle of optimality. By defini-
tion, the cost can be written in terms of and

as

where and satisfy (16) and (17). By the principle
of optimality, and for solves the
optimization problem

minimize

subject to

[The only difference between this problem and the
RHC CLF problem is that the stability constraint (16) is
absent since it applies only to the initial control action at
time zero (i.e., ).] Let us denote the optimal cost of
this problem by . By an argument identical
to that given for , we can also prove that converges
uniformly to on any compact set. Furthermore, a
restatement of the principle of optimality is that

(24)

Now, take the limit as . On the left-hand side of
(24), from the first part of this theorem, we have that

Now, consider the right-hand side of (24). We can show
that the second term on the right-hand side converges to

as follows:

The term

tends to zero since is continuous and converges
to . Additionally, the term

tends to zero since by choosinglarge enough, we can
assert that lies in a compact set [this is because

is a convergent sequence]. As mentioned earlier,
by the same argument as for in the first portion of this
theorem, we can assert that convergesuniformlyto
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on any compact set. Therefore, this term also tends to
zero. So, we conclude that

Finally, we consider the limit of the first term on the
right-hand side of (24)

The dominated convergence theorem [28] justifies an ex-
change of the limit and integral. By assumption

and by step2. . Hence, this term converges
to

Therefore, taking the limit as of (24) gives

which shows by the principle of optimality that is
optimal for the infinite horizon problem over the interval

.
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