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ABSTRACT Keywords

In this paper, a game-theoretic model for contention based mediumMedium access control, Game theory, Nash equilibrium, Strategy
access control (contention control) is proposed. We define a generalupdate mechanism, Fairness, Wireless LANSs.

game-theoretic model, called random access game, to capture the

distributed nature of contention control and the interaction among 1. INTRODUCTION

wireless nodes with contention-based medium access. We study the
design of random access games, characterize their equilibria, studyA
their dynamics, and propose distributed algorithms to achieve the
equilibria. This provides a unique perspective to understand exist-
ing MAC protocols and a general framework to guide the design
of new ones to improve the system performance. As examples, a
series of utility functions is proposed for games achieving the max-
imum throughput in a network of homogeneous nodes. The con-
vergence of different variants (e.g., asynchronous and stochastic
algorithms) of different dynamic algorithms such as gradient play
are obtained. An equilibrium selection algorithm is also proposed pi(t+1) = Fi(pi(t),q:(t)), qi(t) =Ci(p(t)), 1)
to guarantee that the dynamic algorithms can actually achieve thewherepi(t) is the channel access probability of nodep(t) =

desired operating point. Simulation results show that game model( (#)) is the corresponding vector, aug(t) is certain measure
based protocols can achieve superior performance over the stan-2? P g '

dard IEEE 802.11 DCF, and comparable performance as existing of contention observed by n.o_deha.t depend§ on the VeCtp(?)'
) - The channel access probabiliy(t) is usually implemented either
protocols with the best performance in literature.

through a backoff algorithm on contention window or as a persis-
tence probability. For example, the standard IEEE 802.11 DCF has
. ; ; a backoff algorithm that induces a channel access probability and
Categones and SUbJeCt Descrlptors can be modeled by some functidf. The algorithm responds to
C.2.5 [Computer-Communication Networks]: Local and Wide- whether there is a collision, and hence the measure of contention
Area Networks—Access schemes ¢:(t) in 802.11 DCF is the probability of collision whose depen-
dence on the channel access probability vept@) can be mod-
elled by some functiod;.
General Terms The performance of a MAC, e.g., the throughput, fairness and
Algorithms, Performance collision, depends critically on the equilibrium and stability of the
dynamical system defined by (1). In this paper, extending from [7]
P . ; we propose a game-theoretic model to understand the dynamical
This work is partially supported by NSF through grants CNS-

0435520 and CCR-0326554. and Caltech's Lee Center for Ad- system (1), use it to design new classes of MAC, and present simu-
vanced Networking. ' lation results that demonstrate its superior performance over 802.11

DCF. Specifically, in Section 3, we propose a general random ac-

cess game to model MAC protocols. The key idea is to consider

each node to have a utility functionU; (p;) as a function of its
Permission to make digital or hard copies of all or part of this work for F:hannel acces§ probabilipy. The goal of nqde Is to maXIml.ze
personal or classroom use is granted without fee provided that copies are!tS payoff functionu:(p) := Ui(p:) — piq: given the contention
not made or distributed for profit or commercial advantage and that copies measurey;. Hence, the steady state properties of a MAC can be an-
bear this notice and the full citation on the first page. To copy otherwise, to alyzed or designed through the specification of the utility function
reput_)lish, to post on servers or to redistribute to lists, requires prior specific U.(p;) and the choice of the contention measgsée.g., collision
permission and/or a fee. probability, or idle time between channel access, etc). Their spec-

WICON'07, October 22-24, 2007, Austin, Texas, USA o . . .
Copyright 2007 ACM 987-963-9799-04-2/07/10 ...$5.00. ification defines the underlying random access game whose equi-

Wireless channel is a shared medium that is interference-limited.
contention-based medium access control (contention control) is
a distributed strategy to access and share a wireless channel among
competing wireless nodes. It dynamically adjushsinnel access
probabilityin response to the amount of contention in the network.
Note that the amount of contention itself depends on the channel ac-
cess probabilities chosen by the wireless nodes. Hence contention
control is a distributed, iterative feedback system described mathe-
matically as:




librium determines the steady state properties such as throughput[16-18].
fairness and collision of MAC. The adaptation of channel access

probability can be specified througlf, C) and corresponds to dif- 3. GAME-THEORETIC MODEL OF CON-

ferent strategies to approach the equilibrium of the random access

game. TENTION CONTROL
We provide conditions under which equilibrium exists and is

unique. Several examples are provided on how to design the util- 3.1 Random Access Game

ity function and determine the contention measure by reverse engi-  consider a set\ of wireless nodes in a wireless LAN with
neering from existing protocols and from desired operating points qntention-based medium access. In this paper, we only consider
(e.g., in terms of some target throughput and faimess), and by for- gjngle-cellwireless LANSs, where every wireless node can hear ev-
ward engineering from heuristics. Especially, a series of utility gry other node in the network. The analysis in this paper can be
functions is proposed for games achieving the maximum through- gyiended to general multicell networks. We assume all nodes al-
put in a network of homogeneous nodes. Supermodular game i, ays have a frame to transmit. The wireless channel is assumed
also considered, which guarantees the existence of Nash equilib-, he error free and packet loss is only due to collision. We will
rium. Moreover, the best response strategy discussed in Sectionmainly present our theory and analysis in terms of “channel access
4 can converge to a Pareto dominant equilibrium of supermodular - 4papility” If a backoff mechanism is implemented, the channel
random access game. In Section 4, we also consider another tWa,¢cess probability is related to the contention windoww ac-
dynan_nc algorithms to achieve the gqumbrlu_r_n: gradient play and cording top = Cw2+1’ which can be derived under the decoupling
Jacobi play. We show that under mild conditions both algorithms 5 5roximation with constant contention windows, see, e.g., [3].
converge to the unique equilibrium. We also consider gradientplay | practice, itis hard for wireless nodes to learn directly the chan-
under estimation error, and show that it converges to a neighbor- e 5ccess probabilities of others. Each node infers the contention
hood of the equilibrium point. Due to the lack of knowledge of = he wireless network through observing some contention mea-
the number of users in the network and the approximation made in gre,, which are functions of the nodes’ channel access probabili-
utility function design, the dynamic algorithms may not converge jes. Following [7], we model the interaction among wireless nodes

to the desired operating point. An equilibrium selection algorithm 54 5 non-cooperative game. Formally, we define a random access
is thus proposed to make these algorithms actually hit the desiredgame as follows.

point. Simulation results show that game model based protocols
can achieve superior performance over the standard IEEE 802.11
DCF, and comparable performance as existing protocols with the
best performance in literature.

DEfFINITION 1. Arandom access gandkis defined as a quadru-
ple G := {N,(Si)ien; (ui)ien, (¢i)ien'}, whereN is a set of
players (wireless nodes), playérc N strategyS; := {pi|p: €
[vi,wi]} with 0 < v; < w; < 1, and payoff function; (p) =
2. RELATED WORK Ui(pi) — pigi with utility function U;(p;) and given contention

There are lots of works on medium access control. Here we only Measurey; = Ci(p).
mention a few that are most closely related to this work. Game-
theoretic approach has been applied extensively to study medium The payoff function can be interpreted as the net gain of util-
access, see, e.g., [5-7, 15, 20, 21]. Jin et al. [15] studies noncoop4ty from channel access discounted by the contention “cost”. One
erative equilibrium of Aloha networks and their local convergence. Property of this random access game is that the computation of the
Borkar et al. [5] studies distributed scheme for adapting random payoff function does not require explicit exchange of channel ac-
accessCagalj et al. [6] studies selfish behavior in CSMA/CA net-  Cess probabilities between nodes. Thus, this game can be played
works and propose a distributed protocol to guide multiple self- and implemented distributedly. Random access game is a rather
ish nodes to a Pareto-optimal Nash equilibrium. Lee et. al. [20] general model for contention control, as the payoff function can be
reverse-engineers backoff-based MAC protocols using a noncoop-reverse-engineered from (1). The fixed point of (1) defines an im-
erative game model. This paper is an extension of earlier work [7]. Plicit relation between channel access probabjlitand contention
Related work also includes [11] that proposes an idle sense accesgneasurey;,
method without estimating the number of nodes, which compares
the mean number of idle slots between transmission attempts with pi = Fi(pi; i)- @
the optimal valu_e and adopts an additive increase and multip!icative If this relation can be written as
decrease algorithm to dynamically control the contention window
in order to improve throughput and short-term fairness. g = Fi(ps), ?3)

Finally, a comparison with TCP congestion control is in place.
Contention control has striking similarity with congestion control. the utility function of each nodeis defined as
They need to handle almost the same issues such as congestion z
or contention measure, load control (e.g., window update) algo- Ui(pi) = Fi(pi)dps. 4)
rithm, and decoupling load control from handling failed transmis-
sions, etc. However, the interaction among wireless nodes is dif- Therefore, we can reverse engineer medium access control proto-
ferent from that among TCP flows, which means a different model cols and study them in game theoretic framework: medium access
is needed to study contention control. Actually, one of the motiva- control can be interpreted as a distributed strategy update algorithm
tions of this work and earlier work [7] is try to develop a parallel to achieve the equilibrium of the random access game.
story for contention control to what has been done for TCP con- We now analyze the equilibrium of random access game. We
gestion control in the utility maximization framework, see, e.g., say a channel access probability vegbdris an equilibrium, if for



given network contentio(C;(p*)):ea- N0 Nnode has an incentive to
changét

DEFINITION 2. A channel access probability vectpf is said
to be an equilibrium of random access game, if for given network
contention(C; (p*)):ear N0 node can improve its payoff by deviat-
ing from the equilibrium, i.ex; (p*) > Ui (p:) — piCi(P™), Vpi €
S;. An equilibriump* is anontrivial equilibrium if p; satisfies
0

opi Ui(p;) =Ci(p"), Vi€ N.

©)

The reason to consider nontrivial equilibrium is to avoid those
equilibria in which some player takes strategy at the boundary of
the strategy space, which usually results in great unfairness or low
payoff. Denote the channel access probability for all nodes byt
P-i = (pl, vy Pi—1,Dit1y e 7p‘N‘), and Wl'ite(pi7 p,i) = p.

If a node’s contention measure signal is a function only of other
nodes’ channel access probabilities, ig.~ C;(p—i), the equi-
librium defined in Definition 2 reduces to the concept of Nash equi-
librium [10].

DEFINITION 3. A channel access probability vectpf is said
to be a Nash equilibrium if no node can improve its payoff by
unilaterally deviating from the equilibrium, i.ey;(p;,p=;) >
ui(ps, P*4), VYpi € S;. ANash equilibriunp™ is anontrivial equi-
librium if p; satisfies

O i Pt =0, Vi € . ©®)

Opi
Throughout this paper, we will only consider those contention
measures that can be describediby= C;(p_i). So, we will focus
onNash equilibriumin the following. To facilitate analysis, we list
some assumptions that will be used in this paper.

Al: The utility functionU;(-) is twice continuously differentiable,
increasing, strictly concave, and with finite curvatures that are
bounded away from zero, i.e., there exist some constaatsl
x suchthatl/p > —1/U{"(p:) > 1/x > 0.

A2: The inverse functioriU’;) " (¢;) maps any;; into a point inS;

foralli e N.

A3: At a nontrivial Nash equilibriump™, there exists a function
®;(p:) for each node such that; (p;) = ®;(p;}), Vi,j € N

and®;(p;) is strictly monotone ir§;, Vi € N.

By [10, Theorem 1.2] and Brouwer’s fixed point theorem [4], the
following two theorems are immediate.

THEOREM 4. Under assumption A1, there exists a Nash equi-
librium for any random access gange

THEOREM 5. Suppose A2 holds. Random access ggrhas
a nontrivial Nash equilibrium.

LIf we interpret contention measure as some contention price, un-

Since the equilibrium determines the operating point of medium
access control, it is desired to have a unique nontrivial Nash equi-
librium. One way to show this is to use Banach fixed point theo-
rem [4] by showing that?; (p) := (U{)*1 (C;s(p)) is a contraction
mapping [2]. However, the conditions obtained using this approach
are sometimes restrictive. Another way to show uniqueness is to
apply the following theorem.

THEOREM 6. Suppose that A1 and A3 hold and random ac-
cess gamg has a nontrivial Nash equilibrium. If additionally for
all i € NV, Ci(p) is strictly increasing inp, thenG has a unique
nontrivial Nash equilibrium.

PrROOF SinceU;(p;) is a continuously differentiable concave
function,U; (p;) is a continuous, decreasing function. Without loss
of generality, we consider the case tdat(p;) is strictly increas-
ing. Suppose that there are two nontrivial Nash equilifgriand
p. By A3, there existy1,v2 > 0 such that, for alk, ®;(p;) =
1, ®i(P;) = 2. Since®;(p;) is strictly increasing;yr # 2.
Without loss of generality, assume > .. Thus,p; > p; for all
i. By equation (6)U;(p;) = Ci(P) > Ci(p) = Uj(p:), which
contradicts the fact thdf; (p;) is a decreasing function. Thus gf
has a nontrivial Nash equilibrium, it is uniquel

3.2 Utility Function Design

In the following, we give several examples to show how to inter-
pret existing medium access algorithms within random access game
framework and design utility functions to achieve desired equilib-
rium properties. There are basically three ways to design utility
functions.

3.2.1 Reverse Engineering from Existing Protocols

Take 802.11 DCF as an example. Different from [20], which
reverse engineers exponential backoff type of protocols from the
dynamic, we rever& engineer 802.11 DCF from the equilibrium
point. Letq; :=1— =, (;,(1—p;) be the conditional collision
probability of nodei. It is well established that for a single-cell
wireless LAN at steady state, channel access probabilitglates
to conditional collision probability;; as follows [3]:

2(1 — 2q;)
1-2g:)(a+1) +gia(l — (2¢:)™)’
wherea = CWhqn is the base contention window amd is the
maximum backoff stage. Note that (7) defined an implicit function
g; = Fi(p:). Following procedures (3)—(4), we can derive a utility
function U;(p;). When0 < ¢; < 1, m > 1, anda > 1, it can
be verified that/;’ (p;) < 0. Also, it can be readily checked that
F'(g;) maps anyy; € [0, 1] into a pointp; € [0, 1]. From The-
orem 5, the random access gamavith the derived utility func-
tion has a nontrivial Nash equilibrium. To show the uniqueness
of equilibrium, we defined;(p;) (1 — p)(1 — Ul(ps)). At
equilibrium p*, we have®;(p;) = ILien (1 — p;) = @;(p}),
Vi,j € N. As F;(p;) is an implicit function, we defin@; (¢;)
(1—F;7"(¢:))(1 — q:), whereF; ' (g;) is given in (7). Itis easy to
show thatb; (¢;) is a strictly decreasing function in and F,~* (¢;)
is also a strictly decreasing function dg. Th%efore,d)i (p:) is a
strictly increasing function. Alsa@ji(p) = 1— ~; /1, (1 —Pps)

pi = ( (7)

der this equilibrium concept wireless nodes can be seen as price-iS Strictly increasing. By Theorem 6, the random access game

taking agents. For agents with price-anticipating behavior, the ap-
propriate solution concept is that of Nash equilibrium. It would be
interesting to compare the performances of MAC under these two
kinds of equilibria.

has a unique nontrivial Nash equilibrium.

3.2.2 Reverse Engineering from Desired Operating
Points



In [11], a medium access control method is proposed, which dy-

namically sets the mean number of idle slots between transmis-

sion attempts to an optimal value. LEt denote the average col-
lision duration andl’s;,ot denote the slot duration. It is derived
in [11] that when the number of users in the netwphk — oo,

the throughput-optimal number of idle slots between two transmis-
sion attempts is

e*f
1—e ¢’

—opt
Nico

C)

where¢ is the solution tol — ¢ = ne~% andn = 1 — Tsrot /T

Note thatzi2" is completely determined by the protocol parameters
t not by the number of nodes in the network. ket:= 1 —

jenr/{iy (1 — p;). The probability of an idle slot is

_opt
ﬁ°};fi 1 o
Applying (4), we obtain the utility function as

Ui(pi) (10)

Note thatU; (p;) does not satisfy A2 but it is clear that the random
access game with the utility (10) has a nontrivial Nash equilibrium.
This also shows the limitation of Theorem 5, which only specifies
a necessary condition. Utility function (10) does not satisfy the
conditions specified in Theorem 6. In fact, there may exist infinite
number of equilibria in the game with utility (10). To design a
game with unique equilibrium, we note that whigvi| is large the
optimal attempt probability that maximizes the throughput is very
small. We thus have

(1-p)*(1—q) =

wherea > 1 and the approximation holds wheris not very large.
Applying (4), we obtain the utility function as

1=p)(1—gq)= 9)

=pi+ e ¢ log(1 — p;).

1—p)* et med, (11)

3

€ 11—«
1—p; .

N G 2)

Note that (12) still does not satisfy A2 and we cannot use Theorem
5. But at least one nontrivial Nash equilibrium exists, ep§..=

1 — e 8/ VI=D Defined;(p;) = (1 — pi)(1 — Ul(pi)) =
ﬁ which is strictly increasing im; whena > 1. Also
Ci(p) is strictly increasing irp. By Theorem 6, the random access
gameg has a unique nontrivial Nash equilibrium. Note that due to
the approximation used in (11) the equilibrium point for the game
with utility (12) may not achieve the optimal number of idle slots
AgPt. We will discuss in Section 4.3 how to design equilibrium
selection algorithm such that the equilibrium point by using (12)
can actually hitzo2".

Ui(pi) = pi + (12)

3.2.3 Forward Engineering by Heuristics

Consider a random access game with the following payoff func-
tion
Y
ui(p) :=Ui(p:;) —pi (1 —p;) =
J#

Ui(pi) — pigi,  (13)
wheregq; = Q 2;(1 — p;) is the contention measure represent-
ing the probability that all nodes except nodlélo not transmit.

This payoff function is motivated by the heuristic that each wire-

It turns out that the random access game with payoff (13) is a su-
permodular game. Supermodularity was introduced into the game
theory by Topkis [22]. Supermodular games have many nice prop-
erties such as the existence of Nash equilibria and the convergence
to the equilibria under different strategy update algorithms. The
simplicity of supermodular games makes concavity/convexity and
differentiability assumptions unnecessary, though we make such
assumptions in this paper. In the setting of random access games,
the definition of supermodularity and supermodular game reduces
to the following.

DEFINITION 7. The payoff functions; (p;, p—:) has increas-
ing differences (supermodularity) {p;, p—:) if forall p_;, > p’_;
the quantityu; (p;, p—:) —ui(pi, p—;) is increasing irp;. Fortwnce

differentiable payoffs, supermodularity is equwalen 1“’) >
0 forall j # i.

DEFINITION 8. A random access gamg is supermodular if
for each node € A the payoff functiom; (p;, p—:) has increasing
differences inp;, p—i).

Q

It is easy to verify that?u;(p)/dp:Op; = PR (

p;j) > 0. The following result is immediate [22].

1 —

THEOREM 9. A random access gamig with the payoff func-
tion (13) is a supermodular game, and the set of Nash equilibria
for G is nonempty.

As indicated by Theorem 9, no concavity/convexity assumption
on utility function is required to guarantee the existence of Nash
equilibria as in non-supermodular games. However, the uniqueness
of Nash equilibrium may require stronger condition. By following
similar argument as in Theorem 6, we have the following corollary
on the uniqueness of equilibrium for supermodular random access
games.

COROLLARY 10. Suppose that utility functiotv;(-) is twice
continuously differentiable, increasing and strictly convex, and the
supermodular random access gaewith the payoff (13) has a
nontrivial Nash equilibrium. 1f®;(p;) = (1 — p;)Uj(p:) is a
strictly monotone function it%;, thenG has a unique nontrivial
Nash equilibrium.

As an example, we consider the following utility function given
in [7]

Usi(pi) := kS

a;

(M In (aip; — b;) — pi),

a;

(14)

zaa —b2_b,;
where0 < b; < 1,a; < 1,andp; € (Z?»b+ b+1( b;—b2 bl)).

It is easy to check thal/;(p;) is strlct1Iy convex an@ i(pi) <0

2 a. a; —
whenp; < biy/bitai(aibs —b] =) From Corollary 10, the su-

permodular game W|th utlllty function (14) has a unique nontrivial
Nash equilibrium.

There are many ways to design utility functions and random ac-
cess games. We only show a few specific examples in this section.
The key point of this section is that the random access game model
is general enough to include many of existing medium access con-
trol algorithms. Most of algorithms can be reverse engineered to be

less node should be “charged” by an amount that is proportional to a random access game with specific utility function and contention

the throughput it achieves.

measure.



4. DYNAMICS OF RANDOM ACCESS GAME The following theorem guarantees that the best response con-

The dynamics of game studies how interacting players could Verges to a nontrivial equilibrium.

converge to a Nash equilibrium. It is a difficult problem in general.

In random access games, wireless nodes can observe the outcome | HEOREM 13. Ifthe best responses to the smallest and largest

(in terms of some contention measure) of the actions of others, but VECtors in the strategy space are within the strategy space, then

do not have direct knowledge of other nodes’ actions and payoffs. nontrivial Nash equilibrium exists. Moreover, the best response

We consider repeated play of random access game, and look forStrategy (15) converges to the largest nontrivial Nash equilibrium.

strategy update mechanism in which nodes repeatedly adjust chan-  proor By supermodularity, the best response is nondecreas-

nel access probabilities in response to observations of other play-ing in other player strategies. If the best responses to the small-

ers’ actions so as to achieve the equilibrium. est and largest vectors in the strategy space are within the strategy

4.1 Basic Dynamic Algorithms space (_i.e., not at the _bo_undaries of the strategy space)_, t_hen Nash
equilibrium must be within the strategy space. So, nontrivial Nash

4.1.1 Best Response equilibrium exists. The second part of the theorem is obviods.

The simplest strategy update mechanism is the best response By using Theorem 13, it is easy to obtain conditions:pandb;
strategy: at each stage, every node chooses the best response {g (14) such that the best response strategy converges to a nontriv-

the actions of all the other nodes in the previous stage.ple} ial equilibrium of the corresponding game. Without using Corol-

be the largest vector in the strategy spagic . At staget + 1, lary 10, the uniqueness of nontrivial equilibrium can also be ob-
nodei € V chooses a channel access probability tained by showing that the best response strategy is a contraction
pi(t+1) = Bi(p(t)) := max{arg maxu; (p, p_i(t))}. (15) mapping. A condition for convergence of best response strategy is
PES; also given in [7] for general random access games, which is hard

At each stage, if more than one probability may be a best responseto verify. Supermodularity greatly simplifies the conditions for the

to a givenp_;(t), best response algorithm (15) always chooses the convergence of best response strategy.

largest probability. Clearly, if the above dynamics reaches a steady .

state, this state is a Nash equilibrium. As there are no convergence“"l'2 Gradient Play

results for general games using this dynamics, we restrict our dis- An alternative strategy update mechanism is gradient play [9].

cussion to supermodular random access game with payoff (13) in Compared to “best response” strategy, gradient play can be viewed

this subsection. We have the following result. as a “better response”. In gradient play, every node adjusts its chan-
nel access probability gradually in a gradient direction suggested

THEOREM 11. The best response strategy (15) converges to a py contention measurements. Mathematically, each riode\
Nash equilibrium of random access gaiie Moreover, it is the updates its strategy according to

largest equilibrium in the set of Nash equilibria. , s

PROOF. The proof basically follows [22, Lemma 4.1]. By su- pi(t+1) = [pi(t) + ;@) (Ui(pi (1)) — as(p(1)))]”  (18)
permodularity, the best response is nondecreasing in other playerwhere the stepsize(-) > 0 is a function in time[-]° denotes the
strategies. We can show that0) > p(1) > --- > p(¢t) > -, projection onto nodés strategy space. The gradient play has a nice
i.e., {p(t)} is a nonincreasing sequence. As the strategy space economic interpretation. If the marginal utility; (p; (¢)) is greater
(Si)ien is compact,{p(t)} has a limit point, which is a Nash  than the contention priag (p(t)), we increase the access probabil-
equilibrium. Letp = thl& p(t). Since the best response is non- ity, and if the marginal utility is less than the contention price, we

decreasing in other player strategipss the largest Nash equilib- ~ decrease the access probability. In the following, we assume that
rium. [ all nodesvi € N have the same stepsizgt) = €(t).

If we setp(0) to the smallest vector in the strategy space and ~ THEOREM 14. Let C(p) = (Ci(p)) and denote byJ¢ =
always choose the smallest best response probability, the best re(JiCj’) the Jacobian of (p). Suppose that the smallest eigenvalue
sponse strategy will converge to the smallest equilibriinvhen of I, Amin(J), satisfies + Amin(J¢) > 0, max; |J5|* < M,
there exist multiple equilibria, the following theorem indicates that and the random access game has a unique nontrivial Nash equilib-
the equilibrium attained by (15) yields the highest aggregate pay- rium p*. The gradient play (18) converges geometricallyptoif

off. ; FAmin(J9)
the stepsize(t) < 787

THEOREM 12. The best response strategy (15) converges to a

Pareto dominant equilibrium, i.ex:(p) > u,(p) for any Nash The proof of Theorem 14 is given in appendix. Theorem 14

also shows the convergence rate of gradient play. As an example

equilibriump. of using Theorem 14, we consider the utility function defined in
PROOF From (13),u; is an increasing function gf _; for fixed (12). By assuming that all nodes’ strategy spaces are identical, i.e.,
pi. Sincep is the largest equilibrium, for any equilibrium we S = [v,w]. In this case, we have
have
ae”¢ ae”¢
wi(pi, P—i) < wi(pi, B_,). (16) H= Ty X~ G- wpert (19)
On the other hand, by the definition of Nash equilibrium, we have

To find Amin (J€), we note that

ui(pi, P_;) < wi(P;; P_y)- (17) c Y ) 5 T
- : J7(p)=—-( (1—p))(diag(x)” —xx"), (20
Combining (16) and (17), we obtain the theorenf.] .
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h i
1 1

—,...,7——— . Notethateach entry of is less in [8]. In this section, we consider dynamic algorithms under es-
—p1’ R AN :

1 ) ! . - timation error. Due to the use of estimated contention measure
than——. By using Rayleigh quotient [12], it is easy to show that . . . . . .
) : 9 T o th L signals, the algorithms in Section 4.1 are in fact stochastic algo-
the maximum eigenvalue afiag(x)” — xx is less than—_;z. rithms. In the following, we only consider gradient play. The
Thus, Theorem 14 requires that

results of Jacobi play can be obtained similarly. We assume that
. (1= vy ae—¢ q:(p(t)) is replaced byji(p(t)) = ¢i(p(t)) +wi(t) in (18), where
Amin(J7) +p > — (1—w2 Ta—pen >0.  (21) w;(t) is the estimation error. Lef; be an increasing sequence of
o-fields. Without loss of generality, we write;(t) asw;(t) =
Condition (21) is mild. For example, if we take = 2/33 and W;(t) + we(t), wherew; (t) = E{w;(t)|F:} can be considered as
a=2,allv € [0, 1] satisfy (21). We see that a largeiindicates a the deterministic error and@; (¢t) = w; (t) — w;(t) is the stochastic

wherex =

larger i, which means a greater convergence rate by (35). error with zero mean. We further assume that; ., o w; (t) = w;.
. The deterministic error may be caused by the bias of signal estima-
4.1.3 Jacobi Play tion and carrier sense error due to fading and background noise.

Finally, we consider another alternative strategy update mech- For ease of understanding, in the following, we discuss determin-
anism called Jacobi play, whose name comes from Jacobi updateiStiC and stochastic errors separately. The proof of the following
scheme, see, e.g., [19]. In Jacobi play, every player adjusts cur-theorems can be found in [8].
rent channel access probability gradually towards the best response
strategy. Mathematically, at staget 1, nodei € N chooses a
channel access probability

where the stepsize(t) > 0 andB; (p(t)) is defined in (15). When ¢ 1 iq i the strategy space and it is the unique equilibrium de-
ei(t) = 1, we recover the best response strategy. In case of SUPeTfined by (24), the gradient play convergespd provided u +
modular game, it;(¢t) < 1, it is easy to verify thafp;(¢)} is a Noi (3O > 0 ande(t) < EtminG0)

nonincreasing sequence. Thus, Theorem 13 still applies to Jacobi min(J7) > et) < XZ+4INM

play. Jacobi play converges slower than best response strategy for ) B . )
supermodular game. Hence, it is not interesting in this case. For | 1€ uniqueness g§” can be obtained by using Theorem 6. Note

general random access games, we can also show the convergenc?aF under C_e”?"? condiFions, by implicit fu_nction theorem [2], (24)
of Jacobi play in a similar way as in gradient play. We omit them Tﬁflnefs an |fmp||0|t functn;:p (W),at tge nelghb(k)lrhhooqfoij = 0.

for brevity. Details can be found in [8]. We note that in case of non- 5 ere* o[e, or %W >0t ereSexEts >d'0 sucl that iffjwil> <
supermodular game with unique equilibrium, Jacobi play generally % IP”(W) = p"(0)[l2 < ¢. So the gradient play converges to a
achieves a smoother dynamic than best response does. Sometimé%e'ghborhOOd of th_e equilibrium p0|.nt W|thou_t estlmatlon error.
best response does not even work. For example, most of the utility For_ the stochastic error, we consider gradlent play with variable
functions in Section 3.2.2 do not satisfy the conditions specified in stepsize and constant stepsize, respectively.

Theorem 13. So best response does not converge to a nontrivial
Nash equilibrium. However, Jacobi play still works in this case.

THEOREM 15. Let Amin(J€) denote the smallest eigenvalue
of J¢ andmax; | J5|*> < M. Letp* denote the equilibrium de-
fined by

THEOREM 16. Let Amin(J€) denote the smallest eigenvalue
of J¢. Suppose thab{w; (t)|F:} = 0, BE{w?(t)|F:} < B, and

4.1.4 Contention Measure Signal Estimation > >

The dynamic algorithms require the knowledge of contention e(t) =oo,  €(t) <oo. (25)
measure signals. In practice, contention measure signals can be #=0 #=0
estimated via the observation of the wireless medium over sev- If p* is the unique nontrivial Nash equilibrium, the gradient play
eral time slots. As an example, we consider the contention mea- converges tg* with probability 1 provided: + Amin(J€) > 0.
sure — conditional collision probability used in Section 3.2.2. Let
n denote the number of consecutive idle slots between two trans- THEOREM 17. Let Amin(J€) denote the smallest eigenvalue
missions ~Since: has the geometric distribution with parameter 0of J¢ and max; |J|*> < M. Suppose thas{w;(t)|F:} = 0,
Y(p) = ,en(l — pi), its meana is given byn = ljgfz)p), E{w?(t)|F:} < B, ande(t) = ¢, Vt. If p* is the unique nontrivial
which can be estimated by averaging owgrans occurrences of  Nash equilibrium, there exists a constdntB, €) > 0 such that
this event. At every step; is updated according t «— (n + . *
(1 — B)isum/ntrans, whereisum is the total number of idle h?f;lp Ip(t) = p7ll2 < D(B,¢) (26)
slots duringntrans occurrences. Thus, each node can estimate its o
conditional collision probability according to providedy: + Amin(J) > 0 ande < %iiiw

v(p) _ 1—(n+1)pi ) (23) By combining Theorems 15 and 17, we can conclude that with
IL—pi  (n+1)(1—ps) constant stepsize, the stochastic gradient play converges to a neigh-
borhood of the equilibrium.

g =1—

4.2 Dynamic Algorithms under Estimation Er- o .
ror 4.3 Equilibrium Selection

In practice, due to propagation delay, nodes may not update their The equilibrium attained by using the dynamic algorithms in
channel access probability at the same time. The asynchronousSection 4.1 does not necessarily converge to the desired operat-
counterparts of the algorithms presented in Section 4.1 can be founding point (that achieves the maximum throughput) when the utility



functions in Section 3.2.2 are considered. This is because the ap-

proximation used in (11). One approach of equilibrium selection Table 1: Parameters used in simulations

is to estimate the number of users Wa= log(1 — ¢;)/ log(1 — Slot Time ( TsvoT) 20 ps
p:i)+1 at equilibrium and to set the channel access probability to be SIFS 10 pus
the optimal value computed by usidg. However, as commented DIFS 50 us

in [13], this approach may not converge due to open loop control. Basic Rate 1 Mbps

The other approach is to use an outer loop iteration and treat the Data Rate 11 Mbps
algorithms in Section 4.1 as the inner loop iteration. Take utility Propagation Delay 1 ps
function (12) for example. Let denote the counter of outer loop PHY Header 192 bits
iteration and define the utility function at theth outer iteration as MAC Header 272 bits
n(r) —a ACK 112 bits

Uipi,7) = pi + m(l —pi) @7 Packet Payload ( sq) || 12000 bits

wheren(0) = e¢~¢. Denote the equilibrium for the game with
utility (27) by p(7). To cancel the effect of neglectirig — p;)*~*
in (11), we do the outer iteration

n(r+1)=(1—pi(r)* e (28)

At equilibrium, all nodes have the same access probability, denoted 2"C
asp(r). By (28), we obtain m

pr+1) = 1— W PTomeies  (29)

Let M (p) be the mapping defined by (29). By mean value theorem,
it is easy to show

game based design with that of 802.11 DCF on the same ground,

2 b2
we choose, b such thab/a = CWis, and V(@b =b70)

Winin = CWhiax, corresponding to a maximuam backoff stage

Figures 1.(a), (b), and (c) show the evolution of channel access
probability under best response (15), gradient play (18) and Ja-
cobi play (22), respectively, whetey'| = 20, CWin = 32 and
CWmax = 256, and the stepsize is chosen todé) = 0.0016
for the gradient play and;(t) = 0.5 for the Jocobi play. We see

E*W\foﬁ (a—1)(1— w)w“%fl that best response converges close to the equilibrium only after 2
[M(p1)—M(p2)| < Ip1—p2l. iterations with perfect contention measure estimation. Even with
N +a—-1
(30) estimation error, best response converges to a neighborhood of the

) ) equilibrium after 5 iterations. Gradient play requires at least 15 it-
Therefore, if INTra_1 <1, Mp)isa erations to converge to the equilibrium. The convergence rate of
contraction mapping [2] and (29) converges to the unique fixed jacobi play is between that of best response and that of gradient
point of M(p), whichis the desired operating point. From (30), we  pjay. From Figure 1, we also observe that the estimation error does
can see that a larger indicates a smaller outer loop convergence ot affect the dynamic too much in supermodular games.

rate, while a largery results in a greater inner loop convergence  Figyre 2 compares the throughput between the game based de-
rate as suggested in Theorem 14. Therefore, there exists an optimakjgn according to gradient play and 802.11b DCF @t =

a to achieve the best overall convergence rate. In practice, whensg andcw,,... = 256. We see that for a small number of wire-
exactp(7) is not available, we can use the average probability over |ess nodes, DCF provides a higher throughput. But when the num-
a long duration. Also, outer loop iteration can be executed without per of nodes is greater than 7, our method achieves a much higher
waiting for the convergence of the inner loop iteration. throughput. We also find that by using estimated signal no notice-
able performance loss is incurred.

_ 3 a—1
NT+a=T (a—1)(1—w) NTFa-1 !

5. EXPERIMENTAL RESULTS _
In this section, we run some numerical experiments to compare 5.2 Game Reverse-Englneered from the De-

the performance of different medium access protocols. The sys- sired Operatmg Point

tem parameters are those specified in the IEEE 802.11b standard We then consider the game model with utility function (12) de-

with DSSS PHY layer [1], where the values of parameters are sum- rived in Subsection 3.2.2, and compare the performance of MAC
marized in Table 1. We consider a single-cell network with per- based on this game model with that of idle sense protocol in [11].
fect wireless channel, i.e., there is no corrupted frame. In all sim- We choos& = 0.1622 anda = 2. The parameters in idle sense

ulations, the initial channel access probability is set ta2}p&3,
which corresponds t6'Wpin = 32 in 802.11b DCF. For our game
based protocols, we setrans = 5 and = 0.8 (see Subsection

are set as those in [11].
Figure 3 compares the dynamics of idle sense and gradient play
(18) of the game with utility (12) in a network of 20 nodes, where

4.1.4) for contention measure estimation unless specifically stated.the stepsize is chosen to bgt¢) = 0.02. We see even with perfect

Throughput and fairness are obtained af@t transmissions. The

knowledge of expected number of idle slots, idle sense oscillates

throughput in this section is the aggregate throughput of all nodes. around the optimal value. On the other hand, game model achieves
Except in Section 5.3, equilibrium selection is not applied to the asmoother dynamic in both cases with perfect signal and estimated
game based design as without equilibrium selection its throughput signal. Both algorithms have roughly the same convergence rate.
is already close to the optimal value. We can clearly see the geometric convergence rate predicted by
. . . Theorem 14. The equilibrium by our method is close to the optimal
5.1 Companson of Dynamlc A|gOI’Itth value but not equal due to the approximation used in (11).

We consider a system of homogeneous users, and compare the Figure 4 compares the throughput of idle sense, game based
dynamics of different strategy update algorithms for supermodular dsign, and DCF with the same parameters as in Figure 3. We use
game with utility function (14). To compare the performance of our estimated signals in both idle sense and game based design. When
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Figure 1: The evolution of channel access probability under
different strategy update algorithms for supermodular random
access game with utility function (14) in a network of 20 wire-
less nodes.
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Figure 2: Throughput comparison between supermodular
game based design and 802.11b DCF with'Wmin = 32 and
CWiax = 256.

the number of nodes in the network is small, idle sense achieves
a higher throughput than both the game based design and 802.11b
DCF. Game based design performs worse in this case because the
approximation used in (11) is not accurate when the number of
node is small. The performance of game based design can be im-
proved by using equilibrium selection algorithm. As the number
of users increases, both idle sense and game based design perform
fairly close to the optimal throughput. They achieve a much higher
throughput than DCF. This also indicates that when the number of
users is large, equilibrium selection is not necessary as the achieved
throughput by game based design is already very close to the opti-
mal throughput.

Figure 5 compares the short-term fairness of different protocols
using Jain fairness index [14] for normalized window sizes that are
multiples of the number of wireless nodes. All parameters are the
same as in Figure 3. We see that both idle sense and game based
design provide much better short-term fairness than 802.11b as in
both protocols wireless nodes have roughly the same contention
window size.

5.3 Equilibrium Selection

Finally, we check the equilibrium selection algorithm described
in Section 4.3. We consider a network of 5 nodes. The gradient
play (18) for the game model with utility (12) is simulated, where
& = 0.1622 and the stepsize;(t) = 0.02. We assume perfect
contention measure signals and we decide that the inner loop con-
vergence is attained fp(t + 1) — p(t)||2 < 3 x 10~*. Figure 6
compares the dynamics with differemtvalues in utility (12). We
see that the inner loop convergence rate increases by increasing
while the outer loop convergence rate decreases by increasing

6. CONCLUSIONS

We have presented a game-theoretic model to capture the dis-
tributed nature of contention control and the contention/interaction
among wireless nodes with contention-based medium access. This
presents a unique perspective to understand existing medium ac-
cess protocols, and a systematic design methodology for medium
access control. Several examples have been given on how to design
random access games from reverse-engineering and forward engi-
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Figure 3: Dynamics of idle sense and the game with utility
function (12) with gradient play (18) in a network of 20 nodes,
where ¢ = 0.1622 and o« = 2, and the stepsize is chosen to be
€; (t) = 0.02.

neering. Simulation results have shown that, with appropriately

designed game models, game based protocols can achieve superior
performance over the IEEE 802.11 DCF, and comparable perfor-
mance as existing protocols with the best performance in literature.
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APPENDIX
A. PROOF OF THEOREM 14

PROOF By equation (18), we have

\g)gH— 1) —p*[l3
= )+ ) (Ui (pi(t)) —
< @)+
iEN

<|p@®) —

L —pi)?

Ci(ai(P())))]®
(Ui (pi(1) = Ci(p(t))) — piI”
>
Pz +2e(t)  (pi(t)
2 =< i 2
+e ) (Uilpi(t) — Ci(p(®)))

i

= pi) (Ui (pi(t)) — Ci(p(1))

>
pill5 +2e(t)  (pi(t) — i) (Ui(pi(t)) — Ui (p}))

<
—2¢(t)  (pi(t) -

(@)
<|lp(t) -

+ét)

(1)

where we have used;(p(t)) to denoteC;(q;(p(¢))). In (a), we
use the fact that/; (p;) = C;(p*) at the nontrivial Nash equilib-
rium. By mean value theorem, we find

X * !/ ! *
(pi(t) — pi )(Ui(pi(t)) — Ui(pi))
>Z( 1/~ *\2 * 12 (32)
= Ui@)(pi(t) —pi)” < —pullp@) —p7 |2,
wherep; € {pilpi = ypi(t) + (1 —v)pi, v € [0,1]}. Define
a scalar functionf(p) = (p(t) — p*)TC(p). By mean value
theorem, we have

F®) = f(p™) =(p(t) = ") I (B)(P(t) — P7)

(33)
>Amin(J)[IP(t) — P*I3-
We also have
X
‘ (Ui(pi(t)) — Ci(p(1)))?
= (Ui(pi(t)) — Ui (p}) + Ci(p*) — Ci(p(1)))?
<2” (Uipi() - Ul 2 (Cilplt) - Cilp)?
(@) w12 > C i *\1 2
<2x7[lp(t) —p"ll2 +2 _ (J7 (®")(p(t) —P"))
<2 lp(®) ~ p7l3+ 2 max IS )lp(e) - bl
<2(x* + INVIM)|p(t) — p*|3,
(34)

where(a) comes from mean value theorem. Substituting (32)-(34)
into (31), we obtain
Ip(t+1) - p*|l3 <
(1 - 26(”(,“/ + )\min(JC) - e(t)(XQ + |N‘M)))||p(t) - p*“g
(35)
Therefore, ifi + Amin(JC) > 0 ande(t) < % p(t)
converges tp™* geometrically. [J



