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Abstract— Considerable attention is now being devoted to the
study of “complexity science” with the intent of discovering and
applying universal laws of highly interconnected and evolved
systems. This paper considers several issues related to the
use of these theories in the context of critical infrastructures,
particularly the Internet. Specifically, we revisit the notion of
“organized complexity” and suggest that it is fundamental to
our ability to understand, operate, and design next-generation
infrastructure networks. We comment on the role of engineering
in defining an architecture to support networked infrastructures
and highlight recent advances in the theory of distributed
control driven by network technologies.

I. INTRODUCTION

Recent advances in computer networking technologies
have greatly accelerated the extent to which system operators
remotely monitor, manage, and control the physical world
via the Internet and related communication systems. This
is increasingly true for critical infrastructure systems (e.g.,
transportation, energy, telecommunication) at the local, re-
gional, and even national levels. While this new ability has
enabled great efficiencies in our economic, social, and civic
lives, it has come at a price of new potential vulnerabilities
to these systems. Public concern for the protection of critical
network infrastructures against large-scale disruption has
been prominent at the level of federal governments since
the mid-1990s. At that time in the U.S., this concern was
formalized through a Presidential Commission on Critical
Infrastructure Protection (PCCIP), which was charged with
assessing the extent to which national infrastructure systems
were at risk to large-scale disruptions due to their intercon-
nected nature as well as their growing dependence on the
Internet as a “central nervous system” [1].

In the intervening decade, two trends have persisted in
elevating the interdependence of the physical and cyber
worlds as an important topic of study. First, our reliance
on the Internet and other communication networks continues
to grow rapidly, with a rich diversity of devices (e.g., mobile
phones, PDAs, laptop computers) and applications (e.g.,
voice, email, text messaging, video) now integrated into
daily use. Second, there is an increase in our collective
sense of threat to these infrastructures from accidental failure
(for example, the electric power outage in the Northeastern
U.S. in August 2003), natural disasters (such as Hurricane
Katrina) and deliberate attack (due to elevated terrorist
activity worldwide). Such disruptions are grim reminders that

even systems with historical reliability can have catastrophic
vulnerabilities.

One crucially important, yet poorly understood, feature of
national infrastructures, and complex systems in general, is
that they are robust yet fragile (RYF). In order to formalize
this concept, we define robustness as follows.

Definition: Robustness is the invariance of a [a property] of
a [a system] to [a set of perturbations].

Here, the use of square brackets emphasizes the notion that
any formal definition of robustness at the systems level re-
quires specification of the system, the property, and the set of
perturbations. The concept of RYF underscores that a system
can have a property that is robust for one particular set of
perturbations, yet be fragile for [a different property] and/or
[a different perturbation]. Indeed, a hallmark of both biology
and advanced technologies is that they exhibit extremes of
robustness and fragility, and highly evolved or well-designed
systems effectively manage the resulting tradeoffs. Thus
without specifying properties and perturbations, to say a
system as whole is robust or fragile can only mean that
the tradeoffs are handled well or poorly, respectively. A
fragile system is one that has gratuitous fragility of most
properties to most perturbations, while a robust one has
targeted robustness of important properties to significant
perturbations.

Robustness is a central issue in the study of critical
infrastructures, and complex engineering systems in general,
for several reasons. First, computer-based simulation is now
powerful enough that it is relatively easy to create a demon-
stration of almost anything, provided that the circumstances
are made sufficiently idealized. However, the real world
is typically far from idealized, and thus a system must
have robustness in order to close the gap between the
demonstration and the real thing. A second closely related
reason to study robustness is that most of the structural and
behavioral complexity in many engineering systems is in
order to provide this robustness in the first place.

Many system properties of interest can be viewed as a
specific type of robustness. For example, reliability can be
viewed as a type of robustness in which the set of pertur-
bations include component failures. Similarly, efficiency can
be interpreted as a type of robustness in which the set of
perturbations include resource scarcity. Finally, scalability
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can be viewed as a type of robustness in which the set of
perturbations include changes to the size and complexity
of the system as a whole. An example of RYF is that a
system that is evolved toward high efficiency (i.e., robust
performance with minimal system resources) might be very
unreliable (i.e., it has fragile performance in the presence
of even a single lost component). In many cases, a system
design that supports a particular type of robustness directly
leads to a different type of fragility.

A fundamental challenge facing the ongoing development
of critical infrastructures is to organize system complexity
in order to manage the tradeoffs between robustness and
fragility. A prerequisite for this understanding is a clear
notion of what it means for a system to be complex.

II. NOTIONS OF COMPLEXITY

There is no singular notion of complexity, and consider-
able confusion often arises due to different interpretations of
this term. A comprehensive review of previous attempts to
define complexity is beyond the scope of this short essay.
However, we highlight several important concepts and use
them as motivation for the discussion to follow.

A. Historical Perspective

Almost sixty years ago, Warren Weaver, then director
of natural sciences of the Rockefeller Foundation in New
York City, published an article in American Scientist titled
“Science and Complexity” [2]. In this article, he contrasted
three classes of problems facing science: simple problems,
problems involving disorganized complexity, and problems
involving organized complexity.

In Weaver’s view, simple problems were those involving a
small number of variables, such that they could be analyzed
completely and with certainty. This was long before the
discovery of chaos in deterministic, low-order systems, so a
key element in Weaver’s taxonomy is the number of variables
under consideration. Nonetheless, Weaver attributes progress
in the physical sciences—and their corresponding technolog-
ical advances ranging from the telephone, to transportation
via automobile and airplane, to hydroelectric power—during
the seventeenth to nineteenth centuries to the successful
application of the scientific method to simple problems.

However, he contrasts these achievements with a major
shift in scientific thinking that was taking hold in the early
twentieth century.

Rather than study problems which involved two
variables or at most three or four, some imagi-
native minds went to the other extreme, and said:
“Let us develop analytical methods which can deal
with two billion variables.” That is to say, the
physical scientists, with the mathematicians often
in the vanguard, developed powerful techniques
of probability theory and of statistical mechanics
to deal with what may be called problems of
disorganized complexity.

In describing disorganized complexity, Weaver’s example is
that of billiard balls, a system whose mechanics had re-
ceived considerable attention at the time. Classical dynamics
provide accurate descriptions of a small number of balls
interacting on the table at once. As the number of balls
increases to the order of dozens, then the computational
requirements become cumbersome, and such problems were
impractical to solve. But as the size of the table and the
number of balls becomes very large, then the problem
actually becomes easier, in the sense that the methods of
statistical mechanics are applicable, and one can answer with
precision certain questions related to average properties of
the system.

However, it is important to note that Weaver used the term
“disorganized” here to emphasize:

the methods of statistical mechanics are valid only
when the balls are distributed, in their positions
and motions, in a helter-skelter, that is to say
a disorganized, way. For example, the statistical
methods would not apply if someone were to ar-
range the balls in a row parallel to one side rail
of the table, and then start them all moving in
precisely parallel paths perpendicular to the row
in which they stand. Then the balls would never
collide with each other nor with two of the rails,
and one would not have a situation of disorganized
complexity.

While Weaver acknowledges the prevalence of disorganized
complexity in many important systems, he notes that there
exists an intermediate class of problems between the ex-
tremes of simplicity and disorganized complexity.

The importance of this middle region, moreover,
does not depend primarily on the fact that the num-
ber of variables is moderate. . . The really important
characteristic of the problems of this middle region,
which science has yet little explored or conquered,
lies in the fact that these problems, as contrasted
with disorganized situations with which statistics
can cope, show the essential feature of organiza-
tion. In fact, one can refer to this group of problems
as those of organized complexity.

Weaver’s examples are primarily those of biological systems,
yet the technology in the national infrastructures of today
is rapidly approaching the complexity of simple biology.
Should these systems be treated as organized or disorga-
nized? As we will show below, this debate remains timely
today.

B. Revisiting Simplicity

Before proceeding with a discussion of the complex, it
is worth pausing first to reconsider what it means for a
system to be simple. Due to the ever growing computational
power of modern computers, it is now commonplace to
solve systems with increasing numbers of variables, so
Weaver’s use of system size is no longer an appropriate
characterization of simplicity. An alternate approach is to
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say that a system is simple if it has “simple questions” and
gives “simple answers.” By simple questions, we mean that
the questions of interest can be posed using models that are
small and easy to describe and that they can be pursued
using elegant experiments requiring minimal interpretation.
By simple answers, we mean that theorems about models can
be verified with short proofs and experiments have simple,
reproducible outcomes that yield predictable results that are
insensitive to small changes in model parameters. There
are many classical examples of systems that have simple
questions and give simple answers: the pendulum as a simple
harmonic oscillator; simple RLC circuits; the interaction of
two bodies via gravity; and simple Boolean logic circuits
as implemented in much digital hardware. Many questions
regarding their behavior are simple, as are the answers.

The triumph of reductionist science has been to reduce the
apparent complexity of the world directly to an underlying
simplicity. Physics has always epitomized this approach,
and recently, molecular biology has successfully mimicked
physics. Yet not all real systems can be treated as simple.

C. A Taxonomy for Complex Systems

Recognizing that there are widely divergent starting points
to complexity from the fields of mathematics, biology,
engineering, and physics, our aim here is a simple but
universal taxonomy. We begin with a purely descriptive view,
with the intent of contrasting several dramatically different
perspectives of complexity as they have appeared in the
literature. The objective is to bring an informed view of
complexity to the topic of critical infrastructure systems.

In this section, we build upon the basic dichotomy first
introduced by Weaver and present an enhanced view that
contrasts much of the recent work in complexity science.
Again, as a basis for comparison, we consider the extent
to which a given system has “simple questions” and gives
“simple answers.”

“Chaocritical” Complexity. Some of the most profound
insights of the last century relate to the idea that systems
can have simple questions that do not have simple answers.
A classic example from Newtonian physics asks to describe
the behavior of interacting bodies via gravity. The motion of
two interacting bodies is easily shown to yield periodic orbits
(i.e., the behavior of the 2-body problem is simple), but the
motion of even three interacting bodies can be chaotic and
hard to predict long term (i.e., the behavior of the 3-body
problem is not simple). Turing showed that easily described
tasks like checking whether a computer program will halt
(the classical halting problem) can be undecidable. Concepts
related to undecidability, chaos, fractals, and critical phase
transitions have dominated scientific thinking about complex-
ity since the 1960s, with much of the emphasis on simple
models that nevertheless yield complex behavior.

One response to this challenge to reductionist simplicity
has been essentially to pursue what Weaver calls disorga-
nized complexity. Examples include: self-organized critical-
ity (SOC) [3]; edge-of-chaos (EOC) [4]; scale-free networks

(SFN) [5] and much of “the new science of networks” (e.g.,
[6], [7]). While different in detail, models of SOC, EOC, and
SFN share several features in common, reflecting their roots
in statistical physics:

• They are based on random ensembles (respectively, of
lattices, Boolean networks, graphs)

• that are minimally tuned (via a “friction” parameter, via
correlation structure, via preferential attachment)

• to particular configurations that are “interesting” in the
ensemble (a critical phase transition, a bifurcation point,
or a power law node degree distribution).

The resulting condition (EOC, SOC, SFN) is fragile to
everything but random rewiring or perturbations, to which
it is perfectly robust, by construction. It is always fragile to
targeted perturbations of any kind, and there is no attempt to
create targeted robustness. A partial review of these proper-
ties, particularly the role of power law degree distributions,
is available from [8].

We will refer to the complexity celebrated in this collective
body of work as “chaocritical complexity” to emphasize the
importance of simple, minimally tuned ensemble models
giving rise to complex and fragile behaviors. While this
kind of complexity is no doubt fascinating, it is entirely
different from what is observed in many complex engineering
systems, including critical infrastructures (the two meanings
of “critical” here are unrelated, an unfortunate accident).

Organized Complexity. A different type of complexity
occurs when relatively simple and robust answers arise in the
context of complicated questions and/or models. Consider
as an example the technology involved in the Boeing 777
aircraft. This vehicle is built from a parts list of over 1 million
components, yet it has proven itself to be remarkably robust,
in the sense that its design has enjoyed successful operation
amidst varying weather and environmental conditions. This
robustness is evidenced by the fact that there has not been a
single fatality aboard this type of aircraft since its launch a
decade ago. The triumph of the resulting organization in its
design is that a system comprised of unreliable, uncertain,
and changing components can work together in dynamic,
uncertain, and hostile environments and with limited test-
ing and experimentation to yield a predictable, reliable,
adaptable, and evolvable system. This type of “organized
complexity” requires carefully crafted interactions, either by
design or evolution, as well as a completely different theory
and technology from the study of either reductionist science
or chaocritical complexity.

By design, organized complexity has more targeted ro-
bustness to specific perturbations in components and envi-
ronment, yet it is almost always fragile to random pertur-
bations in system configuration (unless specifically designed
or evolved to be otherwise, for example, in ad hoc wire-
less networks). Systems exhibiting organized complexity are
typically robust in terms of

• a system property that is carefully chosen to represent
a particular system function; and

• a set of perturbations reflecting what is most common
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and/or dangerous in the environment and component
parts, or most effecting the property in question.

As always, uncertainty in systems exhibiting organized com-
plexity is pervasive and may be modeled stochastically, but
it still is very structured. In contrast, the chaocritical view
largely ignores functional properties, structured uncertainty,
and also an organized and structured response to make a
system have robust performance.

Organized complexity of this type is a hallmark of highly
evolved systems in both technology and biology. In fact, it is
becoming increasingly clear that complexity in technological
and biological networks is driven by control systems that
manage the interaction among components, not the number
or diversity of the parts themselves. In technology, this
is evidenced by an explosion in complexity in computer
networks, automobiles, airplanes, supply chains, package
delivery, etc., where emphasis is increasingly placed on
where, when, and how more than who and/or what. Similarly,
in biology, a count of protein-coding genes is only weakly
correlated with organized complexity of organism [9]. So
organized complexity is not merely about robustness but
about the management of functional robustness and fragility,
with chaocritical complexity avoided as much as possible.

Irreducible Complexity. It is possible for systems to have
both the complicated descriptions of organized complexity
and the extreme fragility of chaocritical complexity, and
little in the standard theory of complexity suggests how to
avoid this potentially disastrous state. For example, in the
context of biology, we might accumulate more complete parts
lists but never “understand” how it all works. More relevant
to next generation critical infrastructures, we might build
increasingly complex and incomprehensible systems which
will eventually fail completely yet cryptically. The potential
for this type of “irreducible complexity” remains a serious
threat to our ability to build a “next generation Internet” that
fully integrates the physical and cyber world.

Note that irreducible complexity is not always undesirable,
as in the case of cryptography, where the intention is to have
something that it hard to simplify and fragile to perturbation.
Yet for critical infrastructures, irreducible complexity is
disastrous. As for biology, the extraordinary robustness and
evolvability of the biosphere as a whole suggests that biology
fundamentally is not irreducibly complex. Some properties of
particular individuals that seem gratuitously fragile may be
“frozen accidents” that have temporarily avoided selective
elimination, and these may be intrinsically unpredictable.
In general, the extreme and cryptic fragility of irreducibly
complex systems, whether in biology or technology, suggest
not intelligent design but the lack of it.

The aforementioned definitions yield a simple taxonomy
for complexity in which we contrast, in one dimension, the
descriptions and/or models (small vs. large) and, in another
dimension, the system behaviors in response to perturbations
in descriptions, components, or the environment (robust
vs. fragile). Collectively, this leads us to the following view.

TABLE I

TWO DIMENSIONS OF COMPLEXITY

small models large models

robust behavior simplicity organized complexity

fragile behavior chaocritical complexity irreducible complexity

While the terminology for this taxonomy is tentative, we
believe the categorization is not. When viewed in this unified
framework, chaocritical complexity and organized complex-
ity are opposites. Chaocritical complexity celebrates fragility,
but organized complexity seeks to manage the inevitable
tradeoff between robustness and fragility. While it seems
that nearly all interesting complex systems are robust yet
fragile, knowing how to identify and protect against system
fragilities has been a source of confusion. This confusion is
due, at least in part, to opposite notions of complexity and
their corresponding models of system structure and behavior.
We will review several examples in Section III, but first
we demonstrate how the structure of many complex systems
can be interpreted as a response to the constraints that are
imposed on them.

D. A Constraint-Based View of System Complexity

A natural way to model any specific system, or class
of systems, is to describe system structure in terms of
the constraints that must be obeyed. For example, much
of Newtonian mechanics can be described in terms of the
relationship F = MA. We often like to write down these
constraints as differential or algebraic equations, but they
can be more general. Then, a key observation in the under-
standing of system complexity is that the features of most
evolved systems are a consequence of specific constraints
that are placed on their structure and/or behavior.

In the ideal case, one can find constraints that are simple
to describe and whose consequences are simple to determine.
But we know that even simple sets of constraints (e.g., 3 body
gravitational dynamics, chaotic maps, etc.) can have conse-
quences that are complex, and in particular so fragile as to
be unpredictable (either mathematically or experimentally).
In order to study system complexity further, it is useful to
decompose constraints into 4 sources: system/environment,
component, emergent, and protocol/architectural.

System-level constraints. Many complex systems, ranging
from biological systems to critical infrastructures, have clear
constraints on the needs of the system as a whole. These
system-level constraints can include functional requirements
(i.e., what the system needs to do), as well as the envi-
ronmental and operating requirements (e.g., the conditions
under which the system must need to be able to achieve this
function).

Component-level constraints. At the same time, the com-
ponents that comprise the system are typically constrained
in terms of what they can do individually. That is, there are
often physical, chemical, and/or informational component-
level constraints to which the system must adhere.
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The collective system can be viewed as a compromise
between what is required of the system as a whole and what
the individual components can do. This interaction of system-
level constraints and component-level constraints often leads
to the discovery of an additional type of constraint.

Emergent constraints. These are derived from the inter-
action between the system-level and component-level, and
they dictate what is possible from a collection of individual
components. These constraints are often expressed as hard
limits, either absolute or in expectation, and are sometimes
referred to as laws, the most well-known of which come
from the fields of thermodynamics (Carnot), communications
(Shannon), control (Bode), and computation (Turing, Gödel).
Historically, knowledge about these hard limits has been
fragmented, with each field making largely incompatible
assumptions. However new unifications are encouraging. For
example, recent efforts to integrate information theory and
control theory [10] show considerable promise for providing
new insight into what is possible in the realm of automated
remote sensing and control.

Architecture. An “architecture” imposes additional con-
straints on the overall system, typically in the form of pro-
tocols or other rules for the configuration and/or interaction
of system components. Although these additional constraints
reduce the number of possible system solutions, a “good”
system architecture constrains these solutions in a manner
that focuses on the feasible solutions. System architecture
will be the focus of Section IV-A.

We note that our consideration of question and answer
complexity is not really new. In a sense, the study of
computational complexity by computer scientists is really
about the ratio of the complexity of answer/question in the
limit when both go to infinity. The view presented here is
more rudimentary.

III. CASE STUDIES

Having introduced the contrast between chaocritical com-
plexity and organized complexity, we review here several ex-
amples in which these opposing views result in dramatically
different interpretations for the RYF nature of real systems.

A. Internet Topology at the Router-Level

The Internet serves as an important complex system for
study from both a theoretic and practical perspective. One
topic that has received considerable attention relates to
the large-scale connectivity of the Internet at its different
functional and organizational layers. After reports of power-
laws in several types of network connectivity—including
the router (physical) level, WWW (application) level, and
Autonomous System (organizational) level—considerable at-
tention has been placed on the development of models that
replicate the empirically observed connectivity statistics. For
example, one can use the tools of statistical mechanics to
show that models based on preferential attachment during
network growth, if tuned properly, yield power-laws consis-
tent with empirical observation [11]. The resulting “scale free

networks” (SFNs) suggest that the high connectivity nodes
(in the tail of the power-law degree distribution) serve as
central “hubs” that are crucial to the overall connectivity of
the system and represent critical vulnerabilities if attacked
[12]. In the spirit of “chaocritical complexity” these models
celebrate the way in which simple rules give rise to complex
behavior, with an emphasis on the fragility of the process that
yields them and the overall fragility of the resulting structure.

Yet, in the case for models of the router-level Internet,
SFNs have been shown to be a specious explanation for
the appearance of power-laws in network connectivity and
the RYF nature of the Internet in general [8], [13]. The
basic reason is that technological and economic drivers
of network design require that the network be organized
to manage the tradeoff between system-level constraints
on network performance and technological constraints on
router throughput. Specifically, component-level constraints
on router design (i.e., a conservation law in the number of
packets that can be processed per unit time) give rise to
an emergent constraint in the tradeoff between router con-
nectivity and connection bandwidth (i.e., a router can have
a few high bandwidth connections or many low bandwidth
connections, but never an arbitrarily large number of high
bandwidth connections) [14]. The resulting design is a sparse
mesh of high-speed, low-connectivity routers in the network
core, with high connectivity nodes only toward the network
periphery, where they serve as access points that multiplex
relatively low-speed end users, and not as central “hubs” in
global connectivity. This structure not only provides high
throughput performance, but it also results in considerable
robustness to the loss of high connectivity nodes.

Thus, while models based on preferential attachment cap-
ture aggregate statistics and provide a superficial account of
power-laws in the router-level network, they fall short of
what is needed to understand this complex engineering sys-
tem. Other aspects of the Internet, including traffic behavior
and other types of network structure have been examined
from these alternate perspectives, with similarly opposite
outcomes [15].

B. Metabolic and Protein-Protein Interaction Networks

In microbiology, metabolic and protein-protein interaction
networks serve as “critical infrastructure networks” at the
cellular level. These systems are highly constrained at the
systems level by highly unpredictable intracellular and extra-
cellular environments as well as at the component level from
physiochemical laws governing the individual parts (e.g.,
proteins and enzymes) and their reactions (i.e., conservation
laws). Considerable attention has recently been directed at
the structure of these network systems, with the discovery
of power-law connectivity in both cellular metabolism and
protein-protein interaction (PPI) networks cited as evidence
that scale free networks are a fundamental structure in
biology as well [16]. The claim is that when considering
certain network representations of stoichiometry, the degree
distribution for metabolite “nodes” is appropriately repre-
sented by a power law. An argument for SFNs parallel to
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that for the router-level Internet has been made suggesting
that metabolism is fragile to the loss of highly connected
metabolites.

Yet, when viewed through the lens of organized complex-
ity, in which domain-specific features of biochemistry are
fundamental, one observes that an emphasis on power law
connectivity in lieu of the domain-specific constraints at the
system- and component-level leads to incorrect models of
these biological networks, just as in the case of the Internet.
When the statistics are done properly the available data
strongly refutes the SFN models, and is more consistent with
the ideas that biology is highly organized and optimizes tol-
erances and tradeoffs (HOT) [17] for efficiency, robustness,
and evolvability [18], [19], [20].

C. Forest Fires

Real world fire-prone landscapes exhibit roughly power-
law statistics in the size versus frequency of burned regions,
and this feature has made forest fire modeling a popular
topic within the complex systems community. Forest fires
are perhaps the canonical application of SOC, which aims
to explain the presence of power laws as the consequence of
a system operating at a critical phase transition [21]. Once
again, when the statistics are done properly the available data
strongly refutes the SOC model, and are more consistent with
HOT models that involve tradeoffs between robustness and
fragility of forest yield to incident fires [22]. The contrast
between SOC models and those based on engineering design
has also been made in contexts other than forest fires [17].

There are two main HOT models of wildfires with different
levels of resolution, but they both emphasize constraints
and tradeoffs [22]. The component constraints are that the
vegetation growth on long time scales and fire propagation
on short time scales are highly constrained by biology
and physics, as well as specifics of weather, climate, and
topography. The system is largely robust to fires in the sense
that most fires are small and the few large fires that dominate
the statistics are rare, and vegetation has evolved to be
specifically tuned to fire as a major disturbance. Ecosystems
experts emphasize that ecosystems as a whole can evolve
very rapidly due to “sorting,” whereby competition and
selection acts on a large pool of available organisms who
are themselves undergoing slower lineage-based evolution.
An important emergent property is that these constraints
plus evolution lead naturally to state in which fires have a
roughly power-law distribution, but very different from what
is predicted by SOC models.

D. Internet Congestion Control

The Transmission Control Protocol (TCP) is the proto-
col responsible for managing network congestion (among
other things) in the existing Internet architecture. TCP was
developed in a somewhat ad hoc manner, based more on
engineering intuition and experimentation than on any strict
mathematical theory. Previous attempts to characterize TCP
in terms of its aggregate statistics yielded a view that
interpreted its behavior as a chaotic phenomenon [23]. In

contrast, the view inspired by organized complexity is one
in which application performance requirements must coexist
with throughput constraints at the level of individual routes
over the network. This latter view has recently led to the
development of a rigorous mathematical framework showing
that TCP (along with Active Queue Management, or AQM,
at the routers) can be viewed as implementing a primal-dual
optimization algorithm solving a global resource allocation
problem [24], [25], [26].

The practical importance of this “discovery” is significant.
Whereas previous efforts to validate network protocols fo-
cused on the simulation of realistic deployment scenarios,
this approach facilitates theoretic proofs for networks that
are arbitrarily complex (in terms of topology, number of
routers and hosts, nonlinear behavior, and in the presence of
delays) and yields short proofs of global stability in which
the system equilibrium optimizes aggregate user utility (e.g.,
[27]). Collectively, these new theories of Internet congestion
control and related networking technologies confirm engi-
neering intuition and are yielding new approaches to the
design and deployment of new protocols for high perfor-
mance networking technologies, whether they be dramatic
improvements to existing protocols [28] or the design of new
cross-layer protocols [29], [30].

IV. THE ROLE OF ENGINEERING AND DESIGN

While it is clear that different notions of system complex-
ity can give rise to opposite interpretations of system struc-
ture and behavior, how does one determine what “matters”
when it comes to real systems, such as critical infrastructure
networks? Moreover, how does one move from the analysis
of complex network systems to the deployment, configura-
tion, and management of such systems? There has recently
been considerable progress in our understanding of organized
complexity and networks, derived from a revolution in the
theory of distributed control driven by network technologies
[10], [28], [29], [30], [31], [32]. This view of complexity
focuses on organization, protocols, and architecture, and in
this section we present an overview of several concepts that
we believe will be fundamental to helping us understand,
operate, and design next-generation network systems.

A. A Theory of Complex Network Architecture

What is architecture? In most usage, the term architecture
focuses on the elements of structure and organization that
are most universal, high-level, and/or persistent. It usually
involves specification of protocols (rules of interaction) more
than modules (which obey protocols). System architecture
must facilitate system level functionality as well as robust-
ness and evolvability to uncertainty and change in com-
ponents, function, and environment. Architectures can be
designed or evolve, but when possible should be planned. In
the context of our constraint-based view of complexity, the
role of architecture is to create new constraints (primarily
in the form of protocols) that facilitate ”good” solutions
among competing component, systems-level, or emergent
constraints.
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To date, the study of systems architecture is more art than
science. There are (at least) two approaches to the study of
architecture. The first views architecture as a set of design
principles used to guide the construction of a system, and
as such focuses its research on the development of design
principles. This is the approach taken in many systems
engineering contexts [33]. The second approach is research
on a particular system design and studies architecture as the
modularity, interfaces, functional decomposition, etc. that
form the actual structure of the designed system. For this
latter view, the Internet again serves as a canonical example.

Much of the success of the Internet has been a result
of adhering more or less faithfully over time to a set of
fundamental network design principles adopted by the the
early builders of the Internet [34] (e.g., layering, fate-sharing,
end-to-end). In this sense, these principles constitute a mod-
est “architecture” for the Internet. From today’s perspective,
this architecture is both brilliant in the choices that were
made but shallow in our theoretical understanding of the
full Internet protocol design problem, where engineering
“design” has primarily taken the form of tinkering and/or
intuition along with considerable experimentation. That is,
the development of Internet technologies has followed from
a largely empirical view, one in which validation of a design
or protocol has been conducted via simulation or prototype.
The success of this approach has resulted in a scenario in
which we are better at “trial and error via deployment” than
provable guarantees on performance, stability, etc. Moreover,
it has perhaps given the false impression that the emergence
of collective behavior is sufficient as a design outcome.
However, as technological visions increasingly emphasize
ubiquitous control, communications, and computing, with
systems requiring a high degree of not only autonomy and
adaptation, but also evolvability, scaliability, and verifiability,
a more rigorous, coherent, and reasonably complete mathe-
matical theory underpinning Internet technology is needed.

B. Progress for Networked Dynamical Systems

The study of networked dynamical systems is theoret-
ically difficult for many reasons. One reason is that the
interconnection of network components can be complex.
Another reason is that, for systems of practical interest, the
dynamics of the individual network components themselves
can be complex. While much of the existing research has
emphasized increased complexity along one dimension or the
other, very little work to date has addressed the challenge of
networked systems that have both complex interconnectivity
and complex dynamics.

There exist many complex systems, both naturally occur-
ring and man-made, that serve as existence proofs for what is
possible in the design space of networked dynamical systems.
Again, consider the Internet and biology as two canonical
examples. Another is the flocking behavior on the part of
birds and fish, long considered a classic example where
collective system behavior cannot be predicted from the
individuals, thus inspiring awe and wonder at, in the words of
chaocritical complexity, the emergence of order from chaos

[35]. However, recently there has been considerable progress
in the use of a control-theoretic framework for understanding
the organized complexity of flocking and synchronization in
multi-agent systems, ranging from simple coupled oscillators
to coordinated flight of unmanned aerial vehicles (UAVs)
[36], [37], [38]. Until this work, and similar results in the
Internet and biology, most attempts to “explain” the structure
and behavior of these systems has utilized conjecture and
simulation, with no theoretic “proof” to explain their success
in function or performance. However, the last few years
have witnessed considerable progress in the development
of mathematical theory to show exactly why some complex
networked systems work as well as they do and also to guide
how to improve them. These results blend (from engineer-
ing) theories from optimization, control, information, and
computational complexity, with diverse elements in areas of
mathematics (e.g. operator theory and algebraic geometry)
not traditionally thought of as applied (e.g., [39]).

Critical infrastructures are a particularly challenging do-
main for the application of systems engineering, in part
because these systems have evolved in an ad hoc, piecemeal
fashion, through a competitive landscape filled with merger,
acquisition, and consolidation of individual infrastructures
designed as stand-alone systems. While one clearly observes
elements of design in the structure of these systems, it is
sometimes necessary to reverse-engineer the drivers of this
organization. In the meantime, the Internet remains a driving
force in the integration of automated control in critical
infrastructures.

V. LOOKING AHEAD

A quick survey of the funded projects at the National
Science Foundation (NSF) suggests that the Internet of
tomorrow will support a diversity of devices, applications,
and services [40]. Our dependence on the Internet is only
going to increase, and this dependence will be amplified by a
fundamental change in the way that we use the network. Cur-
rent communications and computing is dominated primarily
by human-to-human communication (e.g., email, chat, text
messaging) or by human-to-machine communication (e.g.,
information retrieval, information storage, transaction pro-
cessing). However, increased deployment of internet-enabled
sensors and actuators that monitor and change the physical
world means that the Internet is increasingly a platform for
integrated control, communications, and computation. It is
reasonable to believe that in the future a majority of Internet
traffic will not directly involve a human and will be primarily
between automated hardware and software. This transition
will enable new capabilities and robustness, but will also
expose new fragilities and vulnerabilities. The impact and
implications of this type of change are not fully appreciated,
and there exist few theoretical results that guarantee that
efforts to implement a system of this magnitude will be
successful.

Thus, the Internet has become critical in two ways. First,
the Internet has become a type of public utility (like electric-
ity or phone service) that underlies many important public
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and private services. In this context, Internet disruptions have
a “ripple effect” across the economy. Second, the Internet is
increasingly a control system for monitoring and controlling
our physical environment, and as a result, hijacking the
Internet can be even more devastating than interrupting it.

What do we need in the next-generation critical infrastruc-
tures, including the Internet? Perhaps most fundamentally,
we need to be able to manage the tradeoff between functional
robustness and system fragility, so that we can appropriately
balance the benefits of increased efficiency and convenience
with the potential for large-scale disruption. We may not be
able to eliminate the RYF nature of the Internet and other
critical infrastructures, but we can minimize the potential risk
of catastrophic failure.

Will complexity science support the engineering of next-
generation infrastructure systems, including the Internet? If
by “complexity science” one means an emphasis on the
tools and techniques associated with the study of chao-
critical complexity, then we believe the answer is no. Our
understanding of a systems-level architecture for complex
networks is nascent, but it’s clear that design of architectures
is a topic of increasing importance. And while progress is
being made in our understanding of organized complexity,
considerable work remains. In particular, we cannot afford
to wait to see what emerges from the ongoing integration
of the Internet and other critical infrastructures, nor can we
trust the validation of such systems to heuristic argument
and simulation. Thus, there is a need for a new theory
of network architecture, one in which the principles of
organized complexity provide guarantees on the performance
and reliability of the system as a whole. How to formalize
such “proofs” remains an open area for research.
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