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ABSTRACT
In this paper, a game-theoretic model for contention based medium
access control (contention control) is proposed. We define a general
game-theoretic model, called random access game, to capture the
distributed nature of contention control and the interaction among
wireless nodes with contention-based medium access. We study the
design of random access games, characterize their equilibria, study
their dynamics, and propose distributed algorithms to achieve the
equilibria. This provides a unique perspective to understand exist-
ing MAC protocols and a general framework to guide the design
of new ones to improve the system performance. As examples, a
series of utility functions is proposed for games achieving the max-
imum throughput in a network of homogeneous nodes. The con-
vergence of different variants (e.g., asynchronous and stochastic
algorithms) of different dynamic algorithms such as gradient play
are obtained. An equilibrium selection algorithm is also proposed
to guarantee that the dynamic algorithms can actually achieve the
desired operating point. Simulation results show that game model
based protocols can achieve superior performance over the stan-
dard IEEE 802.11 DCF, and comparable performance as existing
protocols with the best performance in literature.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Access schemes

General Terms
Algorithms, Performance
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1. INTRODUCTION
Wireless channel is a shared medium that is interference-limited.

A contention-based medium access control (contention control) is
a distributed strategy to access and share a wireless channel among
competing wireless nodes. It dynamically adjustschannel access
probability in response to the amount of contention in the network.
Note that the amount of contention itself depends on the channel ac-
cess probabilities chosen by the wireless nodes. Hence contention
control is a distributed, iterative feedback system described mathe-
matically as:

pi(t + 1) = Fi(pi(t), qi(t)), qi(t) = Ci(p(t)), (1)

wherepi(t) is the channel access probability of nodei, p(t) =
(pi(t)) is the corresponding vector, andqi(t) is certain measure
of contention observed by nodei that depends on the vectorp(t).
The channel access probabilitypi(t) is usually implemented either
through a backoff algorithm on contention window or as a persis-
tence probability. For example, the standard IEEE 802.11 DCF has
a backoff algorithm that induces a channel access probability and
can be modeled by some functionFi. The algorithm responds to
whether there is a collision, and hence the measure of contention
qi(t) in 802.11 DCF is the probability of collision whose depen-
dence on the channel access probability vectorp(t) can be mod-
elled by some functionCi.

The performance of a MAC, e.g., the throughput, fairness and
collision, depends critically on the equilibrium and stability of the
dynamical system defined by (1). In this paper, extending from [7]
we propose a game-theoretic model to understand the dynamical
system (1), use it to design new classes of MAC, and present simu-
lation results that demonstrate its superior performance over 802.11
DCF. Specifically, in Section 3, we propose a general random ac-
cess game to model MAC protocols. The key idea is to consider
each nodei to have a utility functionUi(pi) as a function of its
channel access probabilitypi. The goal of nodei is to maximize
its payoff functionui(p) := Ui(pi) − piqi given the contention
measureqi. Hence, the steady state properties of a MAC can be an-
alyzed or designed through the specification of the utility function
Ui(pi) and the choice of the contention measureqi (e.g., collision
probability, or idle time between channel access, etc). Their spec-
ification defines the underlying random access game whose equi-



librium determines the steady state properties such as throughput,
fairness and collision of MAC. The adaptation of channel access
probability can be specified through(F , C) and corresponds to dif-
ferent strategies to approach the equilibrium of the random access
game.

We provide conditions under which equilibrium exists and is
unique. Several examples are provided on how to design the util-
ity function and determine the contention measure by reverse engi-
neering from existing protocols and from desired operating points
(e.g., in terms of some target throughput and fairness), and by for-
ward engineering from heuristics. Especially, a series of utility
functions is proposed for games achieving the maximum through-
put in a network of homogeneous nodes. Supermodular game is
also considered, which guarantees the existence of Nash equilib-
rium. Moreover, the best response strategy discussed in Section
4 can converge to a Pareto dominant equilibrium of supermodular
random access game. In Section 4, we also consider another two
dynamic algorithms to achieve the equilibrium: gradient play and
Jacobi play. We show that under mild conditions both algorithms
converge to the unique equilibrium. We also consider gradient play
under estimation error, and show that it converges to a neighbor-
hood of the equilibrium point. Due to the lack of knowledge of
the number of users in the network and the approximation made in
utility function design, the dynamic algorithms may not converge
to the desired operating point. An equilibrium selection algorithm
is thus proposed to make these algorithms actually hit the desired
point. Simulation results show that game model based protocols
can achieve superior performance over the standard IEEE 802.11
DCF, and comparable performance as existing protocols with the
best performance in literature.

2. RELATED WORK
There are lots of works on medium access control. Here we only

mention a few that are most closely related to this work. Game-
theoretic approach has been applied extensively to study medium
access, see, e.g., [5–7, 15, 20, 21]. Jin et al. [15] studies noncoop-
erative equilibrium of Aloha networks and their local convergence.
Borkar et al. [5] studies distributed scheme for adapting random
access.̌Cagalj et al. [6] studies selfish behavior in CSMA/CA net-
works and propose a distributed protocol to guide multiple self-
ish nodes to a Pareto-optimal Nash equilibrium. Lee et. al. [20]
reverse-engineers backoff-based MAC protocols using a noncoop-
erative game model. This paper is an extension of earlier work [7].
Related work also includes [11] that proposes an idle sense access
method without estimating the number of nodes, which compares
the mean number of idle slots between transmission attempts with
the optimal value and adopts an additive increase and multiplicative
decrease algorithm to dynamically control the contention window
in order to improve throughput and short-term fairness.

Finally, a comparison with TCP congestion control is in place.
Contention control has striking similarity with congestion control.
They need to handle almost the same issues such as congestion
or contention measure, load control (e.g., window update) algo-
rithm, and decoupling load control from handling failed transmis-
sions, etc. However, the interaction among wireless nodes is dif-
ferent from that among TCP flows, which means a different model
is needed to study contention control. Actually, one of the motiva-
tions of this work and earlier work [7] is try to develop a parallel
story for contention control to what has been done for TCP con-
gestion control in the utility maximization framework, see, e.g.,

[16–18].

3. GAME-THEORETIC MODEL OF CON-
TENTION CONTROL

3.1 Random Access Game
Consider a setN of wireless nodes in a wireless LAN with

contention-based medium access. In this paper, we only consider
single-cellwireless LANs, where every wireless node can hear ev-
ery other node in the network. The analysis in this paper can be
extended to general multicell networks. We assume all nodes al-
ways have a frame to transmit. The wireless channel is assumed
to be error free and packet loss is only due to collision. We will
mainly present our theory and analysis in terms of “channel access
probability.” If a backoff mechanism is implemented, the channel
access probabilityp is related to the contention windowcw ac-
cording top = 2

cw+1
, which can be derived under the decoupling

approximation with constant contention windows, see, e.g., [3].
In practice, it is hard for wireless nodes to learn directly the chan-

nel access probabilities of others. Each node infers the contention
of the wireless network through observing some contention mea-
sureqi, which are functions of the nodes’ channel access probabili-
ties. Following [7], we model the interaction among wireless nodes
as a non-cooperative game. Formally, we define a random access
game as follows.

DEFINITION 1. A random access gameG is defined as a quadru-
ple G := {N , (Si)i∈N , (ui)i∈N , (qi)i∈N }, whereN is a set of
players (wireless nodes), playeri ∈ N strategySi := {pi|pi ∈
[νi, ωi]} with 0 ≤ νi < ωi ≤ 1, and payoff functionui(p) =
Ui(pi) − piqi with utility function Ui(pi) and given contention
measureqi = Ci(p).

The payoff function can be interpreted as the net gain of util-
ity from channel access discounted by the contention “cost”. One
property of this random access game is that the computation of the
payoff function does not require explicit exchange of channel ac-
cess probabilities between nodes. Thus, this game can be played
and implemented distributedly. Random access game is a rather
general model for contention control, as the payoff function can be
reverse-engineered from (1). The fixed point of (1) defines an im-
plicit relation between channel access probabilitypi and contention
measureqi,

pi = Fi(pi, qi). (2)

If this relation can be written as

qi = Fi(pi), (3)

the utility function of each nodei is defined as

Ui(pi) =

Z
Fi(pi)dpi. (4)

Therefore, we can reverse engineer medium access control proto-
cols and study them in game theoretic framework: medium access
control can be interpreted as a distributed strategy update algorithm
to achieve the equilibrium of the random access game.

We now analyze the equilibrium of random access game. We
say a channel access probability vectorp∗ is an equilibrium, if for



given network contention(Ci(p
∗))i∈N no node has an incentive to

change.1

DEFINITION 2. A channel access probability vectorp∗ is said
to be an equilibrium of random access game, if for given network
contention(Ci(p

∗))i∈N no node can improve its payoff by deviat-
ing from the equilibrium, i.e.,ui(p

∗) ≥ Ui(pi)−piCi(p
∗), ∀pi ∈

Si. An equilibriump∗ is a nontrivial equilibrium ifp∗i satisfies

∂

∂pi
Ui(p

∗
i ) = Ci(p

∗), ∀i ∈ N . (5)

The reason to consider nontrivial equilibrium is to avoid those
equilibria in which some player takes strategy at the boundary of
the strategy space, which usually results in great unfairness or low
payoff. Denote the channel access probability for all nodes buti by
p−i := (p1, . . . , pi−1, pi+1, . . . , p|N|), and write(pi,p−i) := p.
If a node’s contention measure signal is a function only of other
nodes’ channel access probabilities, i.e.,qi = Ci(p−i), the equi-
librium defined in Definition 2 reduces to the concept of Nash equi-
librium [10].

DEFINITION 3. A channel access probability vectorp∗ is said
to be a Nash equilibrium if no node can improve its payoff by
unilaterally deviating from the equilibrium, i.e.,ui(p

∗
i ,p∗−i) ≥

ui(pi,p
∗
−i), ∀pi ∈ Si. A Nash equilibriump∗ is anontrivialequi-

librium if p∗i satisfies

∂

∂pi
ui(p

∗
i ,p∗−i) = 0, ∀i ∈ N . (6)

Throughout this paper, we will only consider those contention
measures that can be described byqi = Ci(p−i). So, we will focus
onNash equilibriumin the following. To facilitate analysis, we list
some assumptions that will be used in this paper.

A1: The utility functionUi(·) is twice continuously differentiable,
increasing, strictly concave, and with finite curvatures that are
bounded away from zero, i.e., there exist some constantsµ and
χ such that1/µ ≥ −1/U ′′i (pi) ≥ 1/χ > 0.

A2: The inverse function(U ′i)
−1

(qi) maps anyqi into a point inSi

for all i ∈ N .

A3: At a nontrivial Nash equilibriump∗, there exists a function
Φi(pi) for each nodei such thatΦi(p

∗
i ) = Φj(p

∗
j ), ∀i, j ∈ N

andΦi(pi) is strictly monotone inSi, ∀i ∈ N .

By [10, Theorem 1.2] and Brouwer’s fixed point theorem [4], the
following two theorems are immediate.

THEOREM 4. Under assumption A1, there exists a Nash equi-
librium for any random access gameG.

THEOREM 5. Suppose A2 holds. Random access gameG has
a nontrivial Nash equilibrium.

1If we interpret contention measure as some contention price, un-
der this equilibrium concept wireless nodes can be seen as price-
taking agents. For agents with price-anticipating behavior, the ap-
propriate solution concept is that of Nash equilibrium. It would be
interesting to compare the performances of MAC under these two
kinds of equilibria.

Since the equilibrium determines the operating point of medium
access control, it is desired to have a unique nontrivial Nash equi-
librium. One way to show this is to use Banach fixed point theo-
rem [4] by showing thatGi(p) := (U ′i)

−1
(Ci(p)) is a contraction

mapping [2]. However, the conditions obtained using this approach
are sometimes restrictive. Another way to show uniqueness is to
apply the following theorem.

THEOREM 6. Suppose that A1 and A3 hold and random ac-
cess gameG has a nontrivial Nash equilibrium. If additionally for
all i ∈ N , Ci(p) is strictly increasing inp, thenG has a unique
nontrivial Nash equilibrium.

PROOF. SinceUi(pi) is a continuously differentiable concave
function,U ′i(pi) is a continuous, decreasing function. Without loss
of generality, we consider the case thatΦi(pi) is strictly increas-
ing. Suppose that there are two nontrivial Nash equilibriap̄ and
p̂. By A3, there existγ1, γ2 > 0 such that, for alli, Φi(p̄i) =
γ1, Φi(p̂i) = γ2. SinceΦi(pi) is strictly increasing,γ1 6= γ2.
Without loss of generality, assumeγ1 > γ2. Thus,p̄i > p̂i for all
i. By equation (6),U ′i(p̄i) = Ci(p̄) > Ci(p̂) = U ′i(p̂i), which
contradicts the fact thatU ′i(pi) is a decreasing function. Thus, ifG
has a nontrivial Nash equilibrium, it is unique.

3.2 Utility Function Design
In the following, we give several examples to show how to inter-

pret existing medium access algorithms within random access game
framework and design utility functions to achieve desired equilib-
rium properties. There are basically three ways to design utility
functions.

3.2.1 Reverse Engineering from Existing Protocols
Take 802.11 DCF as an example. Different from [20], which

reverse engineers exponential backoff type of protocols from the
dynamic, we reverse engineer 802.11 DCF from the equilibrium
point. Letqi := 1−Qj∈N/{i}(1−pj) be the conditional collision
probability of nodei. It is well established that for a single-cell
wireless LAN at steady state, channel access probabilitypi relates
to conditional collision probabilityqi as follows [3]:

pi =
2(1− 2qi)

(1− 2qi)(a + 1) + qia(1− (2qi)m)
, (7)

wherea = CWmin is the base contention window andm is the
maximum backoff stage. Note that (7) defined an implicit function
qi = Fi(pi). Following procedures (3)–(4), we can derive a utility
function Ui(pi). When0 ≤ qi ≤ 1, m ≥ 1, anda ≥ 1, it can
be verified thatU ′′i (pi) < 0. Also, it can be readily checked that
F−1

i (qi) maps anyqi ∈ [0, 1] into a pointpi ∈ [0, 1]. From The-
orem 5, the random access gameG with the derived utility func-
tion has a nontrivial Nash equilibrium. To show the uniqueness
of equilibrium, we defineΦi(pi) = (1 − pi)(1 − U ′i(pi)). At
equilibrium p∗, we haveΦi(p

∗
i ) = Πi∈N (1 − p∗i ) = Φj(p

∗
j ),

∀i, j ∈ N . As Fi(pi) is an implicit function, we definẽΦi(qi) =
(1−F−1

i (qi))(1− qi), whereF−1
i (qi) is given in (7). It is easy to

show that̃Φi(qi) is a strictly decreasing function inqi andF−1
i (qi)

is also a strictly decreasing function inqi. Therefore,Φi(pi) is a
strictly increasing function. Also,Ci(p) = 1−Qj∈N/{i}(1−pj)
is strictly increasing. By Theorem 6, the random access gameG
has a unique nontrivial Nash equilibrium.

3.2.2 Reverse Engineering from Desired Operating
Points



In [11], a medium access control method is proposed, which dy-
namically sets the mean number of idle slots between transmis-
sion attempts to an optimal value. LetTc denote the average col-
lision duration andTSLOT denote the slot duration. It is derived
in [11] that when the number of users in the network|N | → ∞,
the throughput-optimal number of idle slots between two transmis-
sion attempts is

n̄opt
i∞ =

e−ξ

1− e−ξ
, (8)

whereξ is the solution to1 − ξ = ηe−ξ andη = 1 − TSLOT/Tc.
Note that̄nopt

i∞ is completely determined by the protocol parameters
but not by the number of nodes in the network. Letqi := 1 −Q

j∈N/{i}(1− pj). The probability of an idle slot is

(1− pi)(1− qi) =
n̄opt

i∞
n̄opt

i∞ + 1
= e−ξ. (9)

Applying (4), we obtain the utility function as

Ui(pi) = pi + e−ξ log(1− pi). (10)

Note thatUi(pi) does not satisfy A2 but it is clear that the random
access game with the utility (10) has a nontrivial Nash equilibrium.
This also shows the limitation of Theorem 5, which only specifies
a necessary condition. Utility function (10) does not satisfy the
conditions specified in Theorem 6. In fact, there may exist infinite
number of equilibria in the game with utility (10). To design a
game with unique equilibrium, we note that when|N | is large the
optimal attempt probability that maximizes the throughput is very
small. We thus have

(1− pi)
α(1− qi) = (1− pi)

α−1e−ξ ≈ e−ξ, (11)

whereα > 1 and the approximation holds whenα is not very large.
Applying (4), we obtain the utility function as

Ui(pi) = pi +
e−ξ

1− α
(1− pi)

1−α. (12)

Note that (12) still does not satisfy A2 and we cannot use Theorem
5. But at least one nontrivial Nash equilibrium exists, e.g.,p∗i =
1 − e−ξ/(α+|N|−1). DefineΦi(pi) = (1 − pi)(1 − U ′i(pi)) =

e−ξ

(1−pi)α−1 , which is strictly increasing inpi whenα > 1. Also

Ci(p) is strictly increasing inp. By Theorem 6, the random access
gameG has a unique nontrivial Nash equilibrium. Note that due to
the approximation used in (11) the equilibrium point for the game
with utility (12) may not achieve the optimal number of idle slots
n̄opt

i∞ . We will discuss in Section 4.3 how to design equilibrium
selection algorithm such that the equilibrium point by using (12)
can actually hit̄nopt

i∞ .

3.2.3 Forward Engineering by Heuristics
Consider a random access game with the following payoff func-

tion

ui(p) := Ui(pi)− pi

Y

j 6=i

(1− pj) = Ui(pi)− piqi, (13)

whereqi =
Q

j 6=i(1 − pj) is the contention measure represent-
ing the probability that all nodes except nodei do not transmit.
This payoff function is motivated by the heuristic that each wire-
less node should be “charged” by an amount that is proportional to
the throughput it achieves.

It turns out that the random access game with payoff (13) is a su-
permodular game. Supermodularity was introduced into the game
theory by Topkis [22]. Supermodular games have many nice prop-
erties such as the existence of Nash equilibria and the convergence
to the equilibria under different strategy update algorithms. The
simplicity of supermodular games makes concavity/convexity and
differentiability assumptions unnecessary, though we make such
assumptions in this paper. In the setting of random access games,
the definition of supermodularity and supermodular game reduces
to the following.

DEFINITION 7. The payoff functionui(pi,p−i) has increas-
ing differences (supermodularity) in(pi,p−i) if for all p−i ≥ p′−i

the quantityui(pi,p−i)−ui(pi,p
′
−i) is increasing inpi. For twice

differentiable payoffs, supermodularity is equivalent to∂2ui(p)
∂pi∂pj

≥
0 for all j 6= i.

DEFINITION 8. A random access gameG is supermodular if
for each nodei ∈ N the payoff functionui(pi,p−i) has increasing
differences in(pi,p−i).

It is easy to verify that∂2ui(p)/∂pi∂pj =
Q

j′ 6=i,j′ 6=j(1 −
pj′) ≥ 0. The following result is immediate [22].

THEOREM 9. A random access gameG with the payoff func-
tion (13) is a supermodular game, and the set of Nash equilibria
for G is nonempty.

As indicated by Theorem 9, no concavity/convexity assumption
on utility function is required to guarantee the existence of Nash
equilibria as in non-supermodular games. However, the uniqueness
of Nash equilibrium may require stronger condition. By following
similar argument as in Theorem 6, we have the following corollary
on the uniqueness of equilibrium for supermodular random access
games.

COROLLARY 10. Suppose that utility functionUi(·) is twice
continuously differentiable, increasing and strictly convex, and the
supermodular random access gameG with the payoff (13) has a
nontrivial Nash equilibrium. IfΦi(pi) = (1 − pi)U

′
i(pi) is a

strictly monotone function inSi, thenG has a unique nontrivial
Nash equilibrium.

As an example, we consider the following utility function given
in [7]

Ui(pi) :=
1

ai
(
(ai − 1)bi

ai
ln (aipi − bi)− pi), (14)

where0 < bi < 1, ai < 1, andpi ∈ ( bi
ai

,
bi+
√

b2i +ai(aibi−b2i−bi)

ai
).

It is easy to check thatUi(pi) is strictly convex andΦ′i(pi) < 0

whenpi <
bi+
√

b2i +ai(aibi−b2i−bi)

ai
. From Corollary 10, the su-

permodular game with utility function (14) has a unique nontrivial
Nash equilibrium.

There are many ways to design utility functions and random ac-
cess games. We only show a few specific examples in this section.
The key point of this section is that the random access game model
is general enough to include many of existing medium access con-
trol algorithms. Most of algorithms can be reverse engineered to be
a random access game with specific utility function and contention
measure.



4. DYNAMICS OF RANDOM ACCESS GAME
The dynamics of game studies how interacting players could

converge to a Nash equilibrium. It is a difficult problem in general.
In random access games, wireless nodes can observe the outcome
(in terms of some contention measure) of the actions of others, but
do not have direct knowledge of other nodes’ actions and payoffs.
We consider repeated play of random access game, and look for
strategy update mechanism in which nodes repeatedly adjust chan-
nel access probabilities in response to observations of other play-
ers’ actions so as to achieve the equilibrium.

4.1 Basic Dynamic Algorithms

4.1.1 Best Response
The simplest strategy update mechanism is the best response

strategy: at each stage, every node chooses the best response to
the actions of all the other nodes in the previous stage. Letp(0)
be the largest vector in the strategy space(Si)i∈N . At staget + 1,
nodei ∈ N chooses a channel access probability

pi(t + 1) = Bi(p(t)) := max{arg max
p∈Si

ui (p,p−i(t))}. (15)

At each stage, if more than one probability may be a best response
to a givenp−i(t), best response algorithm (15) always chooses the
largest probability. Clearly, if the above dynamics reaches a steady
state, this state is a Nash equilibrium. As there are no convergence
results for general games using this dynamics, we restrict our dis-
cussion to supermodular random access game with payoff (13) in
this subsection. We have the following result.

THEOREM 11. The best response strategy (15) converges to a
Nash equilibrium of random access gameG. Moreover, it is the
largest equilibrium in the set of Nash equilibria.

PROOF. The proof basically follows [22, Lemma 4.1]. By su-
permodularity, the best response is nondecreasing in other player
strategies. We can show thatp(0) ≥ p(1) ≥ · · · ≥ p(t) ≥ · · · ,
i.e., {p(t)} is a nonincreasing sequence. As the strategy space
(Si)i∈N is compact,{p(t)} has a limit point, which is a Nash
equilibrium. Letp = lim

t→∞
p(t). Since the best response is non-

decreasing in other player strategies,p is the largest Nash equilib-
rium.

If we setp(0) to the smallest vector in the strategy space and
always choose the smallest best response probability, the best re-
sponse strategy will converge to the smallest equilibriump. When
there exist multiple equilibria, the following theorem indicates that
the equilibrium attained by (15) yields the highest aggregate pay-
off.

THEOREM 12. The best response strategy (15) converges to a
Pareto dominant equilibrium, i.e.,ui(p) ≥ ui(p) for any Nash
equilibriump.

PROOF. From (13),ui is an increasing function ofp−i for fixed
pi. Sincep is the largest equilibrium, for any equilibriump we
have

ui(pi,p−i) ≤ ui(pi,p−i). (16)

On the other hand, by the definition of Nash equilibrium, we have

ui(pi,p−i) ≤ ui(pi,p−i). (17)

Combining (16) and (17), we obtain the theorem.

The following theorem guarantees that the best response con-
verges to a nontrivial equilibrium.

THEOREM 13. If the best responses to the smallest and largest
vectors in the strategy space are within the strategy space, then
nontrivial Nash equilibrium exists. Moreover, the best response
strategy (15) converges to the largest nontrivial Nash equilibrium.

PROOF. By supermodularity, the best response is nondecreas-
ing in other player strategies. If the best responses to the small-
est and largest vectors in the strategy space are within the strategy
space (i.e., not at the boundaries of the strategy space), then Nash
equilibrium must be within the strategy space. So, nontrivial Nash
equilibrium exists. The second part of the theorem is obvious.

By using Theorem 13, it is easy to obtain conditions onai andbi

in (14) such that the best response strategy converges to a nontriv-
ial equilibrium of the corresponding game. Without using Corol-
lary 10, the uniqueness of nontrivial equilibrium can also be ob-
tained by showing that the best response strategy is a contraction
mapping. A condition for convergence of best response strategy is
also given in [7] for general random access games, which is hard
to verify. Supermodularity greatly simplifies the conditions for the
convergence of best response strategy.

4.1.2 Gradient Play
An alternative strategy update mechanism is gradient play [9].

Compared to “best response” strategy, gradient play can be viewed
as a “better response”. In gradient play, every node adjusts its chan-
nel access probability gradually in a gradient direction suggested
by contention measurements. Mathematically, each nodei ∈ N
updates its strategy according to

pi(t + 1) = [pi(t) + εi(t)(U
′
i(pi(t))− qi(p(t)))]Si, (18)

where the stepsizeεi(·) > 0 is a function in time,[·]Si denotes the
projection onto nodei’s strategy space. The gradient play has a nice
economic interpretation. If the marginal utilityU ′i(pi(t)) is greater
than the contention priceqi(p(t)), we increase the access probabil-
ity, and if the marginal utility is less than the contention price, we
decrease the access probability. In the following, we assume that
all nodes∀i ∈ N have the same stepsizeεi(t) = ε(t).

THEOREM 14. Let C(p) = (Ci(p)) and denote byJC =
(JC

ij ) the Jacobian ofC(p). Suppose that the smallest eigenvalue
of JC , λmin(JC), satisfiesµ + λmin(JC) > 0, maxj |JC

ij |2 ≤ M ,
and the random access game has a unique nontrivial Nash equilib-
rium p∗. The gradient play (18) converges geometrically top∗ if

the stepsizeε(t) < µ+λmin(JC)

χ2+|N|M .

The proof of Theorem 14 is given in appendix. Theorem 14
also shows the convergence rate of gradient play. As an example
of using Theorem 14, we consider the utility function defined in
(12). By assuming that all nodes’ strategy spaces are identical, i.e.,
S = [ν, ω]. In this case, we have

µ =
αe−ξ

(1− ν)α+1
, χ =

αe−ξ

(1− ω)α+1
. (19)

To findλmin(JC), we note that

JC(p) = −(
Y

i

(1− pi))(diag(x)2 − xxT ), (20)



wherex =
h

1
1−p1

, . . . , 1
1−p|N|

iT

. Note that each entry ofx is less

than 1
1−ω

. By using Rayleigh quotient [12], it is easy to show that

the maximum eigenvalue ofdiag(x)2 − xxT is less than 1
(1−ω)2

.
Thus, Theorem 14 requires that

λmin(JC) + µ ≥ − (1− υ)|N|

(1− ω)2
+

αe−ξ

(1− ν)α+1
> 0. (21)

Condition (21) is mild. For example, if we takeω = 2/33 and
α = 2, all ν ∈ [0, 1] satisfy (21). We see that a largerα indicates a
largerµ, which means a greater convergence rate by (35).

4.1.3 Jacobi Play
Finally, we consider another alternative strategy update mech-

anism called Jacobi play, whose name comes from Jacobi update
scheme, see, e.g., [19]. In Jacobi play, every player adjusts cur-
rent channel access probability gradually towards the best response
strategy. Mathematically, at staget + 1, nodei ∈ N chooses a
channel access probability

pi(t + 1)=Ji(p(t)) :=[pi(t)+εi(t) (Bi(p(t))− pi(t))]
Si, (22)

where the stepsizeεi(t) > 0 andBi(p(t)) is defined in (15). When
εi(t) = 1, we recover the best response strategy. In case of super-
modular game, ifεi(t) ≤ 1, it is easy to verify that{pi(t)} is a
nonincreasing sequence. Thus, Theorem 13 still applies to Jacobi
play. Jacobi play converges slower than best response strategy for
supermodular game. Hence, it is not interesting in this case. For
general random access games, we can also show the convergence
of Jacobi play in a similar way as in gradient play. We omit them
for brevity. Details can be found in [8]. We note that in case of non-
supermodular game with unique equilibrium, Jacobi play generally
achieves a smoother dynamic than best response does. Sometimes
best response does not even work. For example, most of the utility
functions in Section 3.2.2 do not satisfy the conditions specified in
Theorem 13. So best response does not converge to a nontrivial
Nash equilibrium. However, Jacobi play still works in this case.

4.1.4 Contention Measure Signal Estimation
The dynamic algorithms require the knowledge of contention

measure signals. In practice, contention measure signals can be
estimated via the observation of the wireless medium over sev-
eral time slots. As an example, we consider the contention mea-
sure – conditional collision probability used in Section 3.2.2. Let
n denote the number of consecutive idle slots between two trans-
missions. Sincen has the geometric distribution with parameter
γ(p) =

Q
i∈N (1 − pi), its meann̄ is given by n̄ = γ(p)

1−γ(p)
,

which can be estimated by averaging overntrans occurrences of
this event. At every step,̄n is updated according tōn ← βn̄ +
(1 − β)isum/ntrans, whereisum is the total number of idle
slots duringntrans occurrences. Thus, each node can estimate its
conditional collision probability according to

qi = 1− γ(p)

1− pi
=

1− (n̄ + 1)pi

(n̄ + 1)(1− pi)
. (23)

4.2 Dynamic Algorithms under Estimation Er-
ror

In practice, due to propagation delay, nodes may not update their
channel access probability at the same time. The asynchronous
counterparts of the algorithms presented in Section 4.1 can be found

in [8]. In this section, we consider dynamic algorithms under es-
timation error. Due to the use of estimated contention measure
signals, the algorithms in Section 4.1 are in fact stochastic algo-
rithms. In the following, we only consider gradient play. The
results of Jacobi play can be obtained similarly. We assume that
qi(p(t)) is replaced bŷqi(p(t)) = qi(p(t))+wi(t) in (18), where
wi(t) is the estimation error. LetFt be an increasing sequence of
σ-fields. Without loss of generality, we writewi(t) aswi(t) =
w̄i(t) + w̃i(t), wherew̄i(t) = E{wi(t)|Ft} can be considered as
the deterministic error and̃wi(t) = wi(t)− w̄i(t) is the stochastic
error with zero mean. We further assume thatlimt→∞ w̄i(t) = w̄i.
The deterministic error may be caused by the bias of signal estima-
tion and carrier sense error due to fading and background noise.
For ease of understanding, in the following, we discuss determin-
istic and stochastic errors separately. The proof of the following
theorems can be found in [8].

THEOREM 15. Let λmin(JC) denote the smallest eigenvalue
of JC andmaxj |JC

ij |2 ≤ M . Let p∗ denote the equilibrium de-
fined by

U ′i(p
∗
i ) = qi(p

∗) + w̄i. (24)

If p∗ is in the strategy space and it is the unique equilibrium de-
fined by (24), the gradient play converges top∗ provided µ +

λmin(JC) > 0 andε(t) < µ+λmin(JC)

χ2+4|N|M .

The uniqueness ofp∗ can be obtained by using Theorem 6. Note
that under certain conditions, by implicit function theorem [2], (24)
defines an implicit functionp∗(w̄) at the neighborhood of̄w = 0.
Therefore, for anyε > 0, there exists aδ > 0 such that if‖w̄‖2 <
δ, ‖p∗(w̄) − p∗(0)‖2 < ε. So the gradient play converges to a
neighborhood of the equilibrium point without estimation error.

For the stochastic error, we consider gradient play with variable
stepsize and constant stepsize, respectively.

THEOREM 16. Let λmin(JC) denote the smallest eigenvalue
of JC . Suppose thatE{wi(t)|Ft} = 0, E{w2

i (t)|Ft} ≤ B, and

∞X
t=0

ε(t) = ∞,

∞X
t=0

ε2(t) < ∞. (25)

If p∗ is the unique nontrivial Nash equilibrium, the gradient play
converges top∗ with probability 1 providedµ + λmin(JC) > 0.

THEOREM 17. Let λmin(JC) denote the smallest eigenvalue
of JC and maxj |JC

ij |2 ≤ M . Suppose thatE{wi(t)|Ft} = 0,
E{w2

i (t)|Ft} ≤ B, andε(t) = ε, ∀t. If p∗ is the unique nontrivial
Nash equilibrium, there exists a constantD(B, ε) > 0 such that

lim sup
t→∞

‖p(t)− p∗‖2 ≤ D(B, ε) (26)

providedµ + λmin(JC) > 0 andε < µ+λmin(JC)

χ2+4|N|M .

By combining Theorems 15 and 17, we can conclude that with
constant stepsize, the stochastic gradient play converges to a neigh-
borhood of the equilibrium.

4.3 Equilibrium Selection
The equilibrium attained by using the dynamic algorithms in

Section 4.1 does not necessarily converge to the desired operat-
ing point (that achieves the maximum throughput) when the utility



functions in Section 3.2.2 are considered. This is because the ap-
proximation used in (11). One approach of equilibrium selection
is to estimate the number of users viâN = log(1 − qi)/ log(1 −
pi)+1 at equilibrium and to set the channel access probability to be
the optimal value computed by usinĝN . However, as commented
in [13], this approach may not converge due to open loop control.
The other approach is to use an outer loop iteration and treat the
algorithms in Section 4.1 as the inner loop iteration. Take utility
function (12) for example. Letτ denote the counter of outer loop
iteration and define the utility function at theτ -th outer iteration as

Ui(pi, τ) = pi +
η(τ)

1− α
(1− pi)

1−α, (27)

whereη(0) = e−ξ. Denote the equilibrium for the game with
utility (27) by p(τ). To cancel the effect of neglecting(1−pi)

α−1

in (11), we do the outer iteration

η(τ + 1) = (1− pi(τ))α−1e−ξ. (28)

At equilibrium, all nodes have the same access probability, denoted
asp(τ). By (28), we obtain

p(τ + 1) = 1− |N|+α−1
p

(1− p(τ))α−1e−ξ. (29)

LetM(p) be the mapping defined by (29). By mean value theorem,
it is easy to show

|M(p1)−M(p2)| ≤ e
− ξ
|N|+α−1 (α− 1)(1− ω)

α−1
|N|+α−1−1

|N |+ α− 1
|p1−p2|.

(30)

Therefore, if e
− ξ
|N|+α−1 (α−1)(1−ω)

α−1
|N|+α−1−1

|N|+α−1
< 1, M(p) is a

contraction mapping [2] and (29) converges to the unique fixed
point ofM(p), which is the desired operating point. From (30), we
can see that a largerα indicates a smaller outer loop convergence
rate, while a largerα results in a greater inner loop convergence
rate as suggested in Theorem 14. Therefore, there exists an optimal
α to achieve the best overall convergence rate. In practice, when
exactp(τ) is not available, we can use the average probability over
a long duration. Also, outer loop iteration can be executed without
waiting for the convergence of the inner loop iteration.

5. EXPERIMENTAL RESULTS
In this section, we run some numerical experiments to compare

the performance of different medium access protocols. The sys-
tem parameters are those specified in the IEEE 802.11b standard
with DSSS PHY layer [1], where the values of parameters are sum-
marized in Table 1. We consider a single-cell network with per-
fect wireless channel, i.e., there is no corrupted frame. In all sim-
ulations, the initial channel access probability is set to be2/33,
which corresponds toCWmin = 32 in 802.11b DCF. For our game
based protocols, we setntrans = 5 andβ = 0.8 (see Subsection
4.1.4) for contention measure estimation unless specifically stated.
Throughput and fairness are obtained after106 transmissions. The
throughput in this section is the aggregate throughput of all nodes.
Except in Section 5.3, equilibrium selection is not applied to the
game based design as without equilibrium selection its throughput
is already close to the optimal value.

5.1 Comparison of Dynamic Algorithms
We consider a system of homogeneous users, and compare the

dynamics of different strategy update algorithms for supermodular
game with utility function (14). To compare the performance of our

Table 1: Parameters used in simulations

Slot Time ( TSLOT) 20 µs

SIFS 10 µs

DIFS 50 µs

Basic Rate 1 Mbps
Data Rate 11 Mbps

Propagation Delay 1 µs

PHY Header 192 bits
MAC Header 272 bits

ACK 112 bits
Packet Payload ( sd) 12000 bits

game based design with that of 802.11 DCF on the same ground,

we choosea, b such thatb/a = CWmin and
b+
√

b2+a(ab−b2−b)

a
=

2mCWmin = CWmax, corresponding to a maximum backoff stage
m.

Figures 1.(a), (b), and (c) show the evolution of channel access
probability under best response (15), gradient play (18) and Ja-
cobi play (22), respectively, where|N | = 20, CWmin = 32 and
CWmax = 256, and the stepsize is chosen to beεi(t) = 0.0016
for the gradient play andεi(t) = 0.5 for the Jocobi play. We see
that best response converges close to the equilibrium only after 2
iterations with perfect contention measure estimation. Even with
estimation error, best response converges to a neighborhood of the
equilibrium after 5 iterations. Gradient play requires at least 15 it-
erations to converge to the equilibrium. The convergence rate of
Jacobi play is between that of best response and that of gradient
play. From Figure 1, we also observe that the estimation error does
not affect the dynamic too much in supermodular games.

Figure 2 compares the throughput between the game based de-
sign according to gradient play and 802.11b DCF withCWmin =
32 andCWmax = 256. We see that for a small number of wire-
less nodes, DCF provides a higher throughput. But when the num-
ber of nodes is greater than 7, our method achieves a much higher
throughput. We also find that by using estimated signal no notice-
able performance loss is incurred.

5.2 Game Reverse-Engineered from the De-
sired Operating Point

We then consider the game model with utility function (12) de-
rived in Subsection 3.2.2, and compare the performance of MAC
based on this game model with that of idle sense protocol in [11].
We chooseξ = 0.1622 andα = 2. The parameters in idle sense
are set as those in [11].

Figure 3 compares the dynamics of idle sense and gradient play
(18) of the game with utility (12) in a network of 20 nodes, where
the stepsize is chosen to beεi(t) = 0.02. We see even with perfect
knowledge of expected number of idle slots, idle sense oscillates
around the optimal value. On the other hand, game model achieves
a smoother dynamic in both cases with perfect signal and estimated
signal. Both algorithms have roughly the same convergence rate.
We can clearly see the geometric convergence rate predicted by
Theorem 14. The equilibrium by our method is close to the optimal
value but not equal due to the approximation used in (11).

Figure 4 compares the throughput of idle sense, game based
dsign, and DCF with the same parameters as in Figure 3. We use
estimated signals in both idle sense and game based design. When
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Figure 1: The evolution of channel access probability under
different strategy update algorithms for supermodular random
access game with utility function (14) in a network of 20 wire-
less nodes.
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Figure 2: Throughput comparison between supermodular
game based design and 802.11b DCF withCWmin = 32 and
CWmax = 256.

the number of nodes in the network is small, idle sense achieves
a higher throughput than both the game based design and 802.11b
DCF. Game based design performs worse in this case because the
approximation used in (11) is not accurate when the number of
node is small. The performance of game based design can be im-
proved by using equilibrium selection algorithm. As the number
of users increases, both idle sense and game based design perform
fairly close to the optimal throughput. They achieve a much higher
throughput than DCF. This also indicates that when the number of
users is large, equilibrium selection is not necessary as the achieved
throughput by game based design is already very close to the opti-
mal throughput.

Figure 5 compares the short-term fairness of different protocols
using Jain fairness index [14] for normalized window sizes that are
multiples of the number of wireless nodes. All parameters are the
same as in Figure 3. We see that both idle sense and game based
design provide much better short-term fairness than 802.11b as in
both protocols wireless nodes have roughly the same contention
window size.

5.3 Equilibrium Selection
Finally, we check the equilibrium selection algorithm described

in Section 4.3. We consider a network of 5 nodes. The gradient
play (18) for the game model with utility (12) is simulated, where
ξ = 0.1622 and the stepsizeεi(t) = 0.02. We assume perfect
contention measure signals and we decide that the inner loop con-
vergence is attained if‖p(t + 1) − p(t)‖2 ≤ 3 × 10−4. Figure 6
compares the dynamics with differentα values in utility (12). We
see that the inner loop convergence rate increases by increasingα,
while the outer loop convergence rate decreases by increasingα.

6. CONCLUSIONS
We have presented a game-theoretic model to capture the dis-

tributed nature of contention control and the contention/interaction
among wireless nodes with contention-based medium access. This
presents a unique perspective to understand existing medium ac-
cess protocols, and a systematic design methodology for medium
access control. Several examples have been given on how to design
random access games from reverse-engineering and forward engi-
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Figure 3: Dynamics of idle sense and the game with utility
function (12) with gradient play (18) in a network of 20 nodes,
where ξ = 0.1622 and α = 2, and the stepsize is chosen to be
εi(t) = 0.02.

neering. Simulation results have shown that, with appropriately
designed game models, game based protocols can achieve superior
performance over the IEEE 802.11 DCF, and comparable perfor-
mance as existing protocols with the best performance in literature.
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APPENDIX

A. PROOF OF THEOREM 14

PROOF. By equation (18), we have

‖p(t + 1)− p∗‖22
=
X
i∈N

|[pi(t) + ε(t)(U ′i(pi(t))− Ci(qi(p(t))))]Si − p∗i |2

≤
X
i∈N

|pi(t) + ε(t)(U ′i(pi(t))− Ci(p(t)))− p∗i |2

≤‖p(t)− p∗‖22 + 2ε(t)
X

i

(pi(t)− p∗i )(U
′
i(pi(t))− Ci(p(t)))

+ ε2(t)
X

i

(U ′i(pi(t))− Ci(p(t)))2

(a)

≤‖p(t)− p∗‖22 + 2ε(t)
X

i

(pi(t)− p∗i )(U
′
i(pi(t))− U ′i(p

∗
i ))

− 2ε(t)
X

i

(pi(t)− p∗i )(Ci(p(t))− Ci(p
∗))

+ ε2(t)
X

i

(U ′i(pi(t))− Ci(p(t)))2,

(31)

where we have usedCi(p(t)) to denoteCi(qi(p(t))). In (a), we
use the fact thatU ′i(p

∗
i ) = Ci(p

∗) at the nontrivial Nash equilib-
rium. By mean value theorem, we find

X
i

(pi(t)− p∗i )(U
′
i(pi(t))− U ′i(p

∗
i ))

=
X

i

U ′i(p̃i)(pi(t)− p∗i )
2 ≤ −µ‖p(t)− p∗‖22,

(32)

wherep̃i ∈ {pi|pi = γpi(t) + (1 − γ)p∗i , γ ∈ [0, 1]}. Define
a scalar functionf(p) = (p(t) − p∗)T C(p). By mean value
theorem, we have

f(p(t))− f(p∗) =(p(t)− p∗)T JC(p̃)(p(t)− p∗)

≥λmin(JC)‖p(t)− p∗‖22.
(33)

We also haveX
i

(U ′i(pi(t))− Ci(p(t)))2

=
X

i

(U ′i(pi(t))− U ′i(p
∗
i ) + Ci(p

∗)− Ci(p(t)))2

≤2
X

i

(U ′i(pi(t))− U ′i(p
∗
i ))

2 + 2
X

i

(Ci(p(t))− Ci(p
∗))2

(a)

≤2χ2‖p(t)− p∗‖22 + 2
X

i

(JC
i (p̃i)(p(t)− p∗))2

≤2χ2‖p(t)− p∗‖22 + 2(
X

i

max
j

���JC
ij (p̃i)

���
2

)‖p(t)− p∗‖22

≤2(χ2 + |N |M)‖p(t)− p∗‖22,
(34)

where(a) comes from mean value theorem. Substituting (32)-(34)
into (31), we obtain

‖p(t + 1)− p∗‖22 ≤
(1− 2ε(t)(µ + λmin(JC)− ε(t)(χ2 + |N |M)))‖p(t)− p∗‖22.

(35)

Therefore, ifµ + λmin(JC) > 0 andε(t) < µ+λmin(JC)

χ2+|N|M , p(t)

converges top∗ geometrically.


