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Abstract—We propose a jointly opportunistic source
coding and opportunistic routing (OSCOR) protocol for
correlated data gathering in wireless sensor networks.
OSCOR improves data gathering efficiency by exploiting
opportunistic data compression and cooperative diversity
associated with wireless broadcast advantage. The design of
OSCOR involves several challenging issues across different
network protocol layers. At the MAC layer, sensor nodes
need to coordinate wireless transmission and packet for-
warding to exploit multiuser diversity in packet reception.
At the network layer, in order to achieve high diversity and
compression gains, routing must be based on a metric that
is dependent on not only link-quality but also compression
opportunities. At the application layer, sensor nodes need a
distributed source coding algorithm that has low coordina-
tion overhead and does not require the source distributions
to be known. OSCOR provides practical solutions to these
challenges incorporating a slightly modified 802.11 MAC, a
distributed source coding scheme based on network coding
and Lempel-Ziv coding, and a node compression ratio
dependent metric combined with a modified Dijkstra’s
algorithm for path selection. We evaluate the performance
of OSCOR through simulations, and show that OSCOR
can potentially reduce power consumption by over 30%
compared with an existing greedy scheme, routing driven
compression, in a4 × 4 grid network.

I. I NTRODUCTION

Data gathering is a common function of sensor net-
works, where information sampled at sensor nodes needs
to be transported to central base stations for further
processing and analysis. In view of the severe energy
constraints of sensor nodes and the limited transport
capacity of multihop wireless networks, an important
topic addressed by wireless sensor networks community
has been in-network data aggregation. The idea is to
pre-process sensor data in the network by sensor nodes
endowed with computational power, so as to reduce
expensive data transmission.

This work has been supported in part by DARPA grant N66001-06-
C-2020, Caltech’s Lee Center for Advanced Networking, a gift from
Microsoft Research and the Australian Research Council.

In this paper we consider those data-gathering sce-
narios where data is sampled at a number of distributed
correlated sources and needs to be routed to one or a few
base stations or sinks. Data aggregation in this context
involves in-network data compression, see, e.g., [1]–[3].
Such compression and its interaction with routing has
been the subject of several previous studies, some of
which are briefly reviewed in Section II.

Much of the existing work on correlated data gathering
implicitly assumes routing techniques similar to those
in wireline networks, neglecting the characteristics of
wireless transmission. On the one hand, wireless trans-
mission is error-prone. Sequential forwarding of packets
along a fixed path may incur many retransmissions, and
thus exhaust scarce network resources such as energy
and capacity. On the other hand, wireless transmission is
broadcast in nature. The chance that all the neighboring
nodes fail to receive the packet is small (multiuser diver-
sity in packet reception). Moreover, multiple receptions
of a packet by different nodes can also be exploited
for opportunistic data compression. By leveraging the
wireless broadcast advantage and multiuser diversity, we
can reduce the number of wireless transmissions needed
for data gathering.

We propose a jointly opportunistic source coding and
opportunistic routing (OSCOR) protocol for correlated
data gathering in wireless sensor networks, which ex-
ploits the broadcast nature of wireless transmission.
OSCOR broadcasts each packet, which is received by
possibly multiple sensor nodes, and opportunistically
chooses a receiving neighbor to forward the packet,
with the goal of obtaining a path online with highest
possible compression and best possible link quality. Op-
portunistic forwarding with opportunistic compression
allows OSCOR to exploit multiuser diversity in packet
reception, data compression and path selection, resulting
in high expected progress per transmission.

The design of OSCOR involves several challenges.
First, sensor nodes need to coordinate wireless transmis-
sion and packet forwarding so as to exploit multiuser
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diversity in packet reception. Second, sensor nodes need
a distributed source coding algorithm that does not
require full knowledge of the joint source distributions
or too much coordination overhead. Finally, in order
to achieve high diversity and compression gain, routing
(or more precisely, forwarding decisions) must be based
on a metric that is dependent on not only link-quality
but also compression opportunities, which is nontrivial
because the effect of data compression is not additive
along a path and the source distributions are not known
a priori but are learned online. In this paper, we develop
practical solutions to these challenging issues. Our main
contributions are

• By slightly modifying 802.11 MAC, we design
a low overhead consensus protocol to coordinate
wireless transmission and packet forwarding. Al-
though it needs coordination between nodes to
choose a single forwarder out of multiple receiving
nodes, our protocol is “local” and flexible enough to
allow good spatial reuse and to allow easy extension
to applications with multicast traffic and multiple
sessions.

• We propose a practical distributed source coding
scheme that combines and takes advantage of both
Lempel-Ziv code and network coding. Lempel-Ziv
code does not require the knowledge of the statistics
of the data, while network coding is well-suited to
distributed compression of information in networks.

• We propose to use expected transmission count dis-
counted by node compression ratio (cETX) and ex-
pected opportunistic transmission power discounted
by node compression ratio (cOETP) along a path as
the path metrics for routing. These two path metrics
cannot be simply described as the summation of
some link metric over the links in a path. So,
existing routing algorithms are not directly appli-
cable. We propose modified Dijkstra’s algorithms
to update the path metrics cETX and cOETP from
a node to the sink and select the shortest path,
which is used to prioritize the neighboring nodes
and update the forwarding candidate set of a node.

An interesting aspect of OSCOR is the way that
opportunistic source coding interacts beneficially with
opportunistic routing to route packets over paths with
high compression and good link quality. We evaluate the
performance of OSCOR and find that OSCOR provides
both opportunistic compression and opportunistic routing
gains.

The remainder of the paper is organized as follows.
Section II introduces sensor network model and data
compression, and discusses related work and motivation
for this work. Section III describes the idea behind
OSCOR and gives the details of its design. Section IV
presents a performance evaluation of OSCOR through

simulations. Section V concludes this paper with some
discussion on future work.

II. PRELIMINARIES

A. Sensor Network Model

A sensor network is represented by a directed graph
G = (V, E), whereV is the set of nodes andE is the
set of edges inG. An edge from nodei to nodej is
denoted either by a single indexe or by the directed
pair (i, j). We restrict our attention to a single session
associated with a number of data sourcess1, . . . , sm ∈ V
and a single sinkt, i.e., t attempts to gather information
from the sourcess1, . . . , sm. Our proposed protocol can
be readily extended to handle multiple sessions with a
single sink or multiple sinks.

Each sourcesi periodically measures a continuous
random observationXi. The joint source vectorX =
{X1, . . . ,Xm} is characterized by a joint probability dis-
tribution p(X1 = x1, . . . ,Xm = xm) = p(x1, . . . , xm).
Let {X(τ)} be a stationary random process, where
X(τ) = {X1(τ), . . . ,Xm(τ)} corresponding to the set
of random variables observed at all sources at time-slot
τ . We assume thatX(τ) is both spatially and temporally
correlated. Each sourcesi quantizesXi(τ) to generate
a discrete random variablêXi(τ). X̂i(τ) is compressed
into bits using source coding. The bits are packetized
and transmitted over the sensor network.

To compare and evaluate different data gathering
schemes, we need a common metric. Our focus is on
energy expenditure, and we therefore choose to use the
expected number of MAC layer transmissions that is
needed for successfully delivering a packet from each
source to the sink. Each edgee is associated with a
cost ce ≥ 0 that relates to its communication cost. In
this paper, we choosece to be the expected transmission
count (ETX) [4], which is a metric used in link-quality-
aware routing. The ETX of a wireless link is the average
number of transmissions necessary to transfer a packet
successfully over this link. We will see later that the
path metric cETX used in this paper is a sum of ETXs
discounted by the node compression ratio along the path.

B. Quantization and Compression

To quantify the performance of a particular scheme,
we need to quantify the amount of information generated
by the sources and by the aggregation points after
compression. In this subsection, for the convenience of
presentation we drop the time indexτ . Let h(XI) denote
the joint entropy of{Xi|i ∈ I}, i.e.,

h(XI) = −

∫

p(XI) log2 p(XI)dXI . (1)



If Xi are individually quantized with a uniform quantizer
with stepsizeδ, high-resolution analysis shows that the
joint entropy ofX̂I = {X̂i|i ∈ I} is [5]

H(X̂I) ≈ h(X̂I) − |I| log2 δ, (2)

whereX̂i is the sample ofXi and|I| denotes the cardi-
nality of I. For example, for a Gaussianm-dimensional
multivariate process with full-rank covariance matrixΣ

h(X1, . . . ,Xm) =
1

2
log2(2πe)m|Σ|, (3)

where|Σ| is the determinant ofΣ. WhenΣ is singular
with rankκ(Σ) < m, let |Σ|+ denote the product ofΣ’s
non-zero eigenvalues. The joint entropy ofX1, . . . ,Xm

is

h(X1, . . . ,Xm) =
1

2
log2(2πe)κ(Σ)|Σ|+, (4)

and the joint entropy ofX̂1, . . . , X̂m can be written as

H(X̂1, . . . , X̂m) ≈
1

2
log2(2πe)κ(Σ)|Σ|+−κ(Σ) log2 δ.

(5)
We can write the joint entropy of̂XI = {X̂i|i ∈ I}
similarly.

C. Existing Data Gathering Schemes and Motivation

Existing data gathering schemes proposed in the liter-
ature can be classified into four classes:

(1) Distributed Source Coding (DSC) [6]–[9]: If the
sources have perfect knowledge about their correlations,
they can encode/compress data by using distributed
source coding [10] (e.g., Slepian-Wolf coding [11]) so
as to avoid transmitting redundant information. In [6],
it was shown that each source can send its data to
the sink along the shortest path without the need for
intermediate aggregation. Sources need to coordinate to
operate at a certain point within the Slepian-Wolf region
such that the total cost is minimized. In [7], a suboptimal
hierarchical difference broadcasting scheme is proposed
without requiring knowledge of joint entropy of sources.
But it works for single sink case only. The scenario
of multi-sink is considered in [8], where a suboptimal
distributed scheme is proposed and it also requires the
information exchange between sources. In [9], we pro-
posed a fully decentralized algorithm without requiring
the coordination of sources, which works for both single
sink and multi-sink cases. However, this scheme still
requires the knowledge of joint entropy of sources for
decoding purpose, which is difficult and complicated to
estimate in practice. Nevertheless, this scheme provides
a baseline for evaluating the other schemes.

(2) Routing Driven Compression (RDC) [1], [2]: In
this scheme, the sources do not have any knowledge
about their correlations and send data along the shortest

paths to the sink while allowing for opportunistic ag-
gregation wherever the paths overlap. Such shortest path
tree aggregation techniques are described, for example,
in [1], [2], where the tree is generated greedily.

(3) Compression Driven Routing (CDR) [3]: This was
motivated by the scheme in [12]. As in RDC, the sources
have no knowledge of the correlations but the data is
aggregated close to the sources and initially routed so as
to allow for maximum possible aggregation at each hop.
Eventually, this leads to the collection of compressed
data at a central node, which are sent to the sink along
the shortest possible path.

(4) Hybrid Clustering [3]: In this scheme, sources
form small clusters and data is aggregated within them
at a cluster head which then sends data to the sink
along the shortest path. Opportunistic aggregation is also
allowed wherever the paths overlap. This scheme can be
considered as a combination of both RDC and CDR. The
optimal cluster size depends on the source correlations,
which is unknown in advance. This scheme also requires
nodes’ coordination to find a cluster head.

In [6]–[9], it is assumed that any edge in the network
is error-free and can transmit information at the rate of its
channel capacity. In [1]–[3], only joint design of source
coding and routing is considered on top of the MAC
layer and the routing metric is hop distance, which does
not take into account the link quality. None of [1]–[3],
[6]–[9] considers exploiting the broadcast advantage and
cooperative diversity of wireless networks.

In this paper, we consider joint design of application,
network and MAC layers taking advantage of wireless
broadcast and cooperative diversity. Practical wireless
radios such as the ones based on various IEEE 802
standards (e.g., 802.11, 802.15, etc.) employ only a
simple coding strategy, mostly for error detection. Nodes
transmit at one of a discrete set of power levels, and rely
on a small number of link-layer packet retransmissions
to overcome errors. Also, nodes can only transmit at
a predetermined set of rates. Our work focuses on
developing practical data gathering schemes over sensor
networks comprised of radios similar to 802.11.

III. O PPORTUNISTICSOURCECODING

A. Basic Idea

The basic idea of OSCOR works as follows. Each
node chooses a set of forwarding candidates with differ-
ent priorities (we will describe how to decide priority in
Section III-B). In each time step, each source attempts
to broadcast a packet subject to 802.11 MAC. The nodes
within a source’s forwarding candidate set that actually
receive the packet run a protocol to agree on that the
highest priority node keeps the packet and all the other
nodes drop the packet to prevent unnecessary multiple
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Fig. 1. Example of OSCOR with link delivery probabilities shown
along the edges of the graph. The entropy rates ofs1, s2, and(s1, s2)
after quantization areH(X̂1) = 1, H(X̂2) = 1, andH(X̂1, X̂2) =
1.5, respectively.

forwarding of the same packet. If the packet is not
received by any node in the source’s candidate set, the
source broadcasts the packet again until it is received by
at least one node in the candidate set or the maximum
number of trials is reached. Each node other than the
sink waits for a period of time to create opportunity
for receiving multiple packets from different sources,
which are then compressed, packetized, and forwarded.
At the next time step, each source has a new packet to
deliver. Intermediate nodes which have received packets
to forward are also considered as new sources. The
original and new sources repeat the same process. Note
that at any time, several nodes may have packets to
transmit, which could result in packet collision. We
just apply 802.11 MAC to resolve this issue. After an
appropriate period of time, the forwarding candidate
set of each node is updated by using the information
collected in the past.

Fig. 1 gives an example on how OSCOR works.
Link delivery probabilities are shown along the edges
of the graph. The entropy rates ofs1, s2, and (s1, s2)
after quantization areH(X̂1) = 1, H(X̂2) = 1, and
H(X̂1, X̂2) = 1.5, respectively. Sourcesi has a packet
bi to deliver, i = 1, 2. The forwarding candidate sets
for s1, s2, r are{t, r}, {t, r}, {t}, respectively, where the
node listed earlier has higher priority.s1 first broadcasts
b1. If b1 is received byt, the transmission finishes
(as t has higher priority thanr) and s1 is ready to
transmit another, new packet. Ifb1 is received only by
r, r waits for a period of time. In case thatr receives
b2 later andb2 is not received byt, r compressesb1

and b2 and sends the resulting packet tot. Otherwise,
r sendsb1 to t directly. We now analyze the average
number of transmission required by different schemes.
For DSC, we can compress the data ats1, s2 such that
s1 sends 1 packet ands2 only sends 0.5 packets along

their respective shortest pathss1 → t and s2 → t. If
we assume that 0.5 packets require 0.5 transmissions
on average, DSC requires1/0.5 + 0.5/0.5 = 3 trans-
missions. For RDC, without compression at sources, it
requires1/0.5 + 1/0.5 = 4 transmissions. For OSCOR,
with probability 0.25 both b1 and b2 are received byt;
with probability 0.25 b1 is received byr only and b2

is received byt; with probability 0.25 b1 is received by
t and b2 is received byr only; with probability 0.25
both b1 andb2 are received byr only, where after com-
pression1.5 packets (H(X̂1, X̂2) = 1.5) are needed to
deliver. Therefore, the average number of transmissions
is 0.25(2 + 3 + 3 + 3.5) = 2.875. Surprisingly, OSCOR
outperforms not only RDC but also DSC.

There are two reasons why OSCOR might outperform
existing schemes. First, with OSCOR each transmis-
sion can have multiple independent chances of being
received, which reduces the number of retransmissions.
In Fig. 1, without opportunistic source coding, each
packet is received byt with only probability0.5 and the
fact that r can always receive the packet is not taken
into account. With opportunistic source coding, each
packet can always be received byt and/or r. Another
reason is that OSCOR takes advantage of the opportunity
for two correlated packets to be received by the same
node and hence to be compressed, which again can
reduce the number of transmissions. As we will see
later, the way our protocol chooses and prioritizes each
node’s forwarding candidate set can actually increase this
opportunity.

Note that our opportunistic routing component in
OSCOR is similar to ExOR proposed in [13]. But there
are several key differences. First, the path cost metric for
routing used in OSCOR is a combination of expected
transmission count (ETX) and compression ratio, which
makes the calculation of lowest cost path from a node
to the sink more complicated. Second, ExOR improves
performance by taking advantage of long-distance links,
while the opportunistic routing in OSCOR improves per-
formances mainly by reducing multiple retransmissions
through multiple-reception gain. Third, in ExOR, only
the source specifies the forwarding candidate set and all
the nodes use the same candidate set. It leads to a special
MAC protocol on top of 802.11 hardware, which goes in
rounds and reserves the medium for a single forwarder
at any time. This prevents the forwarders from exploiting
spatial reuse. Moreover, this highly structured approach
to medium access makes it very difficult to coordinate
the transmissions of packets of different sources or sinks.
In contrast, in our opportunistic routing, each node has
its own candidate set and only requires local coordi-
nation, and transmissions are scheduled by a slightly
modified 802.11 MAC. Therefore, our scheme can enjoy
the basic features available to 802.11 MAC.



Fig. 2. Data and ACK frame formats in our OSCOR protocol. Lengths in bytes are shown in brackets, and new fields are shaded.

According to the way the received packets are ac-
knowledged and the tolerance of delay, OSCOR is de-
scribed in two variants in the following.

B. OSCOR with Per-Packet Acknowledgement

In this protocol, each node sends acknowledgement
after receiving a packet.

1) Packet Format: Fig. 2 depicts the data and ACK
frame formats in the OSCOR protocol. The formats
are similar to the 802.11 standard, with the addition
of three fields. In the data frame, the FwdSetSize and
Forwarders Address fields are added before the frame
body, where FwdSetSize indicates the number of for-
warding candidates in the forwarder set and Forwarders
Address includes the addresses of all the candidates in
the forwarder set except the highest priority candidate.
The Forwarders Address is in priority order, where can-
didates with higher priority appear earlier in Forwarders
Address. The maximum number of forwarders is denoted
max_fwd_size. Address 1 is always the address of
the highest priority candidate. Address 2 is always the
sender address. All the other fields in the data frame are
the same as those in 802.11. In the ACK frame, a new
PA field is added before the CRC, which indicates the
address of the highest priority forwarding candidate that
the sending node has known before this ACK is sent.

2) Packet Reception and Acknowledgement: One of
the major challenges of OSCOR is how to make the
nodes in a node’s forwarding candidate set agree on
which of them should forward the packet. We propose
to use a modified version of the 802.11 MAC which
reserves multiple time-slots for receiving nodes to send
acknowledgements. This idea shares similarity with the
acknowledgement scheme in the preliminary version of
ExOR [14].

Let ack_tx_time denote the time required to trans-
mit an ACK packet, and let SIFS denote the short inter-
frame space in 802.11. Nodes listen to all transmissions.
Each node remembers the priority of the highest-priority
ACK it has overheard so far for a particular packet
ashighest_ACK_rx ∈ {1, 2, . . . ,max_fwd_size}.
When a nodev hears a data packet, it checks whether
its address is in the packet’s Address 1 or Forwarders
Address field. If so,v checks its priority in the forwarder
list denotedi (if v’s address appears in Address 1, it sets
i = 1; if v’s address is thek-th address in Forwarders

Address, it setsi = k + 1), sets itshighest_ACK_rx
to i, and waits SIFS+(i−1) · (ack_tx_time+SIFS)
before sending its acknowledgement. During its waiting
time, if it overhears an ACK with RA the same value as
Address 2 in the data packet it has received,v checks PA
field of the ACK to see whether the nodeu with address
PA has a priority greater than itshighest_ACK_rx.
If so, highest_ACK_rx is set to the priority of node
u. When it is the time for nodev to transmit the ACK,
it sets the RA field to be Address 2 of its received data
packet, and it sets PA field to be the address of the node
with priority highest_ACK_rx. After transmitting
ACK, node v continues to hear possible ACKs and
performs the same update onhighest_ACK_rx. After
waiting for all the nodes in the forwarder set to transmit
ACKs, nodev compares its priorityi with its current
highest_ACK_rx. If the former is less than or equal
to the latter (indicating that nodev thinks that it is the
highest priority recipient), the received packet is kept
for further compression and forwarding. Otherwise, the
packet is dropped since another node with higher priority
also received the data packet.

If the sender does not hear the ACK from any nodes
in its forwarder set after timetime_out, it retransmits
the packet. Aftermax_retry retransmissions, if the
sender still does not get any ACK, it drops the packet
and transmits another packet.

Including PA field in ACK helps suppress duplicate
forwarding. An example of acknowledgement is shown
in Fig. 3. Suppose that node A hears a transmission,
that A is the highest-priority candidate, and that A sends
an ACK. Node B, the second highest priority candidate,
does not hear the ACK, but node C does hear the ACK.

Data

ACK

ACK

ACK

A

B

A

A: 1

B: 2

C: 3

Sender

SIFS

SIFS

SIFS

ack_tx_time

Fig. 3. Example of acknowledgement in packet acknowledgement
protocol. The number besides each node indicates the priority of this
node.



Suppose further that node B hears node C’s ACK. If
PA were not added in ACKs, node B would forward
the packet, since it is the highest-priority recipient to
its knowledge. The fact that node C’s ACK indirectly
notifies B that node A did receive the packet and it did
not need to transmit the packet.

Even though we use this acknowledgement scheme,
there still exist chances that the same packet is transmit-
ted by different nodes. According to the rule (described
below) for choosing each node’s candidate set, there is a
high probability that any two nodes in a node’s candidate
set can hear each other, and thus with high probability
that only one copy of a packet is transmitted. If duplicate
packets are indeed transmitted, they may be received by
the same node later and compressed into a single packet
by using source coding.

3) Scheduling: OSCOR uses 802.11’s basic access
mechanism (i.e., without RTS/CTS) to schedule the
nodes’ transmissions unlike ExOR which uses a special
scheduler on top of 802.11. In 802.11, when a node
detects that the medium has been free for more than
DCF interframe space (DIFS), it starts backoff and
transmits its packet when the backoff counter becomes
zero. In 802.11, usually DIFS= SIFS+2 ·slot_time,
whereslot_time is the duration of a time slot, an
802.11 parameter. Since OSCOR generates multiple
ACKs per packet, this must be extended. Suppose that
node A’s candidate set contains nodes B and C, that
B’s priority is higher than C, and that another node
D waits for transmission. Suppose further that node C
receives a packet from A but node B does not. As node
B has higher priority than node C, node C needs to wait
for 2·SIFS+ack_tx_time before sending its ACK.
During node C’s waiting time, as node B does not send
ACK, node D may detect that the medium is free and
its backoff counter may return to zero. Node D then
sends its packet, which may collide with node C’s ACK
at node A. The problem arises because of our packet
acknowledgement mechanism and the short DIFS. To
avoid this problem, we propose to increase the DIFS to
max_fwd_size·(SIFS+ack_tx_time)+2·slot_time. Thus,
all the nodes wait for a packet acknowledgement to be
accomplished before entering backoff.

4) Source Coding: To increase opportunities for data
compression, each node delays received packets for a
period of timeTc before compressing and sending them.
This allows multiple packets to be received and jointly
compressed. The parameterTc should be chosen based
on the application or other system factors. For example,
in delay sensitive applications, it is preferable to choose
a smallTc, while in power constrained applications, it
is preferable to choose a largeTc to allow for maximum
possible data compression. Clearly, choosingTc gives a
tradeoff between delay and compression. LetLrx(k) and

Lcp(k) denote the number of bits before and after the
k-th round of compression. We record the compression
ratio ρi(k) = Lcp(k)/Lrx(k) at nodei.

After time Tc, each node compresses its received
packets using any universal source code that does not
require knowledge of the statistics of the packets, e.g.,
Lempel-Ziv [15]. The Lempel-Ziv encoding algorithm
is a sequential algorithm, which can compress a packet
immediately after it is received without waiting for com-
pression until the end ofTc. The compressed data is then
packetized and transmitted. The disadvantage of Lempel-
Ziv coding is that it is complicated to extend to the
network case, where the packets formed by compression
of data at a node may be received by different next
hop nodes and undergo joint compression with other
packets. To recover the original packets, the sink would
have to run the Lempel-Ziv decoding algorithm once for
each coding step in reverse order. Moreover, Lempel-Ziv
is prone to packet loss. Network coding offers a more
elegant solution.

Network coding allows nodes to algebraically com-
bine packets before forwarding them. The use of net-
work coding can significantly improve the ability of the
network to transfer information in multicast or lossy
settings [16]; practical implementations of such network
codes, e.g. [17], are based on distributed random linear
network coding [18]. Each coding node forms its output
transmissions as a random linear combination of its
input transmissions in some finite fieldF2m . It is also
recognized in [18] that random linear coding can be
used to perform distributed compression in a network.
However, network coding needsa priori knowledge of
packets’ joint entropies to determine how many coded
packets to generate, which may not be available in
practice. We thus combine both Lempel-Ziv coding and
network coding to take advantage of both. The idea is
to use Lempel-Ziv1 to obtain an estimate of the number
of coded bits to generate, denoted asn. Random linear
network coding is then applied to generaten coded bits.
The coded bits formed by network coding are packetized
and sent. This process can also be executed sequentially.
Let ni denote the number of bits generated by Lempel-
Ziv after receiving thei-th packet. The output data of
Lempel-Ziv is then discarded. Suppose that we haveni

network coded bits, which are generated by using the
bits in the first i packets. After receiving thei + 1-th
packet, we add a random linear combination of the bits
in the i + 1-th packet to theni network coded bits and
form anotherni+1 − ni network coded bits by using
all the bits in the receivedi + 1 packets. This allows
parallelization of the coding process.

1Note that any entropy estimator such as Burrows-Wheeler (or
block-sorting) transform based estimators can replace the Lempel-Ziv
encoder here.



The decoding at the sink can be performed by using
the polynomial-time minimum-entropy decoding algo-
rithm in [19]. However, this algorithm requires the sink
to know the coding vector associated with each packet
it receives. Since the size of the coding vector is at
least the number of bits in a block, for large blocks
it is impractical to include the coding vector in the
header of each packet as in traditional network coding
[18]. We thus propose to generate the coding coefficients
at each node using a pseudo-random number generator
with a prespecified random seed known to the sink.
Each coded packet is identified by the node at which it
was created and a sequence number. Each coding node
periodically transmits control packets informing the sink
of which packets were coded together to form each of
its output packets. This allows the sink to recover the
coding vectors of transmitted packets. As the control
packet is transmitted everyTc seconds, with a largeTc,
the overhead is not significant.

When packet length is fixed in the protocol, the
number of bits after source coding may not be an integral
multiple of the packet length. In this case, we just append
zeros after the encoded sequence. Sometimes it is also
wasteful to append zeros as it may happen that after
packetization, a packet only contains one useful bit and
all the other bits are zero. In this case, the node may
wait for more packets until the wasted bits are not many
or send part of the bits and leave the rest bits for further
compression.

5) Forwarding Candidate Set Generation: After a pe-
riod of timeTgen, each node has doneNcp = bTgen/Tcc
rounds of compression. For each nodei, we compute
the average compression ratio asρ̄i =

∑Ncp

k=1 ρi(k)/Ncp

(initialized as 1). Each node estimates the average link
packet delivery ratēpi,j from i to j and average ACK
delivery rateāi,j from j to i over timeTgen. Let ρ̄i(k),
p̄i,j(k), and āi,j(k) denote the estimates in thek-th
round. To improve estimation accuracy, we estimateρ̄i,
p̄i,j , and āi,j using an exponentially weighted moving
average

ρ̄i ←− (1 − α)ρ̄i + αρ̄i(k), (6)

p̄i,j ←− (1 − β)p̄i,j + βp̄i,j(k), (7)

āi,j ←− (1 − β)āi,j + βāi,j(k), (8)

where parametersα, β ∈ [0, 1]. According to [4], the
ETX is then estimated asci,j = 1/(p̄i,j āi,j).

To update the forwarding candidate set for each node
i, we need to first compute the least average number of
transmissions required to transmit a packet from nodei
to sinkt, denoted aswi, which is also called the expected
transmission count discounted by node compression ratio
(cETX). Note thatρ̄i means that on average each packet
received by nodei is compressed intōρi packets. So,

the effect of data compression is not additive along a
path, and existing routing algorithms are not directly
applicable.

If we use a flow model in which a packet on edge(i, j)
means one unit of flow on this edge, this implies that the
total outgoing flow of nodei is equal toρ̄i times of the
total incoming flow. Letfi,j denote the flow on edge
(i, j). For each nodev, we need to solve the following
min-cost flow problem:

wv = min
f

∑

(i,j)∈E

ci,jfi,j

s.t.
∑

j

fi,j − ρ̄i

∑

j

fj,i =







ρ̄i, if i = v,
−y, if i = t,
0, otherwise,

y ≥ 0.
(9)

If ρ̄i = 1 for all i ∈ V, (9) reduces to the classic min-
cost network flow problem in an uncapacited graph or
the shortest path problem [20],2 which can be solved
distributedly by using Dijkstra’s algorithm or Bellman-
Ford algorithm. The coefficient̄ρi reflects data com-
pression at each node. The problem (9) with arbitrary
value of ρ̄i is a linear program and can be solved in
polynomial time, if all the information on the objective
function and constraints is given, which is impractical
in real networks. We find that (9) can also be solved
distributedly using a modified Dijkstra’s algorithm as
follows. Let T denote the set of nodes whosewv is
definitively known. Initially,T = {t} wheret is the sink
node andwt = 0. Add one node toT in each iteration.
Initially, wv = ρ̄vcv,t for all nodesv adjacent tot, and
wv = ∞ for all other nodesv ∈ V. Do the following:

Algorithm 1:

1) loop
2) Find v not in T with the smallest wv;
3) Add v to T ;
4) Update wu for all u adjacent to v and not in T :

wu = min {wu, ρ̄u(wv + cu,v)} ; (10)

5) until all nodes are in T .

Let L(v) denote the forwarding candidate set of node
v. For any u ∈ L(v), it must satisfy the following
conditions:

i) The ETX cv,u should be less than or equal
to max retry, the maximum number of retrans-
missions, i.e.,cv,u ≤max retry;

ii) Node u should be closer to sinkt than node
v, i.e., wv > wu.

2Shortest path routing is an integer optimization problem. However,
what we care is only the cost of the shortest path, which can be
obtained by solving (9).



Among those nodes satisfying conditions i) and ii), only
the first maxfwd size lowest (cv,u + wu)-value nodes
are added intoL(v). If node u cannot find any node
satisfying conditions i) and ii), it adds the nodeu with
minimum cv,u + wu andwv > wu into L(v). Condition
i) ensures that a packet transmitted by nodev can be
received with high probability at nodeu. Condition ii)
guarantees that packet is always transmitted towards the
sink. Next, all nodesu in the forwarding candidate set
L(v) of node v are prioritized according towu. The
smallerwu is, the higher priorityu has. As we rank the
nodes according towu, the path with fewer expected
number of transmissions is preferable, which may be
due to both a shorter distance to the sink and a higher
opportunity of data compression on this path. Note that
as we adapt̄ρi andci,j over time, the proposed protocol
adapts to network change, e.g., nodes dying or moving.
When ci,j is fixed, nodes initially have no idea which
path has more opportunity to have data compressed.
With time, nodes learn the opportunity of compression
throughρ̄, and they will gradually prefer the paths with
high chance of data compression. This is in contrast
to the existing data gathering schemes, in which data
compression and routing are actually uncoupled.

Algorithm 1 is simple to implement, but does not take
into account either the fact that opportunistic routing
is employed instead of shortest path routing or the
power consumption of ACKs. The following algorithm
considers both of these factors. LetPdata and Pack

denote the energy consumption by sending a data packet
and an ACK, respectively. We need to compute the
average energy required to transmit a packet from node
i to sink t, denotedw̃i, which is also called the expected
opportunistic transmission power discounted by node
compression ratio (cOETP). cOETP can also be obtained
by solving a linear program (LP) as in (9). However,
in this case, the LP is hard to solve distributedly.
Alternatively, as in Algorithm 1, letT denote the set
of nodes whosew̃v is definitively known, except that
T = ∅ initially. One node is added toT in each iteration.
Let L(v) denote the forwarding candidate set of node
v, where nodes inL(v) are in increasing order of̃w.
Initially, w̃v = ∞ andL(v) = ∅ for all nodesv ∈ V − t
andw̃t = 0, wheret is the sink node. Letni denote the
i-th entry ofN . Do the following:

Algorithm 2:
1) loop
2) Find v not in T with the smallest w̃v;
3) Add v to T and to the end of L(u) for all nodes

u adjacent to v and not in T ;
4) for all u adjacent to v and not in T , add v to

the end of L(u), update w̃u according to (11) at
the top of next page;

5) until all nodes are in T .

The w̃u computed by (11) is the average energy
consumption by sending a packet from nodeu to t,
where the nominator of (11) is the probability that at
least one node inN receives the packet and we neglect
the effect caused by ACK packet loss. Opportunistic
routing is counted through̄pu,ni

∏i−1
j=1(1− p̄u,nj

), which
is the probability that thei-th node inN receives the
packet from nodeu while all the otheri − 1 higher
priority nodes inN do not. The energy consumption
of ACK is counted throughPack

(

∑k
i=1 p̄u,ni

)

. Note
that in (11) we implicitly assume that ACK will never
lost and duplicated packet forwarding is completely
eliminated. As ACK is usually short, the error probability
of ACK is small. Also the ACK mechanism of OSCOR
discussed in Section III-B2 can effectively prevent ACK
loss and packet duplication. Both factors indicate that
(11) is a good approximation to the real case. Note that
(11) also automatically determines the size of forward
set.

The complexity of Algorithm 2 is high as computing
(11) has a complexity exponential in the size ofL(u).
In large networks, this complexity is not acceptable. We
combine Algorithm 1 and Algorithm 2 to get Algorithm
3. In Algorithm 3, we first apply Algorithm 1 to generate
L(u) for eachu. According to the order thatu is added
into T , we computew̃u for eachu. First, eachL(u) is
reordered according to increasing order ofw̃. w̃u is then
computed by settingN = L(u) in (11) directly without
performing themin operation.

Remarks:

• Note that whenmax_fwd_size=1 and ρ̄i = 1,
∀i ∈ V, OSCOR reduces to a variant of RDC
which uses ETX instead of hop count as the path
metric. Whenmax_fwd_size> 1, our scheme
takes advantage of both cooperative diversity and
opportunistic aggregation.

• In [7], it was shown that allowing nodes to broad-
cast does not reduce the cost of data gathering in
networks with lossless channel. However, in a net-
work with lossy channels, as indicated in Fig. 1, the
data gathering cost may be reduced by exploiting
the broadcast advantage or cooperative diversity of
wireless medium even with perfect DSC.

• Different from existing data gathering schemes [1]–
[3], [6]–[9], which only consider the interaction
between application and network layer. Our pro-
posed protocol can be considered as a joint design
across application layer, network layer and MAC
layer, which does source coding in application layer,
runs modified Dijkstra’s algorithm at network layer,
and handles scheduling and packet forwarding at
MAC layer. By using universal source coding and
opportunistic routing, our proposed protocol can be



w̃u = min
1≤k≤|L(u)|

min
N⊆L(u),|N |=k

ρ̄u

(

Pdata +
∑k

i=1 w̃ni
p̄u,ni

∏i−1
j=1(1 − p̄u,nj

)
)

+ Pack

(

∑k
i=1 p̄u,ni

)

1 −
∏k

i=1(1 − p̄u,ni
)

. (11)

implemented in a fully distributed fashion.
• We have assumed that all the packets entering a

node i roughly have the same contribution tōρi.
We do not account for the possibility that different
packets may have different impacts on the compres-
sion ratio. For example, the compression ratio of
compressing only two packets enteringi may be
less than that of compressing three packets. It will
make the protocol complicated by considering this
effect.

• Note that DSC can also work with opportunistic
routing. However, it requires not only the coor-
dination of the sources but also the statistics of
the sources. This approach is not practical so we
do not discuss here. Our proposed protocol can
also be combined with other existing schemes, e.g.,
the hybrid clustering scheme in [3], and can be
extended to the scenario that only a few nodes can
perform data compression.

• In some applications, e.g., [1], sophisticated source
coding is not used, and only duplicated packets
are removed at each node. OSCOR can be readily
modified in this situation.

• By replacing power consumption in (11) with time
duration, Algorithm 2 can also be used to improve
the throughput of opportunistic routing.

C. OSCOR with Per-Batch Acknowledgement

In the OSCOR protocol with per-packet acknowl-
edgement, each packet is acknowledged after being sent
and received. Considering that each node needs to wait
time Tc before compression and transmission, it is not
power- and time-efficient to acknowledge each packet
immediately after receiving it. In the following, we
discuss a variant that sends acknowledgements after
receiving a batch of packets instead of a single packet.
All the components are same as the OSCOR protocol
with per-packet acknowledgement except the packet ac-
knowledgement part.

Each sender puts a batch of packets into the trans-
mitting buffer and broadcasts these packets one by one
all together. All the nodes in the sender’s forwarding
candidate set try to receive those packets. After time
Tb, each node in the candidate set acknowledges its
received packets by following the same way (from high
priority node to low priority node) as in the per-packet
acknowledgement protocol. The only difference is that
each ACK contains a reception report indicating which

packets have been received by this node. Each packet in
the reception report is labeled by the priority of this node.
When another node in the candidate set overhears this
ACK, it updates each packet’s priority in the reception
report in the same way as in the per-packet acknowledge-
ment protocol. Also, whether a packet is kept by a node
is decided similarly as in Section III-B. Upon receiving
the ACK, the sender removes the packets in the reception
report from its buffer. The unacknowledged packets are
kept in the transmitting buffer for the next batch until it
has been sentmax_retry times. New packets are put
into the transmitting buffer to make a full batch, and a
new transmission cycle starts.

As the ACK from one node in the forwarding candi-
date set may not be received by another node in the set,
different from the per-packet acknowledgement protocol
where missing one ACK may only result in duplicating
one packet, missing one reception report may cause the
duplication of many packets. To resolve this problem,
after receiving all the ACKs, the sender sends a summary
of received reception reports to all the nodes in the
candidate set, which indicates for each packet the highest
priority node that has received this packet. This prevents
possible packet duplication.

Another problem with the per-batch acknowledgement
protocol is that each node cannot encode packet imme-
diately after it is received as it does not know whether
this packet is also received by a higher priority node.
Note that from the reception reports in the previous
batches each node can estimate the probability that a
received packet is also received by a higher priority
node, denoted asp. Each node can also estimate that
on average each received packet is compressed intoρ̄
packets. On receiving a new packet, with probability
1 − p, a random linear combination of the bits in the
received packet is added to the already coded bits and
this packet is marked. Also additionalρ̄ coded packets
are generated by using random linear combinations of
the marked packets. After receiving the summary report,
the node checks whether an unmarked packet is not
received by a higher priority node. If so, a random linear
combination of the bits in this packet is added into the
existing coded bits.

IV. EVALUATION

In this section we report some preliminary evaluation
results of OSCOR. To evaluate the performance of



TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
Path Loss Exponent 2 Slot Time 20µs
Lognormal fading 0.1 dB SIFS 10µs
Transmit Power 23 dBm DIFS 980µs

Noise Power -55 dBm MAC Header 34 bytes
Data Rate 6 Mbps PLCP Header 24 bytes

Modulation BPSK MAC ACK 14 bytes
max_retry 3 max_fwd_size 3

Tgen 1 s Tc 74.5 ms

OSCOR, we develop a packet-level simulator that imple-
ments our approach, DSC and RDC. Our simulations are
based on IEEE 802.11b standard, with some modification
as described in Section III-B2. We only implement the
OSCOR protocol with per-packet acknowledgement. The
values for the parameters used in simulations are summa-
rized in Table I. In all simulations, each source transmits
3000 packets. After every 1s,̄ρi(k), p̄i,j(k), andāi,j(k)
are updated according to (6)-(8), and each node’s can-
didate set is updated by using the algorithms in Section
III-B5. We consider a jointly Gaussian data model. The
differential joint entropy of the sources is given by (3),
where the elements of the covariance matrixΣ, σi,j ,
depend on the distance between the corresponding nodes
and the degree of correlation. In our simulations, we
assume thatσi,j = e−di,j/c, wheredi,j is the distance
in meters between nodesi and j and c is a correlation
parameter, in meters. Uniform quantizers with stepsize
δ = 1 are used at all sources. The joint entropy of the
sources is given by (5). For evaluation simplicity, we
assume thatH(X̂i(τ), X̂j(τ

′)) = H(X̂i(τ), X̂j(τ
′′)),

∀τ ′, τ ′′, i 6= j, and samples from a given node at
different times are independent. We also assume the use
of ideal data compression with network coding, where
each node knows how many coded packets are needed to
send (can be obtained by assuming perfect knowledge of
each packet’s joint entropies). OSCOR with Algorithm
i in Section III-B5 is denoted OSCORi, i = 1, 2, 3.

We evaluate the performance of different schemes
on a 4 × 4 grid network shown in Fig. 4. In Fig. 4,
we only give the coordinates of nodes 1 and 16 in
meters. Fig. 5 shows the average power consumption
per bit versus the correlation parameterc with different
schemes. We assume that the sources know the perfect
knowledge of joint entropy in DSC. To compare the
performance of different schemes on the same ground,
we use ETX as path metric in both DSC and RDC
instead of using hop count. In OSCOR, we choose
smoothing parametersα = β = 0.1 in (6) and (7). As
source correlationc increases, the average power con-
sumption reduces because of higher correlation between
the packets from different sources. DSC outperforms
both RDC and OSCOR as it can remove the redundancy
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Fig. 4. A 4× 4 grid network, where nodes 1, 2, 3, and 4 are sources
and node 14 is the sink.
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Fig. 5. Average power consumption versus correlation parameter
c in the grid network in Fig. 4 with OSCOR, RDC, and DSC. The
quantization step sizeδ = 1.

in the packets perfectly. Whenc = 103, OSCOR1
reduces the power consumption by 32% as compared
with RDC as OSCOR uses opportunistic compression,
compression ratio learning and path adaptation. When
c = 1, OSCOR1 achieves a 16% power saving over
both RDC and DSC, which is due to multiuser diversity
and spatial reuse with opportunistic routing. From Fig.
5, we can also see that both OSCOR2 and OSCOR3
have a less power consumption than OSCOR1. OSCOR2
achieves the least power consumption, and OSCOR3
lies between OSCOR1 and OSCOR3. Whenc = 103,
OSCOR2 attains 5% power saving over OSCOR1. When
c is small, the power saving by using OSCOR2 is fairly
small. However, in large sensor networks, a large gain
may be obtained by OSCOR2.

Fig. 6 shows the evolution of compression ratioρ̄
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Fig. 6. Evolution of compression ratioρ at nodes 2, 3, 6, 7 and 10
versus round number in the grid network in Fig. 4 with OSCOR1. The
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as a function of rounds with OSCOR1. We only show
the nodes with compression ratio less than 0.95. Nodes
2, 3, and 6’s compression ratios reduce gradually with
round. It is interesting to see that both nodes 7 and 10’s
compression ratios first decrease and then increase. At
first, node 7 is the highest priority node in node 4’s
forwarding candidate set. Later node 4 finds that its
packets have a better chance to be compressed more at
node 3. Node 4 then puts node 3 as the highest priority
node in its candidate set. The compression ratio at node
7 then increases. Finally, node 4 prefers to send to node
3, node 3 prefers node 6, nodes 1 and 2 both prefer node
6. The same analysis holds for node 10. In RDC, the path
is pre-determined and fixed during data-aggregation, and
it does not take path adaptation into account.

V. CONCLUSION

We have presented a jointly opportunistic source
coding and opportunistic routing protocol, OSCOR, for
correlated data gathering in wireless sensor networks.
OSCOR achieves efficient data gathering by exploiting
both opportunistic data compression and cooperative
diversity associated with wireless broadcast advantage.
OSCOR uses a slightly modified 802.11 MAC which
allows good spatial reuse, different from that of ExOR.
A practical source coding scheme was proposed by using
Lempel-Ziv code and network coding. OSCOR also
allows path adaptation according to not only link quality
but also compression opportunities. Modified Dijkstra’s
algorithms were proposed to solve the resulting min-cost
routing problem. Simulation results showed that OSCOR
can potentially reduce the power consumption by 32%
compared with RDC in a4×4 grid network. Further

work includes evaluation of our protocol in larger net-
works, where we expect greater performance gains due
to more spatial reuse that allows more diversity in packet
reception and more chances in data compression. A
close analysis and evaluation of the impact of network
topology and traffic pattern on OSCOR is also of interest.
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