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Abstract 
This paper gives a broad overview, from a LFT/p perspective, of some 
of the theoretical and practical issues associated with robustness in 
the presence of real parametric uncertainty, with a focus on compu- 
tation. Recent results on the properties of p in the mixed case are 
reviewed, including issues of NP completeness, continuity, computa- 
tion of bounds, the equivalence of p and its bounds, and some direct 
comparisons with "Kharitonov-type" analysis methods. In addition, 
some advances in the computational aspects of the problem, including 
a new Branch and Bound algorithm, are briefly presented together with 
numerical results. The results of this paper strongly suggest that while 
the mixed p problem may have inherently combinatoric worst-case be- 
havior, practical algorithms with modest computational requirements 
can be developed for problems of medium size (< 100 parameters) that 
are of engineering interest. 

1 Introduction 

The analysis of systems subject t o  mixed real (eg. parametric) and 
complex (eg. dynamic) structured uncertainty has been the focus of 
much research interest in recent years. Many robust stability and per- 
formance problems associated with such systems can be addressed with 
the structured singular value, j i ,  by choice of an appropriate (mixed) 
block structure. This mixed p problem can have fundamentally differ- 
ent properties from the more standard complex p problem (where the 
block structure contains only complex blocks), and these properties 
have important implications for computation. 

In section 3 wereview the resultsin [13,1,2], which show that both 
the real and mixed p problems are, in general, both discontinuous in the 
problem data and NP complete. While these results have devastating 
implications for certain research directions, they need not preclude 
the development of practical algorithms for medium size problems. 
Here medium size means less than 100 real parameters, and "practical" 
means avoiding combinatoric (nonpolynomial) growth in computation 
with the number of parameters for all of the problems which arise in 
engineering applications. 

The rest of the paper is devoted to  demonstrating that such practi- 
cal algorithms are not only possible, but appear to be available, at least 
in experimental form. Section 4 reviews the bounds for mixed p intro- 
duced in [4,3], which play a key role in the proposed algorithm. Several 
important properties of the bounds are described in Section 5. One of 
the more interesting properties is related to  recent work ([15]) which 
shows that several celebrated "Kharitonov-type" results are subsumed 
by the the methods emphasized in this paper, and can be computed 
almost trivially without any need to  examine a combinatoric number 
of vertices or edges. It also sheds light on why there have been no 
practical algorithms based on "Kharitonov-type" theorems. 

Section 6 describes some practical schemes to  compute the bounds 
described in section 4 and explores the algorithm's performance in 
trials on large collections of data. Both the quality of the bounds and 
their computational requirements as a function of problem size are 
explored. While the bounds are often accurate enough for engineering 
purposes, in a significant number of cases of interest, they are not. 
This is in contrast with the purely complex nonrepeated case, where 
no examples of problems with large gaps have been found. 

The use of Branch and Bound schemes to  improve upon existing 

bounds has been suggested by several authors (see [5,6] and references 
therein), and section 7 considers the use of such schemes. There are 
some important issues and tradeoffs to  be considered in implementing 
such a scheme, which can greatly impact the performance. A selection 
of results from a fairly extensive numerical study of these issues is 
presented, and a Branch and Bound scheme is proposed which we 
believe will form the basis of a practical scheme. The material in 
sections 5 through 7 will be covered in greater depth in future papers 
[7, 8, 91. 

2 Notation and Definitions 
The notation used here is fairly standard and is essentially taken from 
[lo] and [3]. For any square complex matrix M we denote the com- 
plex conjugate transpose by M'. The largest singular value and the 
structured singular value are denoted by F ( M )  and p r ( M )  respec- 
tively. The spectral radius is denoted p ( M )  and ~ R ( M )  = max{lXI : 
X is a real eigenvalue of M}, with ~ R ( M )  = 0 if M has no real eigen- 
values. For a Hermitian matrix M ,  then X ( M )  and Xm;,(M) denote 
the largest and smallest (real) eigenvalues respectively. For any com- 
plex vector x, then I* denotes the complex conjugate transpose and 
1x1 the Euclidean norm. We denote the k x k identity matrix and zero 
matrix by I k  and ok respectively. 

The definition of p is dependent upon the underlying block struc- 
ture of the uncertainties, which is defined as follows. Given a matrix 
A4 E CnXn and three non-negative integers m,, m,, and m c  with 
m := m, + m, + mC 5 n, the block structure K(mr,mc,mc) is an 
m-tuple of positive integers 

K = (k~,...,km,,km,+l,.,km,+m,rkm,+m,+l,. . . , k m )  (1) 

where we require k; = n in order that the dimensions are com- 
patible. This determines the set of allowable perturbations, namely 
define 

XK = {A = block diag(S;Ik,, . . . ,6~rIk,v,6~Ik,vt,, . . ., 
6&cIk,v+mc?A??. . * , A % , )  : 

} (2) 6; E R,6: E E Ck*vtmct.Xkmrtmct. 

Note that X K  E Cnxn and that this block structure is sufficiently 
general to allow for repeated real scalars, repeated complex scalars, 
and full complex blocks. Note also that the full complex blocks need 
not be square, but we restrict them as such for notational convenience. 
The purely complex case corresponds to m, = 0. 
Definition 1 ( [ l l ] )  The structured singular value, ~ K ( M ) ,  of a ma- 
trix M E CnX" with respect to a block structure K(m,,m,,mc) i s  
defined as 

I \ -1 
p c ( M )  = (p1~{5(A) : det(I - AM) = 0)) (3) 

with p ~ ( d 4 )  = 0 if no A E X K  solves det(Z - AM) = 0. 
In order to  develop the upper and lower bound theory for p we need 
t o  define some sets of block diagonal scaling matrices (which are also 
dependent on the underlying block structure). 

QK = {A E XK : 6: E [-1 1],6;"'6: = 1,Ac.A: = Ik,,tmc+,} (4) 
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VK = {block diag(D1, . . . , Dm,+mCr di~k,,+,,+, , . . . , dmclk,,,) : 
det(D,) # 0,Di E Ckixki,di # 0,d; E C} (7)  

& =  (blockdiag(g1, ..., g,,,O,,):gi E R} (8) 

where n, = Ezl k, and n, = n - nr. 

3 Properties of the Mixed p Problem 
The mixed p problem inherits many of the properties of the complex 
p problem, such as the scaling property and invariance to appropriate 
block diagonal similarity transformations (see [ll, 31). However in 
some aspects the mixed p problem can be fundamentally different from 
the complex p problem, and in this regard we consider two issues in 
the remainder of this section: NP completeness and continuity. This 
material is essentially taken from [I, 21. 

3.1 Continuity 
It is now well known that real p problems can be discontinuous in the 
problem data (see [12]). As well as adding computational difficulties 
to  the problem this sheds serious doubt on the usefulness of real p as 
a robustness measure in such cases, since the system model is always 
a mathematical abstraction from the real world, and is computed to  
finite precision. It is shown in [2] how t o  regularize these problems 
by essentially adding a small amount of complex uncertainty to  each 
real uncertainty. By doing this a small amount of phase uncertainty is 
added to  the gain uncertainty. It is then shown that the new mixed p 
problem is continuous. This regularization seems reasonably well mo- 
tivated from an engineering point of view, where unmodeled dynamics 
would always produce some phase uncertainty. 

Furthermore it is shown in [2] that mixed p problems containing 
some complex uncertainty are, under some mild assumptions, continu- 
ous even without the regularization procedure outlined above (whereas 
purely real p problems are not). This is reassuring from an engineering 
viewpoint since one is usually interested in robust performance prob- 
lems (which therefore contain a t  least one complex block), or robust 
stability problems with some unmodeled dynamics, which are natu- 
rally covered with complex uncertainty. Thus in problems of engineer- 
ing interest, the potential discontinuity of p should not arise, although 
conditioning of p computation could be a problem and needs more 
study. 

3.2 NP Completeness 
Recent results in [13] show that a special case of computing p with real 
perturbations only is NP complete. While these results do not apply 
t o  the complex only case, it is certainly true that the general mixed 
problem is NP complete as well. Demmel's results [l] also cast doubt on 
the tractability of r-approximations to  the pure real case, although the 
mixed case is less clear. These results strongly suggest that it is futile 
to  pursue exact methods for computing p in the purely real or mixed 
case for even moderate (less than 100) numbers of real perturbations, 
unless one is prepared not only to solve the real p problem but also 
to  make fundamental contributions to  the theory of computational 
complexity. Furthermore, it may be that even approximate methods 
must have worst-case combinatoric complexity. 

These results do not mean, however, that practical algorithms are 
not possible. Practical algorithms for other NP complete problems ex- 
ist and typically involve approximation, heuristics, branch-and-bound, 
or local search. The results of this paper strongly suggest that an 
intelligent combination of all these techniques can yield a practical al- 
gorithm for the mixed problem. On the other hand, routine application 
of any of these methods generally seems t o  produce algorithms with 
clearly exponential growth rates even on small problems. For exam- 
ple, using Branch and Bound with crude bounds ([5]) appears to  have 
exponential Krowth on tvpical problems. 

4 Upper and Lower Bounds for Mixed p 

Whilst definition 1 gives an exact expression for p it does not yield di- 
rectly any tractable way to compute p,  since the associated optimiza- 
tion problem is not in general convex. For this reason we are interested 
in computing upper and lower bounds for mixed p problems. 

First consider the computation of a lower bound. Note that one 
cannot simply 'cover' the real perturbations with complex ones (and 
then use the complex p lower bound) since that would include pertur- 
bations from outside the permissible set X K ,  and so would not yield 
a valid lower bound. The key t o  obtaining a lower bound lies in the 
fact that the p problem may be reformulated as a real eigenvalue max- 
imization. The following theorem is taken from (31. 

Theorem 1 (131) For any matriz M E Cnx", and any compatible 
block structure IC 

(9) 

This immediately gives us a theoretical lower bound since we have 
that for any Q E Q K ,  ~ R ( Q M )  5 p x ( M ) .  The idea then is to  find 
an efficient way to  compute a local maximum of the function ~ R ( Q M )  
over Q E 0,. Note that since this function is non-convex we cannot 
guarantee to  find the global maximum and hence we only obtain a lower 
bound for p. The practical computation of such a local maximum is 
discussed in section 6.1. 

Now consider an upper bound for p. One could, for the purposes 
of the upper bound, cover the real perturbations with complex ones 
(and then use the complex p upper bound) since this would cover 
the admissible perturbation set X K .  However this approach does not 
exploit the phase information that is present in the real perturbations, 
and hence the bound is frequently poor. The upper bound presented 
in [4] does exploit this phase information and gives a bound which is 
never worse than the standard upper bound from complex p theory 
(see [14] for example) and is frequently much better. The following 
theorem is taken from [4]. 

Theorem 2 ([4]) For any matriz M E Cnxn,  and any compatible 
block structure IC suppose a, is the result of the minimization problem 

a, = inf [,in{. : (IM'DM + j ( G M  - M'G) - OD) 5 O]] (10) 
DEQc a € R  
GECC 

then i f a ,  5 0 we have p r ( M )  = 0, otherwise 

Since the above minimization involves a LMI (Linear Matrix Inequal- 
ity), it is convex (so that all local minima are global) and hence this 
bound is computationally tractable. The practical computation of the 
upper bound is discussed briefly in section 6.2. 

5 Properties of the Bounds 

The upper and lower bounds from complex p theory not only serve as 
computational schemes, but are theoretically rich as well. Connections 
between the bounds and various aspects of linear system theory have 
already been established, and further work in this area appears to  have 
great promise. A theoretical study of the mixed p bounds may yield 
new insight as well, and this is the subject of current research. One 
of the problems currently under investigation is to  establish for which 
classes of matrices and block structures the upper bound is identically 
equal to  p. This is of interest since the upper bound is a convex 
optimization problem, and hence can be computed exactly. Note that 
although the lower bound from (9) is always equal to  p ifone finds the 
global maximum, it is a non-convex problem (and hence one cannot 
guarantee to  find the global maximum). Some preliminary results in 
this area are briefly presented in the remainder of this section. This 
work will be presented in more detail in 171. 
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5.1 
To examine the equivalence between p and its upper bound, we first 
consider under what conditions a given pair of scaling matrices, DO, Go, 
yields a value of p = 6 which equals the minimum of the upper bound 
minimization, and under what conditions p equals p. In the remainder 
of this subsection we present some of the ideas, and state without proof 
two theorems which answer these questions. 

Suppose we have matrices M E CnX", Do E 'DK and GO E GK 
and a real scalar p > 0 such that I ( M * D o M  + j(GoM - M'Go) - 
PZDo) = 0 with r eigenvalues coalesced at the maximum. Fur- 
ther suppose that the eigenvectors are given by U0 E CnX' where 
(M*DoM + j(G0M - M'Go) - pzD0)Uo = 0 and UlDoUo = I,. 
Then the question of whether or not we can find a pair of scaling 
matrices D E V K , G  E GK to  improve upon Do,Go can be related to  
whether or not there exists a vector f j  E C', 141 = 1 such that the 
quantity d ~ , ~ ( v )  q'UZ(M*DM + j ( G M  - M'G) - PZD)Uop sat- 
isfies d ~ , ~ ( f j )  < 0. The function 4 ~ , ~ ( p )  can in turn be written as 
I # J D , G ( ~ )  = ( (D ,G) , (D(v ) ,G(q ) ) ) ,  an inner product between the pair 
( D , G )  and a pair (D(q ) ,G(q ) )  parametrized by the vector q. This can 
be used to  define a set V y  as the set of all such pairs ( D ( q ) ,  G ( v ) )  (for 
171 = l ) ,  together with an extended set V y  (with V y  c V y ) .  The 
details of these constructions will be given in [7], and the analogous 
constructions for the complex p case are given in [14]. The relationship 
between the minima of the upper bound function and p is intimately 
related to  the nature of these two sets, and this is stated explicitly in 
the following two theorems. 

Theorem 3 Suppose we have matrices M E Cnxn, DO E V K  and 
Go E GK and a real scalar p > 0 such that I(A4'DoM + j (GoM - 
M'Go) - p2D0)  = 0 with r eigenvalues coalesced at the maximum. 
Further suppose that the eigenvectors are given by U0 E CnX' where 
(M'DoM+j(GoM-M*Go)-PZDo)Uo = 0 and UO*DoUo = I, .  Then 
Do,Go are minimizing arguments of the upper bound problem (with 
minimum value Q = pz) 

A Theoretical Framework for the Problem 

if and only i f0  E Co(Vy)  (where Co(Vy)  denotes the convex hull of 

Theorem 4 Suppose we have A4 E Cnxn,Uo E CnX' and p > 0 de- 
fined as in theorem 9. Then /3 = p ~ (  M )  if and only if 0 E V y  . 
This type of theoretical framework has been very successful in ana- 
lyzing the complex p problem, and it is hoped that further work in 
this area will establish when which mixed p equals its upper bound. 
This is a subject of current research. The following related result was 
obtained in [4]. 

Theorem 5 ([4]) Suppose we have M E C""", then provided the in- 
jimum in (10) is achieved and the corresponding largest eigenvalue of 
(M'DM + j ( G M  - M*G)  - Q D )  is distinct, then ~ K ( M )  equals its 
upper bound from theorem 2. 

5.2 The Rank One Case and "Kharitonov-type" results 
The mixed p problem when M is rank one is studied in detail in (151. 
The authors develop an analytic expression for the solution to  this 
problem, reducing it to  a convex minimization problem in one vari- 
able. Not only is this easy to  compute, but it has sublinear growth in 
the problem size. Interestingly, they show that this rank one case cor- 
responds to  the so called "affine parameter variation" problem (for 
a polynomial with perturbed coefficients) which has also been ex- 
amined in detail in the literature, and for which several celebrated 
"Kharitonov-type" results have been proven (see [ l G ]  for example). It 
is noted in (151 that all these problems can be treated as special cases 
of "rank one p problems" and are thus "relatively easy to  solve". Even 
the need to  check (a  combinatoric number of) edges is shown to be 
unnecessary. 

This rank one case can also be addressed within the framework 
developed here for examininrr the equivalence between II and its upper 

V Y ) .  

bound. The following theorem, stated without proof, gives a partial 
answer to  the rank one mixed p problem. 

Theorem 6 Suppose we have a mnk one matriz M E Cnx", then 
provided the infimum in (10) is achieved, p ~ ( h 4 )  equals its upper bound 
from theorem 2. 
We believe that theorem G extends t o  the general case (where the 
infimum may not be achieved) and this is being investigated. If this 
extension holds, then it says that for such problems p equals its upper 
bound and is hence equivalent to a convex problem. This reinforces the 
results of [15] and offers some insight into why the problem becomes 
so much more difficult when we move away from the "&ne parameter 
variation" case to  the "multilinear" or "polynomial" cases [SI. These 
correspond to  p problems where M is not necessarily rank one, and 
hence may no longer be equal to  the upper bound and so may no 
longer be equivalent to  a convex problem (note that there exist rank 
two matrices for which p does not equal its upper bound). 

These results also underline why there are no practical algorithms 
based on "edge-type" theorems, as the results appear t o  be relevant 
only to a very special problem. Furthermore, even in the very special 
"affine parameter case" there are a combinatoric number of edges to  
check. 

5.3 The Mixed p Upper Bound Versus the Complex p 
Upper Bound 

As was mentioned in section 4 it is always possible to  obtain an upper 
bound for a mixed p problem simply by treating the real parameters 
as complex, and using the standard complex p upper bound (see [14] 
for example). However the upper bound from theorem 2 is frequently 
much better than the complex p upper bound because of the extra 
degrees of freedom we have in choosing the G scaling matrix (note 
that if we restrict ourselves to  G = 0, we recover the complex p upper 
bound). The G scaling matrix exploits the phase information we have 
about the real parameters in order to reduce the bound. However it is 
not always possible to  improve upon the complex p upper bound via 
the G scaling matrix as is illustrated in the following theorem, stated 
without proof. 

Theorem 7 Suppose we have a real matrix A l  E RnXn and a block 
structure IC with k; = 1 for i = 1 , .  . . , m, (i. e. none of the real scalars 
are repeated) then an optimal choice for G in (10) is G = 0,. 
This is an important class of problems. For instance one encounters 
p problems where M is real when it is constructed from State Space 
'A, B,C, D' matrices. Note that this theorem does not apply if any of 
the real parameters are repeated. 

6 Practical Computation of the Bounds 
The theoretical bounds described in section 4 form the basis of our 
computation scheme. However a certain amount of reformulation is 
required before they can be implemented in an efficient manner. This 
is described briefly in the remainder of this section, together with 
some numerical experience with the algorithm, and will be presented in 
greater detail in [8]. The algorithm has been implemented as a Matlab 
function (m-file), and will be available shortly in a test version in con- 
junction with the p-Tools toolbox. While these algorithms are far from 
optimal, they serve to  demonstrate the practicality of this approach, 
and should thus motivate more refined algorithms. 

6.1 The Lower Bound 
In order to  compute a lower bound for p we need to find a local max- 
imum of the maximization problem (9) as discussed in section 4. It 
turns out that this can be done efficiently by means of a power iter- 
ation. The iteration scheme usually converges fairly rapidly and each 
iteration of the scheme is very cheap, requiring only such operations as 
matrix-vector multiplications and vector inner products. The scheme 
tested here is a very simple power iteration, and as such does not 
converge on all problems, but in such cases one still obtains a candi- 
date mixed perturbation from the iteration scheme. From this one can 
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compute a lower bound (provided that the mixed p problem contains 
some complex uncertainty) by simply wrapping in the real perturba- 
tions, and then evaluating the spectral radius of the associated complex 
p problem, scaled by the candidate complex perturbations. There are 
several refinements that should improve the convergence and these will 
be investigated. The theoretical development of the power iteration, 
together with some aspects of its implementation, is fully described in 
[3] and we will not go into any of the details here. 

6.2 The Upper Bound 
Since the upper bound from theorem 2 is convex one could tackle it us- 
ing a variety of convex programming techniques. For instance we know 
that gradient search methods will lead us to  the minimum eventually, 
although they may be slow (although the upper bound problem (10) 
is not in general differentiable if the maximum eigenvalue is repeated, 
it is possible to  compute a generalized gradient which gives a descent 
direction). Since the upper bound can be formulated as an LMI, it is 
hoped that specialized algorithms for solving LMIs will emerge that 
greatly improve the bounds computation. In the meantime, we would 
like to  exploit the specific structure of the problem in a somewhat 
ad hoc manner order to  speed up the computation. In particular we 
can reformulate the problem via the following theorem, stated without 
proof. 
Theorem 8 Suppose we have a matrix M E Cnxn and a real scalar 
,8 > 0 ,  then there exist matrices D E VK, G E GK such that 

- 
X (M*DM + j ( G M  - M*G)  - P'D) 5 0 (13) 

if and only if there exist matrices D E V K ,  G E & such that 

It is clear from this that as an alternative to  carrying out the mini- 
mization in (10) we could compute the 'minimum' 0 > 0 such that 

Note that the theoretical equivalence of the two problems breaks down 
at ,8 = 0 (and so for these cases strictly speaking there is no minimum 
0 )  but this presents no problem for a practical computation scheme 
since we merely quit if the upper bound falls below some prespecified 
tolerance (which can be arbitrarily small). Each of these two different 
formulations of the upper bound problem has its own advantages. The 
problem statement from (13) has the advantages that it is linear in 
the matrices D and G, and is convex (and hence one will not have 
problems associated with local minima). The problem statement from 
(14) has the advantages that one is trying t o  minimize the norm of a 
given matrix (which offers some numerical advantages), that D enters 
the problem exactly as in the standard complex p upper bound, that 
G enters the problem in a balanced symmetric fashion, and that G is 
now a real diagonal matrix. 

The upper bound algorithm implemented here works by initially 
tackling the problem in the form of (14). Here we can use some methods 
from the complex p bounds, togethe! yi th  various other techniques, 
t o  obtain a fairly good estimates of D,G and 0. These are then con- 
verted into an initial guess for the problem in the form of (13) and the 
algorithm then proceeds to  improve on these. This will be covered in 
greater detail in (81. 

6.3 Algorithm Performance 
There are many questions one could ask with regard to  the algorithm 
performance, both in terms of computation time and accuracy of the 
resulting bounds. We decided to  focus on the algorithm performance 
versus matrix size for a fixed set of uncertainty descriptions. The first 
test performed was t o  examine the average computation time for the 
algorithm implemented in Matlab. For this purpose we used random 
complex matrices generated in Matlab with the p-Tools "crand" com- 
mand (having set "rand( 'normal')"). This generates matrices whose 

Figure 1: Computation time in seconds versus matrix size for mixed-p 
problem (solid) and complex-p problem (dashed). 
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Figure 2: Ratios of mixed-p lower to  upper bounds, and mixed-p to  
complex-p upper bounds, for a sample of random matrices. Matrices 
of sizes 10 (solid), 20 (dashed), 30 (dotted), and 50 (dashdot). 

elements are normally distributed (zero mean) random variables. The 
computation time is shown versus matrix size in Figure 1 for block 
structures consisting of all scalar uncertainties, with 80% of them cho- 
sen as real and the rest complex. The time to  compute the appro- 
priate complex p problem using the p-Tools "mu" command is shown 
for comparison. The results were obtained running Matlab on a Sparc 
1 workstation, and it can be seen that we can reasonably expect to  
handle problems of size 10 in about 10 seconds, up t o  problems of size 
50 in about 2-3 minutes. 

The next set of tests performed was aimed a t  evaluating the accu- 
racy of the bounds. Again we used random complex matrices generated 
as before, and the same class of block structures. This time we com- 
pared the upper and lower mixed p bounds, and also the mixed p and 
complex p upper bounds. The complex p bounds were obtained by sim- 
ply replacing all the real perturbations with complex ones, but without 
changing the matrix. Thus the complex upper bound is strictly larger 
than the mixed upper bound. The results are shown in Figure 2, and 
indicate that for these problems we are obtaining fairly tight bounds, 
even for large problems. 

It is also apparent that for these problems there is typically not 
much of a gap between mixed p and complex p. This class of matrices 
is interesting from the point of view of the lower bound performance, 
since one is obtaining a mixed perturbation achieving a lower bound 
close t o  that one could obtain with a complex perturbation. However 
it is not too interesting from the point of view of the upper bound 
performance, since the G scaling matrix cannot greatly reduce the 
upper bound. It is also doubtful that random complex matrices are 
representative of those of practical interest. For these reasons we would 
like t o  find a class of matrices where we often encounter problems with 
a reasonably large gap between mixed p and complex p, as well as 
matrices which are of more practical relevance. 

Since the matrices that the p software will be run on are typically 
obtained from control problems, a fairly natural class of matrices is 
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Figure 3: Ratios of mixed-p lower to  upper bounds, and mixed-p to  
complex-ji upper bounds, for a sample of random (system) matrices. 
Matrices of sizes 10 (solid), 20 (dashed), 30 (dotted), and 50 (dashdot). 

Figure 4: Complex-p and mixed-p upper and lower bounds versus 
frequency for a random system. 

to randomly generate State Space ‘A,B,C,D’ matrices as above, and 
then evaluate the transfer matrix at some frequency (usually placed 
roughly in the middle of the modes). The same set of tests as outlined 
above was performed on this class of matrices, except that the block 
structures consisted of all scalar uncertainties, with 90% of them chosen 
as real and the rest complex. The results are shown in Figure 3, and 
it can be seen that the bounds are once again reasonably tight, but 
now we are obtaining a wider spread of values for the gap between 
complex p and mixed p,  providing a better test of the upper bound 
performance. 

As a final test the bounds for the mixed p problem were evaluated 
across a frequency range for systems generated as above, and com- 
pared to  the bounds for the appropriate complex p problem. Again 
the bounds seemed reasonably tight, and a typical example plot is 
shown in Figure 4. 

Note that all these tests were aimed at evaluating the typical per- 
formance of the algorithm on an essentially random selection of prob- 
lems, and it appears that the algorithm is performing well for most 
problems. This does not mean however that one cannot encounter 
mixed p problems where the gap between the upper and lower bounds 
is large, and it can be seen from Figure 3 that a few such cases were 
found. Furthermore it is possible in fact to  construct matrices for 
which the gap between mixed p and the (theoretical) upper bound 
from theorem 2 is arbitrarily large. In light of this it was decided to  
investigate the use of Branch and Bound schemes, which take the ex- 
isting bounds and attempt to  improve upon them, and this is discussed 
in the following section. 

7 Improving the Bounds - Branch and Bound 
Schemes 

Whilst the basic concept of a Branch and Bound scheme is very simple, 
there are several important issues which need to be addressed before 
such a scheme can be implemented efficiently. In this section we present 

some preliminary results from a study of these issues, in the context 
of mixed p problems. This will be covered in greater depth in [9]. 

7.1 Problem Specification 
The problem focussed on here is the mixed p robust stability problem, 
i.e. given a matrix M E CnXn, and an appropriate (mixed) block 
structure IC, is p c ( M )  5 1 (i.e. is the system robustly stable to  a given 
perturbation set)? Since we can only compute bounds for p in general, 
we cannot answer this question exactly. Denote the upper bound for p 
by P U B ,  and the lower bound by  LB. Then we define upper and lower 
tolerances, pu and p~ (with pu > 1 and p~ < l),  and we pose the 
alternative questions; is 5 pu and/or is ~ L B  2 p ~ ?  We will deem 
our computation scheme to have converged if it has answered either of 
these two questions. 

The motivation for this problem is that an answer to  either of 
these questions effectively answers our original robust stability question 
within a prespecified tolerance. Establishing that p u ~  5 pu means 
that the system is robustly stable to  slightly smaller perturbations, 
whereas establishing that ~ L B  2 p~ means that the system is not 
robustly stable to  slightly larger perturbations. Also it is clear that 
if we can answer these questions with any desired tolerances, then by 
iterating on this scheme we can compute upper and lower bounds for 
p x ( M )  with as small a gap as desired (simply scale the matrix A4 
appropriately and use a bisection type algorithm). 

7.2 Issues to be Addressed 
The basic idea behind Branch and Bound schemes, in the context of 
the mixed p problem, is that one has some algorithm for computing 
upper and lower bounds for mixed p ,  but the bounds may be far apart. 
In order to  refine the bounds one may ‘chop’ (along one of the real 
parameters) the subspace of real parameters into two subdomains and 
then evaluate the bounds on each subdomain (branch). This process is 
then repeated as often as necessary to  refine the bounds as accurately 
as desired. Note that one has potentially exponential growth in the 
number of subdomains, but one may eliminate some of the subdomains 
as the scheme progresses, via standard tree-pruning techniques. 

It is of interest to examine the growth rate of computational cost 
with problem size for such a scheme, and to  consider whether such 
a scheme can be implemented so as to be polynomial time, in worst 
or typical case. Issues which arise in this regard are the computa- 
tional cost versus accuracy of the bounds themselves, for any given 
sub-problem, and also the amount of computational cost one is pre- 
pared to pay in order to evaluate a good direction to  chop the remaining 
subspace. In order to  address these issues several different Branch and 
Bound schemes were implemented, and the results obtained with these 
schemes are discussed in the following subsections. 

7.3 
The majority of the tests we will describe here were performed us- 
ing two different Branch and Bound schemes which will be referred 
to  U Scheme A and Scheme B. They were chosen so as t o  represent 
two extremes from among the possible choices of schemes. The test 
matrices described in section 6.3 were used (generated from random 
‘A,B,C,D’ matrices) together with block structures consisting of 2P real 
(unrepeated) scalar uncertainties and one p x p full complex block, for 
various choices of p (with the aforementioned quantities rounded to  the 
nearest integer). The matrices were randomly scaled with the restric- 
tion that and j lLB,  computed using the algorithm from section 6, 
satisfied > jiu and ~ L B  < p~ whenever possible. This is t o  make 
the problem as difficult as possible, since otherwise we always obtain 
an answer to  one of our questions immediately. 

In Scheme A the upper and lower bounds were computed using the 
algorithm described in section G, and as such represent the best bounds 
we had available. These bounds involve a significant computational 
cost, though the growth rate appears reasonable (see Figure 1). In 
addition the choice of which direction to  chop was made based on 
evaluating the bounds in each direction for the chosen subdomain. 
This increases the cost of computing one branch by a factor m, (the 
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Figure 5: Growth rate of Branch and Bound computation steps versus 
number of real parameters, for Scheme A and Scheme B. 

number of real parameters) which, though significant, is still only a 
linear increase in complexity. The choice of which subdomain to  chop 
was made based on which had the current highest upper bound, for 
both Scheme A and Scheme B. 

In Scheme B the upper and lower bounds were computed using 
straightforward norm inequalities on the linear fractional transforma- 
tion. They involved just norm computations, with no optimization 
or scaling matrices, and as such represent cheap but crude bounds. 
The choice of which direction to  chop was made by simply selecting 
randomly from among the longest sides. This is a very cheap ‘chop- 
ping criterion’ and simply ensures that the condition number of the 
subdomains remains reasonable (51. 

A series of tests was performed using these two schemes. The 
tolerances were chosen as p~ = 0.9 and pu = &, and the results are 
shown in Figure 5. For each choice of problem size the two schemes 
were run on the same 100 test matrices, and the plots indicate the 
number of ‘steps’ required by each scheme as a function of problem 
size. The initial bounds were counted as the first step, and each chop 
was counted as an additional step. The labeling is best explained 
by example. The label “B50” means that this is the worst problem 
encountered by Scheme B, from among the easiest 50% of the problems 
(for Scheme B). Note that each scheme was allowed a maximum of 1000 
steps, t o  avoid needlessly tying up the computers for days. The curves 
for scheme B appear t o  terminate prematurely, but this is because the 
next points were larger than 1000, and we didn’t take data beyond 
1000. 

It can be readily seen from Figure 5 that the growth rate for 
Scheme B is exponential on the problem data for any of the levels 
“B1OOn-“B1O” (note that the results are plotted on a log-linear scale). 
Scheme A however appears to  have a quite reasonable growth rate on 
these problems, even for the “A100” level. Note also that Scheme B 
failed to  converge (in 1000 steps) on many of the problems, whereas 
Scheme A converged fairly rapidly on all the problems. These results 
clearly indicate that it was well worth the extra computational cost 
of using more sophisticated methods for the bounds and the chopping 
criterion in our Branch and Bound scheme. 

In addition t o  these results, some studies were performed with 
other Branch and Bound schemes where the complexity of the bounds 
and/or the chopping criterion was varied independently. Preliminary 
results indicate that the contribution of each of these elements to  the 
overall performance is significant. Also the effect of varying the ac- 
curacy required for the final answers was examined, and preliminary 
results indicate that it is probably even more important to use the more 
sophisticated versions of the bounds and chopping criterion when the 
required accuracy is increased. These issues will be treated in greater 
depth in [9]. 

7.4 
The results from the previous subsection suggest that for a practical 
Branch and Bound scheme the methods for computing the bounds and 
the chopping criterion are ahsolutelv critical to  the performance on 
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even medium sized problems. One is prepared to  spend a high com- 
putational cost on both of these, provided it is still polynomial time, 
since one is potentially avoiding exponential time growth in the behav- 
ior of the Branch and Bound scheme (note that if any branch yields 
no improvement in the bounds then the subsequent computation can 
be doubled, since the same computation may have t o  be performed 
for each branch). We believe that it is possible t o  develop a practical 
Branch and Bound scheme, whose typical behavior on problems of en- 
gineering interest has polynomial time growth rate with the problem 
size. In fact we believe that Scheme A, outlined in the previous sec- 
tion, will form the basis of such a scheme, and work is under way to  
develop this further. Note that this represents a somewhat different 
philosophy of Branch and Bound than the one suggested in [5], for 
example. Here we are performing a relatively small number of quite 
expensive branches, as opposed to  a large number of cheap ones. It 
should be noted that the approach in [5] might actually work better 
on small (< 10 parameters) problems. 

Finally we note that if one can construct a matrix where the 
bounds are not within tolerance at the first step (which we can for 
even our best bounds), then one can build from this examples which 
will require exponential time growth rate for the Branch and Bound 
scheme. Essentially what this result says is that if one has t o  Branch 
and Bound at all, then it will be exponential time in the worst case. 
This is not surprising, as our algorithm must not be worst-case polyno- 
mial time or it would show that P=NP. Of course this does not mean 
that one cannot have a scheme whose typical behavior is polynomial 
time, as discussed earlier. 
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