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Abstract 

The general  distance  problem  which arises in the general H ,  
optimal  control  problem  is  considered.  The  existence of an  optimal 
solution is proved and the  expression of the optimal norm yo is  obtained 
from  a  somewhat  abstract  operator point of view. An  iterative  scheme, 
called  y-iteration, is introduced  which  reduces  the  general  distance  prob- 
lem to a  standard  best  approximation  problem.  Bounds  for yo are also 
derived.  The y-iteration is viewed as a  problem of finding the zero 
crossing of a  function. This function is shown  to  be  continuous,  mono- 
tonically  decreasing,  convex and be  bounded by some very simple  func- 
tions. These properties  make it possible to obtain very rapid conver- 
gence of the iterative  process.  The  issue of model-reduction  in H,- 
synthesis  will also be addressed. 

Notation 

{ Lebesque  space } 

{ Hardy  space } 

{ Proper,  real-rational } 

(p"t matrices  in R }  (similarly  for H and L) 

I L,-norm if A E L, 
6 ( A )  if A is a constant  matrix' 

the orthogonal projection  from ~2 onto H~ ( ~ f ) .  

the Hankel operator (ma&) generated by G E L,. 

the Toeplirz operator (matrix) generated by G E L,. 

D+C(SI-A)-'B 

T h e  term unit in RH, refers to any M E RH, such that 
M-' E RH,. When R is used as  a prefix, it  denotes  real-rational. 

1. Introduction 

In this paper, we shall  consider the "General Distance Problem" 
(GDP) [6,11,13,14]  which  can be stated as  follows : 

Given R = 1:; Ed E L, , find the optimal Q E H, such that 

is minimized.  Note  that the minimum  norm,  denoted  as yo, is  the  dis- 
tance 

from R to the set  of  (matrix)  functions of the form 

This class of problems will be called the 

paper  to  distinguish  from the special case 
identically zero. The latter will e r ferred as the "2-block  problem". 

Note that if both [Rz1 RZ2] and\:\ are zero, this is known as the 
"best  (or  Hankel) approximation" problem  [1,2,3,17]. The general  dis- 
tance problem  can  also  be regarded as a matrix dilation  problem  with 
the constraint of the causality (Le., Q E H, required). 

The GDP arises  in the solution of the general H ,  optimal control 
problem [5,6,8,10,11,13,14,15,16,23,24]. The basic  framework  for  the 
general H, optimal  control  problem is shown  in the following figure 

U 

The objective is to find a stabilizing K E RTvz which  solves 
min K llF,pfi/l, where FI(P;K) PII+P12K(I-P22K)-1P21 . For nontriviality, 
assume that p 1  > m2 and ml > p2. 

The first step is to find KO = such that 

FXP;F,(Ko;Q)) = FXT;Q) = Tl1-NQfi 
any Q E RH:v2, This is the Youla parametrization of all stabilizing 
controllers  [8,11,21,22] and is obtained by finding coprime 
factorizations of P over the ring of stable rationals and solving a  double 
Bezout identity to obtain the coefficients of KO. 

We are interested  in  a particular KO which results in N and lir being 
inner and co-inner  respectively.  That is, N*N=I and t?fi*=I. This 
requires  a  coprime  factorization 

tion, we require Nl and fil inner so 

inner. N and fil are called complementary inner  factors (CIF). With 
these wehave that 

* This work  has  been  supported by Honeywell  Internal  Research 
and Development  Funding, the Office of Naval Research  under 
ONR Research  Grant  N00014-82-C-0157, and the U.S. Air Force 
of Scientific  Research  Grant  F49620-82-C-0090. 

since - norm is unitary invariant 
The  solution to this problem  requires an additional spectral fa:tori- 

zation. To see how this arises, consider the special case when Tlllirl = 0 
and (1.1)  reduces to 
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Corollary 2.2 

with R1 = hrc [TllJ fi* and R2 = N t  [Tll] fi* 
It  is  easily  verified  that  for  any y > 11.R211, 

where (H)'? denotes  the  unit  spectral  factor of the  para-Hermitian  matrix 
H. Thus,  the H, problem  also  reduces to a  best  approximation  problem 
since  the (qI-R2*R2)-' is a  unit and can be absorbed  into Q. The  gen- 
eral  4-block  case  similarly  involves  both  inner-outer and spectral  factor- 
izations.  Algorithms  for  obtaining  these  factorizations  using  standard 
real  matrix  operations  on  state-space  representations  were  presented in 
[5,111. 

This paper  will  focus on the  solution to (1.1)  and  (1.2)  and  algo- 
rithms  for  obtaining the optimal Q. In  Section 2, a  somewhat  abstract 
operator  point  of  view is adopted  and  existence  of  an  optimal Q and 
expressions  for  the  optimal  norm  are  obtained.  These  expressions  are in 
terms  of  an  operator  norm or  an equivalent  generalized  eigenvalue  prob- 
lem.  Unfortunately,  the  operator  and  generalized  eigenvalue  problem 
are infinite  rank  and  these  results  do  not  yield  computable  formulas  for 
either  the  optimal  norm  or Q. In  Section 3, an  alternative  approach, 
called  y-iteration, is introduced.  It  essentially  involves  guessing  a y and 
then  reducing  the  problem  of  finding all Q that  give  norm  less  than y to 
a  standard  finite  rank  Hankel  norm  approximation  problem  as  in (1.3) 
above. The guess for y is iterated  on  until  it  converges to the  optimal 
norm, yo, and  the  optimal Q is thus  obtained.  Section  3  gives  some 
fairly  tight  bounds  for the optimal yo in  terms  of  easily  computable 
quantities,  which  immediately  allows  for  reasonable  estimates  of yo. 

In order  for  the  y-iteration  scheme  to  converge  rapidly, it is neces- 
sary to exploit  some  properties  of the process.  In  Section  4, the y- 
iteration is viewed as the  problem  of  finding  the  zero  crossing  of  a 
function. This function is shown to be  continuous,  monotonically 
decreasing,  convex, and bounded by some very simple  functions.  These 
properties  make  it  possible to obtain  very  rapid  convergence  of  the y- 
iteration. In Section 5,  we  address  the  issue of model  reduction in  gen- 
eral  distance  problems.  The  error  bound will be  given. 

Most  of  proofs in this paper  are  omitted.  The  details can be  found 
in [6]. 

2. Opt imal  Solutions of Genera l  Distance Problems 

In this section,  we  will  discuss  the  existence of the  optimal  solu- 
tion of  the  general  distance  problem. The proof  [6,13,14] is essentially  a 
generalization  of  that  for  best  approximation  problems in [ 1 I]  where  the 
ParroWDavis-Kahan-Weinberger theorem  [7] on norm-preserving  dila- 
tion is used. In the  following,  the  2-block GDP will  be  studied first. 
The  results are  then  generalized to  the 4-block GDP. It  is  more  con- 
venient  in this section to consider H ,  of  the  disc  instead of the  half- 
plane. This does  not loss of generality  since  there is a  well-known 
isometric  isomorphism  between the half-plane and the  unit  disc  (see 
P11). 

Consider  the  following  2-block GDP: 

Theorem 2.1 

yo can also be  expressed  in  terms of the  following  eigenvalue  problem. 

where HR, is the Hankel matrix  generated by R 1  and TR2,R2 is  the Toeplitr 
mamx generated by R2*R2 . 

Remark 

Recognizing  that 
This corollary can be proved  using  a  lemma by Sarason  [20]. 

The result is immediate  from  Sarason's  lemma,  since 

Although  Corollary  2.2  gives iin explicit  formula for the  smallest 
achievable  norm,  unfortunately,  it is an  infinite-dimensional  eigenvalue 
problem  and is difficult to solve. A Hermitian Toeplitz operator  has  no 
point  spectrum (i.e., no eigenvalues). This is h o w n  as Hartman-Winter 
theorem 191. Therefore, in (2.3), TR has  infinite rank. This is quite 
different  from  the  best-approximation  problem  [17]. In  the real-rational 
case, the corresponding Hankel matrix has only  finite  rank  which is 
equal  to the McMillan  degree  of  the  given  transfer  matrix.  Another 
difficulty is the  following:  although  the  proof  [6,12,13]  using  dilation 
theory is conceptually  elegant,  the  construction  of  optimal Q using 
norm-preserving  dilation is not  a  trivial  problem.  There  does  not 
currently  exist  a  computational  attractive  procedure to obtain  these 
coefficients  currently.  Nevertheless,  Theorem  2.1  shows  that  the 
optimal  solution  for  the  2-block GDP exists. Furthermore,  the 
Hunkel Toeplitz structure  appearing  in  Corollary  2.2 is of particular 
interest  and  provides  a  lot  of  insights  for  the  problem. 

To avoid  these  difficulties  which arise in  the direct  approach,  an 
iterative  scheme,  called  y-iteration,  will  be  proposed in the  next  section. 
First,  we  consider  the  generalization  of  Theorem 2.1 to  the  4-block 
problem. 

a'% 

For  the  4-block GDP, i.e., 

let's  define  the  operator rR as  follows: 

Theorem 2.3 ([6,13,14]) 

3. y - I te ra t ion   and   Bounds  

In this section,  we  propose  an  iterative  scheme,  called  y-iteration, 
to solve  the  general  distance  problem.  The  idea  is  that by guessing  a 
value  for  the  minimal  norm, the distance  problem can be  simplified  to 
an  equivalent  best  approximation  problem  which  can be solved  by  exist- 
ing  algorithms. This guess  can  be  iterated to obtain  convergence  to  the 
optimal norm and optimal Q. 

are  obtained  for  the optimal  norm. Some  upper and lower  bounds  are 
The y-iteration will  converge more  rapidly if good  initial guesses 

derived in this  section  which  provide  accurate  bounds on the minimal 
norm. The general  iterative  procedure is also  described. The 2-block 
and  4-block  cases  are  considered  separately. The proofs are omitted  and 
can  be  found in [6]. The following  theorem  lies  at  the  heart  of  the y- 
iteration  scheme. 
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Theorem 3.1 ([lO,ll]) 
Assume Q E H,, then 

Theorem 3.3 

if and  only if 

/I (RI-Q) M-' II- 6 1 

where M is  the  spectral  factor  of  the  para-Hermitian  matrix (gI-R2*Rz). 
The theorem  says  that if y > yo, there  exists  a Q E H, such  that 

IIRIM-I-QII.. I 1 and  hence, Q = QM satisfies  (3.1). This implies  that 
IIHRIMIiI S 1. Therefore,  a  solution to (3.2)  can be  obtained by consid- 
ering  the  following  best  approximation  problem 

ro = min 1 1  R ~ M - '  - Q 11,. 
0~ H ,  (3.3) 

In  case  that  the  function  is  real-rational,  the  algorithms  in  [3,17]  can 
then  be  applied to solve  the  optimal Q E RH, corresponding  to  the 
given y. A practical  state-space  solution to the GDP can be  found  in 
[61. 

It is well-known  that 6,)' is  the  largest  eigenvalue  of  the  follow- 
ing  standard  eigenvalue  problem 

( H ~ ~ ~ ~ ) * ~ H ~ ~ ~ J U  = hu (3.4) 

Eq.(3.5) is a  generalized  eigenvalue  problem  and  the  dependency  of 
(generalized)  eigenvalues  on y is clear. This formulation  of  the  problem 
will  be  very  useful later. 

Since  the  approach  proposed is an  iterative  one,  it  will  be  helpful 
if the  upper  and  lower  bounds  can  be  provided  in  advance.  Some 
results  are  summarized  in the following  theorem. 

Theorem 3.2 
Assume yo is the minimal  achievable  norm as in  (2gdp), 

Then 

and 3.2 for  the  4-block GDP. 
The  following  two  theorems  are  the  generalization  of  Theorem  3.1 

if and only if 

where 
(I-LL*)" = spectral  factor of (I-LL*) 

Remarks 
(i) S and s need  not  to  be  spectral  factors. S and  can be any  square 

f + s f e r  matrices  such  that S*S = (qI-R22*R22) and 

(ii) Chang and Pearson  have  derived  a  similar  formula  indepedently 
[4]. However,  the  fractional  transformation F,(1R,1Rz2*)  in  (3.6) 
was  not  recognized. 

ss* = (~I-R,R,*). 

Y Y  

the  y-iteration  of the 4-block GDP. 

Theorem 3.4 

The following  theorem  provides the upper  and  lower  bounds  for 

Let yo be the minimal  achievable  norm  in  (4gdp), 
1 

Then 

Remark 
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We  end  the discussion  of this section  with  a  general  description  of 
the  y-iteration  procedure  for  the  2-block  problem. The rl-block  case can 
be  stated  similarly. 

(i)  Compute  the  lower  bound llR21),. 
(ii) Choose y such  that llR2ll- 5 y. 
(iii) Find  the  spectral  factor M = (pI-R2*R3". 
(iv) Let +llHR1K1119 

(a) if $1, go to (ii)  and  choose  a  larger y. 
(b) if ?el and plp211,, go  to  (ii) and choose  a  smaller y. 
(c) if %I and y21]R211,, go to (v). 
(d) if kl and ~ l l R ~ 1 1 - ,  go to (v). 

(v) The value  of y is the  minimal  achievable  norm.  Find  the  best 

(vi) The optimal  solution  Qopt = Q0#. 
approximation  of R I M 1 ,  denoted by Q,. 

This algorithm is not  complete  without  some  method  for  selecting 
the next  guess  for y in  step  (iv).  The guaranteed  convergence  rate  for 
the  algorithm  will  depend  on this method and what  can  be  proven  about 
the  relationship  between y and q. This relationship is the focus Of the 
next  section. 

4. Properties of y-iteration 

In this section,  we  will  illustrate  some  interesting  properties  of y- 
iteration in the  2-block GDP. Based  on  these  properties  and  some 
easily  obtainable  bounds,  we  will  discuss  briefly  the  fundamental  princi- 
ple of  the  iterative  algorithm. 

Recall  that  for  a  given y > yo, the  problem  can  be  solved in terms 
of an  equivalent  best  (Hankel)  approximation  problem.  It is  also  known 
from  Section 3 (Eq43.5))  that  the  Hankel  norm  of this equivalent  prob- 
lem  equals  the  square  root  of  the  maximum  eigenvalue  of  the  following 
generalized  eigenvalue  problem: 

HR,*HRl v = ~(~ZI-T ) v 

The  eigenvglues  of (GEP) are functions  of y and  are nonnegative  for all 
y > IITR2.R2J( = l!R21/,. We  shall  prove  that &(y) (and its square  root)  is 
continuous,  strictly  monotonically  decreasing  and  convex in y where,  for 
a  given y >  1 ~ 2 1 1 ~ ,  X,,,&) is defined  as  the  maximum  eigenvalue  of 
(GEP).  The final  result  of this section is Theorem  4.2,  which  bounds 
I,,,& by simple  functions, This can  be  used  along  with the the  other 
properties to quickly  converge to the  optimal  norm. 

A key  observation  of (GEP) is that  it  can be regarded  as  a  "per- 
turbed"  generalized  eigenvalue  problem.  Therefore, the perturbation 
theory  of  generalized  eigenvalue  problems  for  a  special  case  will  be 
considered first. The results  can  then be used  to  prove  the  properties 
mentioned  above. 

RiR: ( G W  

Consider the following  generalized  eigenvalue  problem, 

Av(t) = X(I)B(t)v(t) , I E (-E,&) , E > 0 (GEPl) 

where A is positive  semi-definite and independent  of I ,  and E( t )  is 
bounded,  positive-definite  and  analytic  in the neighborhood  of eo. 
Since A and E(r) are  Hermitian  and B(r)>O, it  is  well-known  [19]  that by 
appropriate  ordering  of the eigenvalues { X i }  and  selection  of  eigenvec- 
tors {vi}, it is possible to pair  eigenvalues  and  eigenvectors {Xi(t),vi(r)} 
such  that 

Avi(0 = MW(OvX0 

for all I ,  i and {X,.(I)},{V,{I)} are  analytic  for all r E (-E,€). At values o f t  
where (GEF'I) has  simple  eigenvalues, this is trivial. At degenerate 
points,  it  requires the selection  of hi(t), V , ( I )  such  that  the  analyticity is 
retained  through  (isolated)  point  where  eigenvalues  coalesce. 

Define L ( y )  = the  maximum  eigenvalue  of  (GEP) at a  given y 
and u,(y) = for y,> l!R211,, The following two theorems  are 
the  main  results  of this sechon. It gives  some  useful  properties  of y 
iteration. The proofs  are  quite  lengthy  and  will  not  be  presented  here. 

Theorem 4.1 
(i) &(y) is continuous,  monotonically  decreasing, and convex in 

Y. 

(ii) a,(y) is continuous,  monotonically  decreasing,  and  convex in 
7. 

Note  that  the  generalized  eigenvalue  formulation  used  here is simi- 
lar to that in  Helton's  broadband  matching  problem [18], however  the 
motivation  here is completely  different. 

Although  the  function u, is unknown,  the  properties  shown in 
Theorem  4.1  have  provided us some  useful  information  about cr, that 
can be  used  to  obtain  fast  convergence of the  y-iteration. A detailed 
study  of  convergence  rates is beyond the scope of this paper,  but we 
will  indicate  how the properties  of 0, can be  used  to  find  a  next  guess 
for y. One  additional  property  of cr, is useful in this regard  and  will 
be  presented in  the next  theorem. 

Define 

where c = u,fi)@-P2)" for  some 7. /3 ( =1b211,). 
Theorem 4.2 

(i) udv)  < ~,(U,Y) if Y < 7. 
(ii) cr,~ = u.fi,y) if Y =U. 
(iii) u,(y) > crufi,y) if y > 7. 

The importance  of  Theorem 4.2 can  be  seen  from  Figure 1. Sup- 
pose  that  at  one step in  the  y-iteration,  we  have  evaluated u, at y, and 
y. from  previous  iterations,  and  want to make  a  new  guess  for y. 
Without  loss  of  generality,  assume  that p < y, < yu such  that cr,(y,) > 1 
and cr,(y.) e 1. From  Theorem 4.2, we  know  immediately  that 
yl <yo < y.. Since cr, is a  convex  function  in y, u, must lie below 
the  line  segment  (denoted by Fl(y)) connecting  the  points (y,,cr,(y,)) and 
(yuo,(yu)). In  addition, by Theorem  4.2, cr, will  lie  above  the  func- 

tion u,(n,y) = 
~ m ( Y , ) ( 7 ? - P 2 P  when > y,. 

(?-_p2)" 
Suppose  that y,' and y{ are  the  points  where Fl(y,') = 1  and 

cr.(y,,y,') = 1. We  can conclude  immediately  that y,' 5 yo 5 y,'. The next 
guess  for y is narrowed  considerably  over  what  would be  known  on  the 
basis  of  continuity,  convexity,  and  monotonicity  alone.  Thus  it  is 
clearly  possible  to  obtain  a  scheme  for  picking  the  next  guess  for y that 
will  provide  rapid  convergence to the optimal.  Further  consideration  of 
convergence  rates is beyond  the  scope  of this paper. 

Remark 

crossing  of  the  function (a,(y)-l). 
Thea y-iteration  can be viewed as the  problem  of  finding  the  zero 

5. Model  Reduction  in H, Synthesis 

The importance  of  model  reduction in control  system  design has 
long  been  recognized.  For  practical  implementation, it is desired  that 
the  order  of  the  controller  can  be  reduced  in a way  such  that  the  con- 
trolled  system still satisfies  the  performance  requirements.  Typically, 
there  are two ways to obtain  a  lower  order  controller:  reducing  the  com- 
plexity  of  the  plant  model and using  model  reduction in the  design  pro- 
cess  [12,17]. This section  considers  the  latter  issue. 

High-order  optimal  controllers  are  usually  derived  when  using H ,  
optimization.  Therefore,  model  reduction is inevitable  from  a  practical 
point  of  view. The following  analysis  shows  how  the  model  reduction 
can  be performed in the GDP with  simple L,-norm bounds  on  the 
resulting  loss  of  performance. 

Assume  that Q,, is the  optimal  solution  of  the GDP: 

Then  for  model  reduction,  one has the  following  two  results. 

(i)  Model  reduction on R: 

Suppose R is a reduced-order  model of R ,  and Q,, is the  optimal 
solution  of 
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Define 

The question is how  much  error &yo) is incurred if the  reduced  order 
model R is used in the GDP. This is found as follows: 

This inequality  shows  that  the  error is no  more  than 2lP-Rll-. 

(ii)  Model  reduction  on Qop,: 

Suppose  that Qqp is  a reduced  order  model  of  the  optimal  solution 

both 
ring 

Experience  to  date  has  shown  that in many practical  problems, 
the  order  of R and QOpr can  be  reduced  significantly  without  incur- 
too  much  error.  Hence,  a  (suboptimal)  controller  with  reasonable 

nukber of  states  seems  always  possible.  The  discussion  in this section 
addressed just one  aspect  of  the  model-reduction  issue.  More  research 
is needed in this area. 

6.  Example 

In this section,  a  simple  example  with  a  single  parameter is con- 
structed  to  illustrate  various  properties in the  y-iteration.  An  exact 
optimal  solution  will be derived. 

Consider the following  2-block  problem: 

Let Q, be the  optimal  solution  which  achieves  the  minimum  norm. 
Using  the  formula  in  Section 3, 

where M-’ = (?-- -)-% = 1 1  
-s-a s-a y S + s  

l+a 
1 

best  approximation  problem : 
Let G = (-M1)-&&& = vcs and  consider  the  following 

s-1 s- 1 

It  is not  difficult to solve this problem. The minimum  norm is 

and  the  optimal  solution is 

(5.2)  Of  course,  in  order to have  (6.2)  .make sense, the  right-hand  side of 
(6.3)  must  be  less  than  or  equal to 1. 

Therefore,  model  reduction  on QOpr will  introduce  an error of  no  more 
than IIQopt-QqpII-. 

Suppose  that  model  reduction  in the H ,  synthesis is  done by the two ‘- 
steps:  (i) a < 1 : yo = ;, 

We summarize  the  solution to (6.1) as follows: 

1 

(a) find  the  reduced-order  model R and  the  solution, Q,, of  the 

(b) find the  reduced-order  model, Qqp, of QopP 

(ii) a =  1 : yo = 1, 

corresponding  GDP, (iii) a > 1 : yo = [-1+4-]. 

Then, (B) Optimal Q 

This error  bound  can be derived  easily by combining the results  of  (i) a- 1 
and  (ii)  above. 

The above result is very  encouraging  since if the error  bound in 
5.3  is  guaranteed to be small in model  reduction, it will  not  affect  the  where yo is  the same as in (A)-(iii). 
performance too much.  Using  either  the  method of truncation  of  the 
balanced  realization  [12,17] or the method  of  Hankel-norm  approxima- Remarks 
tion  [17],  the  reduced-order  model  can  be  found  using  reliable  algo- 
rithms.  Furthermore,  both  methods  give  the  error  bounds  in  terms  of 

The significance  of this example can be  stated  as  follows : 

the L-nOrm which  are  computable from the the  second  order  modes of 
(a) If 0 < a 1, then yo = lB211-. This tells us that  the  lower  bound in 

the  given  System.  A  more  detailed  treatment  on this subject can be 
Theorem  3.2 is tight. 

found  elsewhere 112,171. (b) From  Eq.  (6.3),  the  Hankel  norm of 6 is a  convex  function  of y. 
This can  be  verified by computing  its  second  derivative  with 
respect  to y and  show  it is always  greater than zero. 

Y O J + Y O + T  

(iii) a > 1 : Q, = - 
s+u ’ 
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7. Conclusions 
References 

The  results  in this paper,  combined  with those of [5,6,10,11,17], 
greatly reduce the practical computational burden associated  with the 
optimal H ,  synthesis.  Simple  bounds and properties of the y-iteration 
insure  rapid  convergence and the iterative process itself can  often  be 
avoided.  Model  reduction  can  be used to  reduce the order of the 
transfer  function  matrices  at  the intermediate stages of the computation. 
Furthermore, all the  computations discussed in this paper  can  be  accom- 
plished  using  standard real matrix operations on state-space realizations. 

The  primary  contribution of this paper, beyond that in [ I l l ,  is the 
set of results  in  Sections 3-5 on the y-iteration scheme and model reduc- 
tion. These  results clearly make it  possible to obtain  algorithms  that 
will converge very rapidly to  the optimal solution. This rapid  conver- 
gence  is  important  since  each  step  in the y-iteration is potentially com- 
putationally intensive.  The  model  reduction results should significantly 
reduce the computational burden by allowing for  order  reduction  of 
transfer  function  matrices  in intermediate stages. Although the resulting 
controller will be  suboptimal, the results  in  Section 5 show  that  the 
degree of suboptimality is bounded by the L, norm of the error  in the 
original  approximation. 

An additional opportunity  for  obtaining  suboptimal  controllers 
with  substantial computational savings  comes  as a direct  consequence of 
the  bounds  in  Theorems 3.2 and 3.4. Note that if Q is chosen  to  best 
approximate RI1 in  (4gdp), the bound y, guarantees that the  resulting 
controller will yield a solution with norm no worse than 2y0. This 
suboptimal  solution  is  often satisfactory and avoids the y-iteration 
entirely.  The  corresponding bound in  the 2-block GDP is d yo. 

Acknowledgements 

The  authors would like to thank a few individuals who particularly 
influenced this paper. Our colleagues  at Honeywell Systems and 
Research  Center  have  provided  the  engineering  perspective that is the 
foundation  of  the  ideas  behind this paper. We would also like  to  thank 
Profs.  Francis,  Khargonekar,  Lee,  Helton,  Zames,  Sarason,  Glover, and 
Safonov  for  many  stimulating  conversations. 

, .-!7) 

Figure 1. y-Iteration 

[ l ]  V.M. Adamjan, DZ. Arov,  and  M.G.  Krein,  "Analytic  properties of 
Schmidt  pairs for a Hankel  operator  and  the  generalized  Schur-Takagi 
problem", Math. USSR Sbornik, Vol. 15, No. 1, (1971), pp. 31-73. 

[2] V.M.  Adamjan,  D.Z.  Arov,  and  M.G.  Krein,  "Infinite Hankel block 
matrices  and  related  extension  problems", A.M.S. Translation, 111, 

[3] J.A.  Ball  and  H.W.  Helton,  "A  Beurling-Lax  theorem for the  Lie  group 
U(m,n) which  contains  most  classical  interpolation  theory", J. Opera- 
tor Theory, 9, (1982), pp. 107-142. 

[4] B.C.  Chang  anf  J.B. Pearson, "Iterative computation  of  minimal H" 
norm", Proc. IEEE Con5 on Deci. and Control, Fort  Lauderdale, FL, 
1985. 

[5] C.C. Chu  and  J.C.  Doyle, "On inner-outer  and  spectral  factorizations", 
Proc. IEEE Con$ on Deci. and Control, Las  Vegas,  NV, 1984. 

[6] C.C. Chu, "H,-Optimization and Robust Multivariable Contror', 
Ph.D.  Thesis, 1985. 

[7] C. Davis, WM. Kahan  and  H.F.  Weinberger,  "Norm-preserving  dilations 
and  their  applications to optimal  error  bounds", SIAM J. Numer.  Anal., 
Vol. 19, No. 3, (1982), pp. 445469. 

[81 C.A.  Desoer,  R.W.  Liu, J. Murray,  and  R. Saeks, "Feedback  system 
design : the  fractional  representation  approach to analysis  and  synthesis", 
IEEE Trans. on Auto.  Control, Vol. 25, (1980), pp. 399412. 

[9] R.G.  Douglas, "Banuch Algebra Techniques in Operator Theory", 
Academic  Press,  New  York  and  London, 1972. 

[lo] J.C.  Doyle,  "Synthesis  of  robust  controllers  and  filters", Proc. IEEE 
Con& on Dec. and Control, San  Antonio, T X ,  1983. 

[ I l l  J.C.  Doyle, "Lectures  Notes", 1984 ONRMoneywell  Workshop on 
Advances  in  Multivariable  Control, Oct. 8-10, 1984, Minneapolis, MN. 

[12] D.F.  Enns, "Model reduction for control system design", Ph.D. 
Dissertation,  Stanford  University, 1984. 

[13] A. Feintuch  and B.A. Francis,  "Uniformly  optimal  control of linear 
time-varying  systems," Systems & Control Letters, 5, Oct. 1984, pp. 

[14] A. Feintuch  and  B.A.  Francis,  "Uniformly  optimal  control  of  linear feed- 
back  systems," (to appear  in Automtica). 

[15] B.A.  Francis  and G. Zames, "On H"- optimal  sensitivity  theory for 
SISO feedback  systems", IEEE Trans. on Auto.  Control, Vol. 29, 

[16] B.A.  Francis,  J.W.  Helton,  and G. Zames, "H"-Optimal feedback con- 
trollers  for  linear  multivariable  systems", IEEE Trans. on Auto.  Con- 
trol, Vol 29, No. 10, (1984), pp. 888-900. 

[17] K.  Glover,  "All  optimal  Hankel-norm  approximations  of  linear  multivaxi- 
able  systems  and  their  L"-error  bounds", Int. J. Control, Vol. 39, No. 

[18] J.W.  Helton,  "Broadbanding: gain equalization  directly  from  data", 
IEEE Trans. on Circuits and System, Vol. 28, No. 12, (1981), pp. 

(1978), pp. 133-156. 

67-7 1. 

(1984), pp. 9-16. 

6, (1984) pp. 1115-1193. 

1125-1137. 
[19] T. Kato, "Perturbation Theory for Linear Operators", Springer- 

Verlag, 1976. 
[20] D.E. Sarason, "On products  of  Toeplitz  operators", Acta  Sci. Math., 

(Szeged) 35 (1973), pp. 7-12. 
[21] M.  Vidyasager, H. Schneider  and  B.A.  Francis,  "Algebraic  and  topologi- 

cal  aspects  of  feedback  stabilization", IEEE Trans. on Auto.  Control, 

[22] D.C. Youla, H.A. Jabr, and J J .  Bongiomo,  Jr., "Modem Wiener-Hopf 
design  of  optimal  controllers: Part II", IEEE Trans. on Auto. Controi; 

[23] G. Zames,  "Feedback  and  optimal  sensitivity : model  reference  transfor- 
mations,  multiplicative  seminorms  and  approximate  inverses", IEEE 
Trans. on  Auto. Control, Vol. 26, (1981), pp. 301-320. 

[24] G. Zames and  B.A.  Francis,  "Feedback,  minimax  sensitivity,  and  optimal 
robusmess", IEEE Trans. on Auto. Control, Vol. 28, (1983), pp. 585- 
601. 

Vol. 27, (1982), pp. 880-894. 

Vol. 21, (1976) , pp. 319-338. 

1316 


