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Highly optimized tolerance (HOT) was recently introduced as a
conceptual framework to study fundamental aspects of complex-
ity. HOT is motivated primarily by systems from biology and
engineering and emphasizes, (i) highly structured, nongeneric,
self-dissimilar internal configurations, and (ii) robust yet fragile
external behavior. HOT claims these are the most important fea-
tures of complexity and not accidents of evolution or artifices of
engineering design but are inevitably intertwined and mutually
reinforcing. In the spirit of this collection, our paper contrasts HOT
with alternative perspectives on complexity, drawing on real-
world examples and also model systems, particularly those from
self-organized criticality.

A vision shared by most researchers in complex systems is that
certain intrinsic, perhaps even universal, features capture

fundamental aspects of complexity in a manner that transcends
specific domains. It is in identifying these features that sharp
differences arise. In disciplines such as biology, engineering,
sociology, economics, and ecology, individual complex systems
are necessarily the objects of study, but there often appears to be
little common ground between their models, abstractions, and
methods. Highly optimized tolerance (HOT) (1–6) is one recent
attempt, in a long history of efforts, to develop a general
framework for studying complexity. The HOT view is motivated
by examples from biology and engineering. Theoretically, it
builds on mathematics and abstractions from control, commu-
nications, and computing. In this paper, we retain the motivating
examples but avoid theories and mathematics that may be
unfamiliar to a nonengineering audience. Instead, we aim to
make contact with the models, concepts, and abstractions that
have been loosely collected under the rubric of a ‘‘new science
of complexity’’ (NSOC) (7) or ‘‘complex adaptive systems’’ (CAS),
and particularly the concept of self-organized criticality (SOC)
(8, 9). SOC is only one element of NSOC�CAS but is a useful
representative, because it has a well-developed theory and broad
range of claimed applications.

In Table 1, we contrast HOT’s emphasis on design and rare
configurations with the perspective provided by NSOC�CAS�
SOC, which emphasizes structural complexity as ‘‘emerging
between order and disorder,’’ (i) at a bifurcation or phase
transition in an interconnection of components that is (ii)
otherwise largely random. Advocates of NSOC�CAS�SOC are
inspired by critical phenomena, fractals, self-similarity, pattern
formation, and self-organization in statistical physics, and bifur-
cations and deterministic chaos from dynamical systems. Moti-
vating examples vary from equilibrium statistical mechanics of
interacting spins on a lattice to the spontaneous formation of
spatial patterns in systems far from equilibrium. This approach
suggests a unity from apparently wildly different examples,
because details of component behavior and their interconnec-
tion are seen as largely irrelevant to system-wide behavior.

Table 1 shows that SOC and HOT predict not just different but
exactly opposite features of complex systems. HOT suggests that
random interconnections of components say little about the
complexity of real systems, that the details can matter enor-

mously, and that generic (e.g., low codimension) bifurcations and
phase transitions play a peripheral role. In principle, Table 1
could have a separate column for Data, by which we mean the
observable features of real systems. Because HOT and Data turn
out to be identical for these features, we can collapse the table
as shown. This is a strong claim, and the remainder of this paper
is devoted to justifying it in as much detail as space permits.

What Do We Mean By Complexity?
To motivate the theoretical discussion of complex systems, we
briefly discuss concrete and hopefully reasonably familiar ex-
amples and begin to fill in the ‘‘Data’’ part of Table 1. We start
with biological cells and their modern technological counterparts
such as very large-scale integrated central processing unit (CPU)
chips. Each is a complex system, composed of many components,
but is also itself a component in a larger system of organs or
laptop or desktop personal computers or embedded in control
systems of vehicles such as automobiles or commercial jet
aircraft like the Boeing 777. These are again components of the
even larger networks that make up organisms and ecosystems,
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Table 1. Characteristics of SOC, HOT, and data

Property SOC HOT and Data

1 Internal
configuration

Generic,
homogeneous,

self-similar

Structured,
heterogeneous,
self-dissimilar

2 Robustness Generic Robust, yet
fragile

3 Density and yield Low High

4 Max event size Infinitesimal Large

5 Large event shape Fractal Compact

6 Mechanism for
power laws

Critical internal
fluctuations

Robust
performance

7 Exponent � Small Large

8 � vs. dimension d � � (d � 1)�10 � � 1�d

9 DDOFs Small (1) Large (�)

10 Increase model
resolution

No change New structures,
new sensitivities

11 Response to
forcing

Homogeneous Variable

2538–2545 � PNAS � February 19, 2002 � vol. 99 � suppl. 1 www.pnas.org�cgi�doi�10.1073�pnas.012582499



computer networks, and air and ground transportation. Al-
though extremely complex, these systems have available reason-
ably complete descriptions and thus make good starting exam-
ples. Engineering systems are obviously better understood than
biological systems, but the gap is closing. Engineers now build
systems of almost bewildering levels of complexity, and biolo-
gists are beginning to move beyond the components to charac-
terizing the networks they create. Although no one person
understands in complete detail how all these systems work, there
is now a rich variety of accessible introductory material in each
area that gives additional details well beyond what is discussed
here. In each of the following paragraphs, we consider a critical
question about complexity and the answers that these example
systems suggest.

What Distinguishes the Internal Configurations of Systems as Com-
plex? It is not the mere number of component parts. Any macro-
scopic material has a huge number of molecules. It is the extreme
heterogeneity of the parts and their organization into intricate and
highly structured networks, with hierarchies and multiple scales
(Table 1.1). (Some researchers have suggested that ‘‘complicated’’
be used to describe this feature.) Even bacterial cells have thou-
sands of genes, most coding for proteins that form elaborate
regulatory networks. A modern CPU has millions of transistors and
millions of supporting circuit elements; many computers have
billions of transistors, and the Internet will soon have billions of
nodes. The 777 is fully ‘‘fly-by-wire,’’ with 150,000 different sub-
systems, many of them quite complex, including roughly 1,000
CPUs that operate and automate all vehicle functions. Even
automobiles have dozens of CPUs performing a variety of control
functions. If self-similarity describes multiscale systems with similar
structure at different scales, then these systems could be described
as highly self-dissimilar, that is, extremely different at different
scales and levels of abstraction. Just the design and manufacture of
the 777 involved a global software and computing infrastructure
with roughly 10,000 work stations, terabytes of data, and a one
billion dollar price tag.

What Does This Complexity Achieve? In each example, it is possible
to build similar systems with orders of magnitude fewer com-
ponents and much less internal complexity. The simplest bacteria
have hundreds of genes. Much simpler CPUs, computers, net-
works, jets, and cars can be and have been built. What is lost in
these simpler systems is not their basic functionality but their
robustness. By robustness, we mean the maintenance of some
desired system characteristics despite fluctuations in the behav-
ior of its component parts or its environment. Although we can
loosely speak of robustness without reference to particular
systems characteristics, or particular component or environmen-
tal uncertainties, this can often be misleading, as we will see. All
of our motivating examples illustrate this tradeoff between
robustness and internal simplicity. Although it has become a
cliche that greater complexity creates unreliability, the actual
story is more complicated.

What Robustness Would Be Lost in Simpler Systems? Simple bacteria
with several hundred genes, like mycoplasma, require carefully
controlled environments, whereas Escherichia coli, with almost 10
times the number of genes, can survive in highly fluctuating
environments. Large internetworks do not change the basic capa-
bilities of computers but instead improve their responsiveness to
variations in a user’s needs and failures of individual computers. A
jet with many fewer components and no very large-scale integrated
chips or CPUs could be built with the same speed and payload as
a 777, but it would be much less robust to component variations,
failures, or fluctuations such as payload size and distribution or
atmospheric conditions. Whereas older automobiles were simpler,
new vehicles have elaborate control systems for air bags, ride

control, antilock braking, antiskid turning, cruise control, satellite
navigation, emergency notification, cabin temperature regulation,
and automatic tuning of radios. At the same size and efficiency, they
are safer, more robust, and require less maintenance. Thus robust-
ness drives internal complexity and is the most striking feature of
these complex systems.

What Is the Price Paid for These Highly Structured Internal Configu-
rations and the Resulting Robustness? Although there is the ex-
pense of additional components, this is usually more than made
up for by increased efficiency, manufacturability, evolvability of
the system, and the ability to use sloppier and hence cheaper
components. It is far more serious that these systems can be
catastrophically disabled by cascading failures initiated by tiny
perturbations. They are ‘‘robust, yet fragile,’’ that is, robust to
what is common or anticipated but potentially fragile to what is
rare or unanticipated and also to flaws in design, manufacturing,
or maintenance (Table 1.2). Because robustness is achieved by
very specific internal structures, when any of these systems is
disassembled, there is very little latitude in reassembly if a
working system is expected. Although large variations or even
failures in components can be tolerated if they are designed for
through redundancy and feedback regulation, what is rarely
tolerated, because it is rarely a design requirement, is nontrivial
rearrangements of the interconnection of internal parts. The
fraction of all possible amino acid sequences or complementary
metal oxide semiconductor circuits that yield functioning pro-
teins or chips is vanishingly small. Portions of macromolecular
networks as well as whole cells of advanced organisms can
function in vitro, but we do not yet know how to reassemble them
into fully functional cells and organisms. In contrast, when
arbitrary interconnection is a specific design requirement, such
as in routers in an internet protocol network, then this can be
robustly designed for but with some added expense in resources.

How Does ‘‘Robust, Yet Fragile’’ Manifest Itself in the Example
Systems? Biological organisms are highly robust to uncertainty in
their environments and component parts yet can be catastrophically
disabled by tiny perturbations to genes or the presence of micro-
scopic pathogens or trace amounts of toxins that disrupt structural
elements or regulatory control networks. The 777 is robust to
large-scale atmospheric disturbances, variations in cargo loads and
fuels, turbulent boundary layers, and inhomogeneities and aging of
materials, but could be catastrophically disabled by microscopic
alterations in a handful of very large-scale integrated chips or by
software failures. (Such a vulnerability is completely absent from a
hypothetical simpler vehicle.) This scenario fortunately is vanish-
ingly unlikely but illustrates the issue that this complexity can
amplify small perturbations, and the design engineer must ensure
that such perturbations are extremely rare. The 777 is merely a
component in a large, highly efficient, and inexpensive air traffic
network, but also one that can have huge cascading delays. Pro-
cessor chips are similarly robust to large variations in the analog
behavior of their CMOS circuit elements and can perform a literally
‘‘universal’’ array of computations but can fail completely if an
element is removed or the circuit rearranged. Processor, memory,
and other chips can be organized into highly fault-tolerant com-
puters and networks, creating platforms for complex software
systems with their own hierarchies of components. These software
systems can perform a broad range of functions primarily limited
only by the programmer’s imagination but can crash from a single
line of faulty code.

How Does NSOC�CAS Differ from HOT with Respect to the Complexity
of the Example Systems? As a specific, if somewhat whimsical,
example, note that a 777 is sufficiently automated that it can fly
without pilots, so we could quite fairly describe the mechanism
by which it can transport people and material through the air
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across long distances as an adaptive, emergent, self-organizing,
far-from-equilibrium, nonlinear phenomenon. What is both an
attraction and a potential weakness of this perspective is that it
could be applied to a tornado as well. The HOT view is quite
different. Our examples all have high performances and yields
and high densities of interconnection (Table 1.3), as well as
robustness and reliability. We want to sharpen the distinction not
only between the likely short and fatal ride of a tornado with the
much faster but relatively boring 777 experience but, more
importantly between the 777 design and alternatives that might
have worse, or even better, performance, robustness, and
reliability.

Are All These Features of Complexity Necessary? That is, must
systems be broadly robust if they are to successfully function and
persist, must this robustness entail highly structured internal com-
plexity, and is fragility a necessary risk? In this sense, is complexity
in engineering and biological systems qualitatively the same? We
believe that the answer to these questions is largely affirmative, and
the examples briefly examined in this section support this, as do
numerous other studies of this issue (e.g., see ref. 10). The remain-
der of this paper offers a thin slice through the HOT theoretical
framework that is emerging to systematically address these ques-
tions. The concept of HOT was introduced to focus attention on
exactly these issues. Tolerance emphasizes that robustness in com-
plex systems is a constrained and limited quantity that must be
carefully managed and protected. Highly optimized emphasizes that
this is achieved by highly structured, rare, nongeneric configura-
tions that are products either of deliberate design or evolution. The
characteristics of HOT systems are high performance, highly struc-
tured internal complexity, and apparently simple and robust exter-
nal behavior, with the risk of hopefully rare but potentially cata-
strophic cascading failure events initiated by possibly quite small
perturbations.

Power Laws and Complexity
Recently a great deal of attention has been given to the fact that
statistics of events in many complex interconnected systems
share a common attribute: the distributions of sizes are described
by power laws. Several examples are illustrated in Fig. 1, where
we plot the cumulative probability �(l�li) of events greater than
or equal to a given size li. Power laws �(l � li) � {li}�� are
associated with straight lines of slope �� in a log(�) vs. log(l)
plot, and describe all of the data sets reasonably well, with the
exception of data compression (DC), which is exponential.
Whether the other distributions are power laws exactly we will
not attempt to resolve, because this is not important for HOT.
What is clear is that these distributions have heavy tails and are
far from exponential or Gaussian.

In this regard, the 777 has boring but fortunate statistics, as
there have been no crashes or fatalities so far. More generally,
the deaths and dollars lost in all disasters from either techno-
logical or natural causes is a power law with � � 1. Forest fires
and power outages have among the most striking and well-kept
statistics, but similar, although less heavy tailed, plots can be
made for species extinction, social conflict, automotive traffic
jams, air traffic delays, and financial market volatility. Other
examples that are not event sizes per se involve Web and Internet
traffic and various bibliometric statistics.

Although power law statistics is one of many characteristics we
might consider, our focus on this property provides a meaningful
quantitative point of departure for contrasting HOT with SOC. Of
course, SOC and HOT are two of many possible mechanisms for
power laws. Statistics alone can be responsible (11). What differ-
entiates SOC and HOT from statistical mechanisms are their
broader claims suggesting links between power laws and internal
structure, as summarized in Table 1. If SOC were the underlying
mechanism leading to complexity in a given system, power laws

would be one signature of an internal self-sustaining critical state.
The details associated with the initiation of events would be a
statistically inconsequential factor in determining their size. Large
events would be the result of chance random internal fluctuations
characteristic of the self-similar onset of systemwide connectivity at
the critical state. In contrast, for HOT power law, statistics are just
one symptom of ‘‘robust, yet fragile,’’ which we suggest is central to
complexity. Heavy tails reflect tradeoffs in systems characterized by
high densities and throughputs, where many internal variables have
been tuned to favor small losses in common events, at the expense
of large losses when subject to rare or unexpected perturbations,
even if the perturbations are infinitesimal.

The Forest Fire Models
In this section, we review the lattice models that have served as
the primary template for introducing SOC and HOT. Our story
begins with percolation (12), the simplest model in statistical
mechanics, which exhibits a critical phase transition. We focus on
site percolation on a two-dimensional N � N square lattice.
Individual sites are independently occupied with probability �
and vacant with probability (1 � �). Properties of the system are
determined by ensemble averages in which all configurations at
density � are equally likely. Contiguous sets of nearest-neighbor
occupied sites define connected clusters. The percolation forest
fire model includes a coupling to external disturbances repre-
sented by ‘‘sparks’’ that impact individual sites on the lattice.
Sparks initiate ‘‘fires’’ when they hit an occupied site, burning
through the associated connected cluster. Fires are the rapid
cascading failure events analogous to individual events, which
comprise the statistical distributions in the previous section.

Sparks are all of equal size (one lattice site) but may initiate
fires of a wide range of sizes, depending on the configuration and
the site that is hit. The impact site (i, j) is drawn from a
probability distribution P(i, j). The most realistic cases involve
variable risk, where ignitions are common in some regions and
rare in others and are represented by P(i, j)s that are skewed. In

Fig. 1. Log–log (base 10) comparison of DC, WWW, CF, and FF data (symbols)
with PLR models (solid lines) (for � � 0, 0.9, 0.9, 1.85, or � � 1�� � �, 1.1,1.1, 0.054,
respectively) and the SOC FF model (� � 0.15, dashed). Reference lines of � � 0.5,
1 (dashed) are included. The cumulative distributions of frequencies �(l � li) vs. li
describe the areas burned in the largest 4,284 fires from 1986 to 1995 on all of the
U.S. Fish and Wildlife Service Lands (FF) (17), the �10,000 largest California
brushfires from 1878 to 1999 (CF) (18), 130,000 web file transfers at Boston
University during 1994 and 1995 (WWW) (19), and code words from DC. The size
units [1,000 km2 (FF and CF), megabytes (WWW), and bytes (DC)] and the loga-
rithmic decimation of the data are chosen for visualization.
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the thermodynamic limit, translational invariance of the ensem-
ble renders the choice of P(i, j) irrelevant (Table 1.11), and the
density � is a priori the only tunable parameter (Table 1.9). Site
percolation exhibits a continuous phase transition at density �c
� 0.592, associated with the emergence of an infinite connected
cluster. The probability that any given site is on the infinite
cluster defines the percolation probability ��(�), which is zero
for � � �c and increases continuously and monotonically to one
for � � �c. At the critical density, the infinite cluster is fractal and
an infinitesimal fraction of the total density.

We define yield, Y, to be the remaining density after one
spark:Y � � � �l�. Here � is the density before the spark, and �l�
is the average loss in density because of the fire, computed over the
distribution of sparks P(i, j) as well the configurations in the
ensemble. For a given strategy (i.e., configuration or ensemble of
configurations), yield is a measure of the mean survival, which may
be viewed as profit or biological fitness. Optimization of yield can
occur through deliberate design, or via evolutionary selection
pressure, for a given distribution of sparks P(i, j).

The only time a spark leads to macroscopic loss is when � � �c
and the infinite cluster is hit, in which case the loss is given by
the density fraction associated with the infinite cluster:

Y � P�	p
	p � P�	p

 � 	1 � P�	p

p � p � P�	p
2 [1]

The maximum yield corresponds to the critical density �c (see Fig.
2), which is the maximum density for which �l� � 0. At �c the
distribution of cluster sizes is a power law, reflecting the fractal
self-similarity of the critical state (Table 1.5 and 1.6). A sample
configuration at the critical density is illustrated in Fig. 3a. The
power law in the cluster size distribution leads to a power law in the
fire size distribution, which written cumulatively takes the form:
�(l) � l��. For site percolation on a two-dimensional square lattice,
the exponent � �0.05, which is significantly smaller than the power
laws in Fig. 1. As the dimension increases toward the upper critical
dimension, the power laws become increasingly steep (see Fig. 4
and Table 1.8), reflecting the fact that large fluctuations that arise
through chance aggregation in random systems become increas-
ingly unlikely with increased dimension.

In equilibrium statistical mechanics, criticality is a necessary
and sufficient condition for power laws and universality. There
are two quite different ways that this can be and has been
interpreted. Physicists see complexity emerging between order
and disorder at the critical point. When physicists find power
laws in the statistics of some phenomena and say that this is
‘‘suggestive of criticality,’’ they are implicitly (i) referring to the

necessity results, (ii) assuming that some appropriate model
system is relevant, and (iii) assuming that some mechanism has
tuned the density to the critical point. SOC addresses the third
issue, replacing tuning with feedback dynamics that creates a
stable equilibrium at a critical point.

Engineers and many mathematicians would tend to have an
opposite interpretation of the same theoretical results about
criticality. They would tend to approach the problem in terms of
tuning rather than phase transitions, and power laws would be
viewed as arising from tuning and optimization, with criticality
a rare and extreme special case when only one parameter—
density—is used. Introducing feedback dynamics as in SOC to
replace tuning would be one design alternative among many that

Fig. 2. Yield vs. density curves for 64 � 64 random and HOT lattices. Here and
in Fig. 3, we take P(i,j) � exp(��(i � j)�N) with � � 24. The heavy solid line
illustrates the percolation forest fire model, with maximum yield at �c. The
light solid line illustrates the results generated by the local incremental
algorithm, where the maximum yield point corresponds to Fig. 3c. The �
marks the result for grid design (Fig. 3d).

Fig. 3. Sample lattices contrasting criticality and HOT: (a) The percolation
forest fire model at �c and HOT configurations obtained by (b) Darwinian
evolution, (c) local incremental algorithm, and (d) grid design. Empty sites are
black, and occupied clusters are grayscale (percolation) or white (HOT). Sim-
ulation parameters are as in Fig. 2.

Fig. 4. Exponent � versus dimension d for percolation and HOT. The results
for percolation (dots) are taken from ref. 11, and the fit � �(d�1)�10 is
approximate.
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would lead to the critical state. Most importantly, they would
tend to view the standard necessity result as a special case and
look for generalizations of the sufficiency part. The natural
question then would be, what happens if we tune more param-
eters to optimize yield? Do we still get power laws? What is the
nature of the optimal state? This is the HOT alternative to
criticality and SOC and leads to a radically different picture, even
with identical starting points. To illustrate this contrast, we next
describe modifications of the percolation forest fire model,
which produce lattice models exhibiting SOC and HOT.

The SOC forest fire model (13, 14) adds dynamics to the basic
percolation model described above, so that the density is no
longer a free variable, and the configurations that contribute to
the ensemble and their corresponding statistical weight are
determined over time through iteration of the rules. Trees grow
(vacant sites randomly become occupied) at a fixed rate, which
is large compared with the rate of ignition but infinitesimal
compared with the rate at which fires propagate through con-
nected clusters. SOC assumes this separation of time scales is
preserved, so that losses associated with the infinitesimal rate of
ignitions are balanced by the slow but steady regrowth of trees.

The key defining feature that makes this model an example of
SOC is that it converges to a critical point, which shares the
characteristic features of criticality discussed above (see Table
1). Again the macroscopic loss is zero even in the largest events
(Table 1.4), so that the density remains stationary at �c � 0.39
(13, 14) (slightly less than that of percolation) in the thermody-
namic limit (Table 1.3). At this stationary point, the system
exhibits a power law distribution of self-similar fractal events
(Table 1.5), characterized by the exponent � � 0.15 (Table 1.7),
which is slightly steeper than percolation but still very flat
compared with the data in Fig. 1.

Alternatively, the extension of the percolation forest fire
model toward the highly designed limit leads to specialized
high-yield configurations, which we refer to as HOT states. HOT
states are optimized for yield given P(i, j) and reach unit densities
and unit yields in the limit of large system sizes (Table 1.3).
Several examples of HOT configurations are illustrated in Fig. 3.
In each case, the configuration breaks up into a set of compact
cellular regions of unit density, separated by linear barriers, or
fire breaks, which prevent fires from spreading into neighboring
cells (Table 1.1, 1.3–1.5). The fire breaks are not put in by hand
but rather arise from optimization as discussed below and are
concentrated in regions where sparks are likely and sparse in
regions where sparks are rare. HOT configurations are extremely
robust to fires compared with random configurations at a similar
density. However, they have also developed sensitivities not
present in the random percolation forest fire model. In partic-
ular, the robustness and high yields associated with designed
configurations come at a cost of introducing fragility to changes
in the distribution of sparks P(i, j) and flaws in the design (i.e.,
a defect in a fire break) (Table 1.2).

Power laws statistics in the distribution of events is an outcome
of optimization for yield when P(i, j) is skewed. Compared with
the power law statistics associated with criticality, the distribu-
tions tend to be steeper, have opposite trends with dimension-
ality, and involve macroscopic loss in density—all in better
agreement with the example systems we have discussed (Table
1.3–1.8). At a cost of decreased yield, heavy tails can be
eliminated by increasing the number of barriers, which decreases
the sensitivity to changes in P(i, j). Redundant barriers reduce
the risks associated with possible design flaws, which mimic
common engineering strategies for increasing robustness.

HOT states naturally emerge from an initial ensemble of random
percolation configurations in a simulation that mimics Darwinian
evolution (6). Although the SOC forest fire model includes a
primitive feedback that selects a critical density, mechanisms asso-
ciated with biological heredity preserve much more detailed struc-

ture from one generation to the next. In a community of bounded
size, we represent individual organisms by percolation lattices. The
initial configurations are generated randomly. Each parent gives
rise to two offspring, with a certain probability of mutation per site.
The offspring lattices are subject to sparks drawn from P(i, j). We
define fitness in terms of yield and, if fitness is low, the organism
dies. For those that live, selection for space in the community is
based on fitness. Fig. 3b illustrates a configuration obtained after a
large number of generations leads to the evolution of high fitness
individuals, characterized by cellular barrier patterns that prevent
large losses in common disturbances.

Over time, evolution refines the configuration, site by site,
subject to stochastic effects associated with random mutation
and sampling of the sparks. One way to describe the spatial
patterns that distinguish HOT from SOC is by the number of
design degrees of freedom (DDOFs), which is a count of the
parameters that are deliberately tuned or evolved. Random
percolation has only one DDOF, the density �, and SOC also has
one, the ratio of spark frequency to site growth (Table 1.9). HOT
represents the opposite extreme. If we specifically choose
whether each site individually is occupied or vacant on an N �
N lattice, then we have N2 DDOFs, which diverges in the limit
N3 �. This is the limit probed stochastically and locally by the
evolutionary model. A brute force global (deterministic) opti-
mization of yield for an N � N lattice involves a search through
2N2

configurations and quickly becomes intractable for increas-
ing N. However, a wide range of constraints on the search space
for optimal configurations (as in the Darwinian evolution mod-
el), or limiting the number of DDOFs, or both, leads to HOT
states with qualitatively similar features. We briefly discuss a few
additional examples below, referring the reader to more detailed
expositions that appear elsewhere. Here the specific algorithms
for constrained optimizations are less important than the shared
features that emerge from almost any sensible heuristic.

Fig. 3c illustrates the optimal configuration obtained by using
a deterministic local incremental algorithm for increasing the
density, always choosing the next occupied site to maximize
yield, as described in ref. 2. Here there are of order N2 DDOFs,
but far fewer configurations (�N4) are considered to determine
a maximum compared with the global search. The search picks
a measure zero set of configurations that define a yield curve, Y
(�), with a maximum at some � � �max (see Fig. 2). Fig. 3c
illustrates the maximum yield point for a 64 � 64 lattice.

Fig. 3d illustrates a HOT configuration that results from global
optimization in a subset of configuration space comprised of grid
designs. The lattice is fully occupied, except for vertical and
horizontal cuts composed of vacancies. In ref. 1, a recursive
formula for the positions of the cuts was derived and shown
asymptotically to lead to a power law distribution of events for
a wide range of P(i, j). In this case, there are 2N DDOFs, the
choices whether to place a cut in each row or column.

The beauty of the lattice models is that they show how highly
specialized structures, in particular barriers separating compact
regions, arise naturally and necessarily when yield is optimized.
Recalling the discussion of What Do We Mean by Complexity?, we
note that HOT has all of the essential features we were looking
for at the beginning: ‘‘highly structured, nongeneric, self-
dissimilar configurations and robust, yet fragile behavior.’’ Al-
though we clearly get heavy-tailed distributions that are roughly
power laws, it is hard to get definitive exponents. The problem
is that it is hard to optimize on lattices large enough to escape
finite size limitations. We can and do solve some one-
dimensional problems analytically that yield power laws with � �
1 (3).§ For higher-dimensional problems, we have no corre-

§X. Zhu, J. Yu, and J.D., IEEE Infocom, Anchorage, AK, http:��www.ieee-infocom.org�2001;
paper 596.ps.
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sponding results, and computationally accessible lattices are too
small to obtain conclusive statistics. Thus we are motivated to
seek even simpler models that are more tractable analytically.

Generalized Coding Theory
In this section, we summarize the probability-loss-resource
(PLR) problem, the simplest framework illustrating HOT (3).
The PLR problem is a generalization of Shannon source coding
theory for DC, which is among the simplest most elegant design
theories in engineering. Solutions can be obtained analytically
and are somewhat reminiscent of mean-field theories in statis-
tical physics, because the geometric constraints inherent in the
lattice models are substantially relaxed. The PLR objective is to
allocate resources in a manner that minimizes the expected cost J:

J � � � pili � li � f	ri
, � ri 	 R�. [2]

Here i, 1	 I 	 N, indexes a set of events of sizes li, which in Fig.
1 corresponds to the area burned in a forest fire [California
brushfires (CF), U.S. Fish and Wildlife Service Land Fires (FF)],
or the length of a web file [World Wide Web (WWW)] or code
word (DC) to be transmitted on the Internet. Each event is
assumed to be independent and initiated with probability pi
during some time interval of observation. Note that in the lattice
models, the P(i, j) were probabilities of sparks, whereas here the
probabilities are associated with the resulting aggregate events.
Minimizing the expected cost involves determining the optimal
allocation of resources ri to suppress the sizes of events. Re-
sources correspond to barriers, and their relationship to the
event size li � f(ri) is the one geometric feature we retain. The
resource cost is the length or size of the barrier. In the lattice
models, this cost is simply loss of density, but now it can be
motivated more generally by dimensional arguments relevant to
specific applications.

We define a general one-parameter function li � f�(ri):

f�	ri
 � � � c log	ri
, � � 0;
c
�

	ri
� � � 1
, � 
 0. [3]

Resources are normalized so that 0	 ri 	 1 and f� (1) � 0.
Although the constants c and R are adjustable parameters
determined by the small size cutoff and overall rate of events, the
value of � is fixed by the dimensional relationships between
resource allocations and losses. The values of � that characterize
DC, WWW, CF, and FF (� � 0,1,1,2, respectively) are discussed
in more detail below and in ref. 3.

The strongest assumptions are that the pi are independent of
the resource ri, which is not true in the lattice models, and that
the events are independent. Both are exactly true in Shannon
DC, but will be assumed throughout for simplicity. The optimal
solution minimizes J (Eqs. 2 and 3) and yields optimal sizes

li � ��log	Rpi
 � log��j pj�,

c
�	�Rp

i

1
1�������

j

p
j

1
1����

� 1
,

� � 0;

� 
 0.
[4]

The first formula (which applies to DC) leads to an exponential
distribution, whereas the second leads to a power laws relating
event probabilities and the corresponding sizes: pi(li) �
li
[�(1��)�1], or in cumulative form Pi(li) � li

�1�� � li�� with � �
1�� (Table 1.8). We compare this to data for the examples
considered in Fig. 1 after motivating our choices of �.

We begin with DC, where the objective is to compress long
source messages into short coded messages for more efficient
storage or transmission (15). The standard DC formulation due
to Shannon (16) is exactly the PLR problem with � � 0, although
with different notation (3). The resource constraint is equivalent
to unique decodability and can be interpreted as building
barriers in a zero-dimensional discrete tree. The optimal barriers
assign short and long codewords to frequent and rare source
words, respectively, yielding an optimal compression algorithm
that has the fragilities that we associate with HOT. Specifically,
if the probabilities change, the algorithm can actually expand
source code streams rather than compress them. If a single bit
is lost in the compressed file, the entire file can be unreadable.
Both fragilities can be addressed by using universal and error-
correcting codes, at the expense of longer compressed files.

Inspired by DC, we next cast efficient web site design as a PLR
problem. Suppose a long document must be divided into files,
which are linked together in a linear chain or tree of hyperlinks
on a web site. The user enters the document beginning with the
first file and proceeds by clicking through consecutive files,
stopping at some point. If the typical user’s interest is high in the
initial portion of the document but fades as she progresses, what
partitioning minimizes the cost, taken to be the average length
of accessed files? Here the essential WWW PLR abstraction is
that web layout is dominated by the tradeoff between short files
for fast download and few clicks for ease of navigability. This
abstraction of the web site design problem leads to optimizing
the placement of a bounded number of ‘‘cuts’’ denoting the
endpoints of files. The first files are more frequently accessed
and smaller than the larger and less frequently accessed later
files. In this simple formulation, the document is one-
dimensional, and the barriers are zero-dimensional. In footnote
§, the PLR formulation is extended to more complete models for
web site layout and management, which allow for the depen-
dence pi(ri) and more complex web topologies.

In FF, we associate design with the subdivision of a two-
dimensional forest by one-dimensional engineered firebreaks
and fire-fighting suppressors. In FF, the li are burned areas. The
pi are the probabilities of sparks occurring in different regions
and initiating fires. The cost J is the average timber lost, which
would tend to be minimized by deliberate design in managed
forests. The resource ri is the density of firebreaks and suppres-
sors used to stop the spread of fires. The tradeoff between use
of land for trees or firebreaks sets the constraint on the total
resources available.

For WWW and FF, parallel dimensional arguments lead to
appropriate choices for � in Eq. 3. A physical model for which
these heuristic arguments become exact is defined in ref. 3.
Suppose the loss or cost of an event associated with a d-
dimensional volume scales like li � �d, where � is a characteristic
length of the file accessed or the region burned. The event size
is limited by the resources, which can be thought of as (d �
1)-dimensional cuts that isolate the event from the rest of the
system. In WWW, dividing a one-dimensional document or tree
of documents into a chain or tree of linked files corresponds to
d � 1, whereas in FF, dividing a two-dimensional forest into
areas corresponds to d � 2. Although loss scales like a d-
dimensional volume, the resource density allocation limiting loss
scales like surface�volume ri � �d�1�li � ��1, leading to li � ri

�d,
consistent with our interpretation that � � d, the dimension of
the design problem, in the PLR formulation.

In general, � is determined by a resource�loss relationship,
which may or may not be directly related to physical dimensions.
For example, power system outages in customers (not shown in
Fig. 1) have � � 1, corresponding to � � d � 1 in the PLR
problem. Power grids are roughly trees of one-dimensional lines
connecting generators with loads, with some crosslinks, all of
which are embedded in an essentially two-dimensional surface.
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The embedding dimension is largely irrelevant to the dynamics
of cascading failures, and power outages propagate along one-
dimensional lines and are primarily stopped by throttling gen-
eration or opening breakers to shed load, which occur at
(zero-dimensional) points in the grid, consistent with the PLR
abstraction d � � � 1.

Next we compare the results of the PLR problem with the data
for DC, WWW, CF, and FF in Fig. 1. The data sets in Fig. 1
consist of pairs (li,Pi) with cumulative frequencies Pi of events of
size l � li. In the standard ‘‘forward engineering’’ PLR design
problem, the noncumulative pis are given, and optimizing the ri
produces the li in Eq. 4. ‘‘Reverse engineering’’ starts with the li
data as given and generates model predictions by using the PLR
solution, with � given by dimensional arguments and the two
parameters c and R fit to the small-scale cutoff and the overall
rate of events. Details are given in ref. 3. For ��0, this leads to
roughly power law distributions (Pi � li

��) with � � 1��.
As shown in Fig. 1, when we compare the raw cumulative data

for DC, WWW, and FF with the results of the PLR model, the
agreement is excellent. The qualitative dependence on dimen-
sion is most striking. Although the systems are intrinsically
extremely different, the event statistics are all captured by this
simple PLR model. The percolation and SOC forest fire models
have much smaller exponents that do not fit the data sets. The
agreement between the PLR model and DC follows immediately
from Shannon Theory because it was used to forward engineer
the compressed file. For WWW, high-traffic web sites are
designed to minimize congestion, so it is not surprising to find
that the aggregate statistics are consistent with optimal design.
On the other hand, the role of optimization for FF is more
complex and subtle, and thus our conclusions are necessarily
most speculative for this case. We considered the three addi-
tional FF data sets from ref. 16, which yield similar excellent
correspondence with the PLR predictions with � � 2. The
crucial fact may be that most mechanisms for fire spreading lead
to expanding fronts. The fire terminates when the energy is
absorbed by a resource, whether it be a firebreak (no fuel to
burn) or some alternative engineered or natural means of
suppression. This much more general scenario still leads to � �
d, with d � 2 for mesoscopically homogeneous forests. More
aggressive fire prevention might shift the curve without altering
the shape. Alternatively, landscapes that naturally break forests
into regions of fractal dimension lower than 2 would have steeper
power laws. For example, brush fires in California occur in
unusually rugged terrain. Large fires run along ridges between
desert valleys and mountain peaks and are further driven by
highly directional Santa Ana winds. The CF data from ref. 17 is
also plotted in Fig. 1, and there is an excellent match to the PLR
prediction with � � 1. The one-dimensional SOC forest fire
yields � � 0, which is not plotted.

The percolation �(d) is plotted in Fig. 4, along with the
dependence �(d) � 1�d, which is predicted by the HOT PLR
model (Table 1.8). Note that they have the opposite dependence
on dimension, and that the PLR dependence is consistent with
the data. This contrast can be seen intuitively from the under-
lying models. In percolation and other examples of equilibrium
critical phenomena, as well as the standard SOC forest fire (13,
14) and sand-pile (19) models, increasing the dimension d leads
to steeper power laws, corresponding to a relative suppression of
large collective fluctuations of microscopic degrees of freedom.
On the other hand, decreasing the effective dimension in both the
WWW and FF PLR formulations leads to steeper power laws,
because for small � microscopic resources are more efficient in
suppressing large events. For example, all other things being
equal, a one-dimensional fire is easier to stop than a two-
dimensional fire, which is easier to contain than a hypothetical
fire burning fuel in three dimensions. Comparisons of the brush
fire data (18) as well as the 1995 Web statistics (20) with more

recent results (21) lead to an effectively reduced dimensionality
and steeper power laws.

HOT and its application to DC, WWW, CF, and FF suggest
a new type of universality might apply to complex systems in
which design and evolution play a role, but with most features in
sharp contrast to familiar properties found in statistical physics
(1, 2). Again it is the robust, yet fragile feature that is most
strikingly different. In the PLR setting, inaccurate assumptions
about the pi for a known category of disturbance can result in
misallocation of the ri, sometimes with disastrous effects. This
sensitivity is particularly apparent for the small pi, where few
resources are allocated. Maximal costs associated with errors in
pi are of order the size of the largest event, so that the more tuned
the design (i.e., the more nongeneric the allocation of ri), the
greater the performance, but also potentially the greater the risk.

Discussion
The lattice models were motivated by the desire to illustrate
HOT by using familiar accessible models from statistical physics.
In this context, adding even simple design mechanisms produces
results that are strikingly different. Despite their extreme ab-
straction and simplicity, the models provide clear connections
between microscopic mechanisms and macroscopic features.
They further capture how intrinsic robust design tradeoffs
interact with and constrain natural selection and engineering
design to generate highly ordered structure, even from initial
randomness. Indeed, simple HOT models match all of the
features of our motivating examples and data, as summarized in
Table 1, and aside from the existence of power laws, their
properties are the opposite of SOC. In addition, what emerged
was a very particular, although we believe fundamental, abstrac-
tion of biological and engineering complexity: building highly
structured barriers to cascading failures.

Although there are obviously fundamental differences be-
tween biology and engineering, the design and evolution pro-
cesses and the resulting system-level characteristics may differ
much less than often realized. High-performance lattices must
have certain highly structured features, such as high densities
overall with barriers concentrated in high spark regions. This
feature is largely independent of the design process, whether it
be deliberate or random mutation and natural selection. Highly
complex engineering systems are very new, far from optimal, and
heavily constrained by both historical and nontechnical consid-
erations. Biological ‘‘design’’ involves pure trial and error, but at
least the ‘‘primitive’’ biosphere of microorganisms has had
billions of years of evolution and appears to be highly optimized
and extraordinarily robust. As we better understand the role of
complexity and robustness, the more they appear to use the same
system-level regulatory strategies as engineering systems (22).

Recalling the examples from engineering and biology, we ask
how many parameters (DDOFs) need to be tuned to obtain these
designs. If we accept the components as given, then the design
parameters are the choice and interconnection of the compo-
nents and settings of remaining design variables. For a bacterial
cell with millions of base pairs in its DNA, most perturbations
lead to poorer fitness but are not lethal, although many suffi-
ciently small perturbations are neutral, and similarly for the
engineering examples. Thus to zeroth order, the DDOFs are
roughly the same as all the system degrees of freedom and thus
very high, although this does not imply that they are at a global
optimum. In What Do We Mean by Complexity?, we emphasized
that in biology most genes code for sensors, actuators, and the
complex regulatory networks that control them, and thus confer
to the cell robustness to variations rather than the mere basic
functionality required for survival in ideal circumstances. The
essence of this robustness, and hence of complexity, is the
elaboration of highly structured communication, computing, and
control networks that also create barriers to cascading failure
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events, albeit in a broader sense than is represented in the lattice
models.

Although some robustness barriers are obvious from an
organism’s external physiology or an engineering systems exter-
nal configuration, most barriers are not, so this abstraction
requires further justification. Indeed, most robustness barriers
are far from obvious and involve complex regulatory feedback
and dynamics to stop cascading failures that are themselves often
cryptic and complex. There is no simple identification directly
with external physiological features. Engineering theories of
control, communications, and computing can be explicitly re-
phrased mathematically in terms of the construction and veri-
fication of barriers that separate acceptable from unacceptable
system behavior, where the latter typically involves a complex
cascading failure event. A detailed exposition of this mathemat-
ics is beyond the scope of this paper, but fortunately familiar
robustness barriers in human engineered systems surround us.

The most obvious examples of robustness barriers in land
transportation include lane dividers, vehicle bumpers, fenders,
roll bars, and door braces, and occupant restraints such as seat
belts, air bags, and helmets. Whereas we can think of, say, a seat
belt as simply providing specific restraining forces as a function
of position, the airbag is more complex. An electronic control
system measures vehicle acceleration during a crash and deter-
mines whether to deploy an airbag. It is designed to deploy only
when the vehicle dynamic state enters a certain regime that is
dangerous to the occupant. The feedback control systems in
antilock braking and antiskid turning are even more complex but
have a similar objective. Feedback regulation of temperature and
oxygen in airliners and mammalian bodies is also complex but

effectively keeps the internal state in a safe regime. The Internet
is enabled in essence by a collection of protocols specifying
control strategies for managing the flow of packets. These create
barriers to cascading failures because of router outages and
congestion. In all these cases, the abstraction of barriers con-
tinues to hold, but now we must consider them as occurring in
the state space of a system’s dynamics.

In advanced systems, designed features are so dominant and
pervasive that we often take them for granted. Primitive tech-
nologies often build fragile machines by using simple strategies
and precision parts, but with a complexity that is readily visible.
In contrast, advanced technologies and organisms, at their best,
use complicated architectures with sloppy parts to create systems
so robust as to create the illusion of very simple, reliable, and
consistent behavior apparently unperturbed by the environment.
Even the rare cascading failure event that is the fragile side of
HOT complexity typically reveals only a limited glimpse of a
system’s internal architecture. As a consequence, it can be
difficult to precisely characterize and quantify the role of design
in complex technical and biological systems without going into
great detail. Nevertheless, HOT illustrates that design leads to
fundamental characteristics missed by theories that ignore
design.
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