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Abstract 
The purpose of this paper is to present a tutorial overview of Linear 
Fkactional Transformations (LFT) and the role of the Structured Sin- 
gular Value, p,  and Linear Matrix Inequalities (LMI) in solving LFT 
problems. 

1 Introduction 
LFTs and LMIs play a very important role in postmodern control 
theory by providing a framework that unifies many concepts and gen- 
eralizes transfer functions and their state-space realizations to include 
uncertainty. The focus of this paper is on reviewing known results on 
robust stability and performance and establishing a common and uni- 
fied framework for the companion papers in this session, which consider 
generalizations and extensions of balanced realizations and model re- 
duction [WDBG], stabilization [LuZD], optimal control [PZPB], mixed 
real/complex p [YoND], model validation [Newl], and LMI computa- 
tion [Beck]. 

Section 2 introduces the notation for LFTs and briefly discusses 
some of their properties. Section 3 describes j~ and it's connections with 
LFTs. Section 4 focuses on two standard notions of robust stability 
and performance, p stability and performance and 0 stability and 
performance, and their relationship is discussed. Comparisons with 
the new and exciting L1 theory of robust performance with structured 
uncertainty are also considered. 

2 Linear Fractional Transformations (LFTs) 
2.1 Definitions of LFTs 

Suppose M is a complex matrix partitioned as 

and let D1 C C g I x P 1  and Dz C C Y x P 2 ,  then we define the linear 
fractional transformations (LFTs) as the maps: 

Ff(A4,e) : Dz H C p l x q l  F,,(M, 0 )  : D1 c c p 2 x q 2  

with 
Ff(M,Ar) := + M1zA/(I- MzzAr)-'AIzl (2.2) 

Fu(M,Au) := Mzz + MzlAu(1- MIIA,)-'MIZ (2.3) 

Clearly the existence of the inverses is necessary for the LFT's to  be 
well defined. We can also define the LFTs more generally, say with 
respect to  a real rational matrix A E Rnxm(s), with the other related 
matrices also being defined as real rational. The LFT formulae arise 
naturally when describing feedback systems as shown in the following 
figures. 

'Edited by John Doyle from material by Andy Packard and Kemin Zhou. With 
help from Peter Young, Carolyn Beck, Jorge Tierno, and Way Lu, and support from 
NSF, ONR, NASA, and AFOSR. 

'Electrical Engineering, M/S 116-81, Caltech, Pasadena, CA 91125 
:Mechanical Engineering, UC Berkeley, Berkeley, CA 94720 
sElectrical and Computer Engineering, LSU, Baton Rouge, LA 70803 

TI-7 - 1O:OO 

Kemin Zhou 

The resulting closed-loop transfer functions from w to  z are, respec- 
tively, Ff (M,  AI) and F,,(M, A,,). 

2.2 Redheffer Star-Products 

Suppose that Q and M are complex matrices, partitioned as 

with the matrix product Qz2MII well defined, and in fact, square. If 
I- Q22M11 is invertible, define the star product of Q and M ,  with 
respect to this partition to  be 

Note that this definition is dependent on the partitioning of the ma- 
trices Q and M above. In fact it may be well defined for one partition 
and not well defined for another. However, we will not explicitly show 
this dependence, as it is always clear from the context. In a block 
diagram, this appears as 

Y1 

Recall the definitions of linear fractional transformations. Note 
that for a matrix K of the appropriate dimension, if all of the necessary 
matrices are invertible (implied by the loop equations) then 

F I ( S ( Q , M ) , P ) =  4 ( Q , 4 ( M , W )  
We can also use the S notation for LFTs, as in 

S ( M ,  Ai) = f i (M, Ai) S(&, M )  = Fu(M, A,,) 

2.3 Examples of LFTs 

State Space, Transfer Functions and LFTs 
Given the state space realization of a discrete time system 

then its transfer matrix is 

G(z) = D + C(zZ - A)-'B = F,,( [ ; ;] &)=: 14-3 
This last notation is deliberately somewhat ambiguous, and can be 
viewed as both a transfer matrix and its realization. The ambiguity is 
benign and convenient and can always be resolved from the context. 
We also use this notation for arbitrary LFTs when the arguments are 
clear from context, for example, 

Frequency Transformation 

is 
The bilinear tranformation between the z-domain and s-domain 

s = -  + AI- = I - &I *-'I (I + z-'I)-' f i Z  = Fu( N ,  z-'Z) 
z - 1 '  s 

where N = [ - & I  51 
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State Space Parametric Uncertainty 
One natural type of uncertainty is unknown coefficients in a state 

space model. As a simple example, we will begin with a familiar ide- 
alized mass/spring/damper system. 

- 0- a-' 0 -20, 0 0 - 

0- a-l 0 -wm 0 0 

-k -e 1 0 Wk Wc 

1 0 0 0  0 0  

- k O O O  0 0  
- 0  --E 0 0 0 0 -  

Suppose m,c, and k are fixed but uncertain, with m = m ( l +  wm6,), 
c = .?(I+ ~ ~ 6 ~ ) ~  k = k(1 + Wk6k). Then defining z1 = y and z2 = m@ 
we can write the differential equation in state-space form as 

- 0  

M =  

Ai  0 0 
A2 0- 

0 0 A3 

el-. 
313- 

More generally, the perturbed state-space system 

zk+i = A ( 6 ) a  4- B(6)dk 
e k  = C(6)zk + D(6)dk 

where 6 is a vector of parameters that enter rationally can be written as 
an LFT on a diagonal matrix A made up of the elements of 6, possibly 
repeated. The form of the LFT is ([MorM]) 

(2.5) 

with perturbation W k  = Azk yielding 

P =  dl ,d3 
U1 

In general, for problems of this type it is easy to  obtain realiza- 
tions, but it is difficult t o  insure that they are minimal, except in the 
case where the parameters enter linearly. 

Interconnect ions 
Interconnections of LFTs are again LFTs. This is a fundamental 

property of linear fractional transformations, and is one reason why 
they are so important in linear systems theory. For example, consider 
a situation with three components, each with a LFT uncertainty model. 
The 
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Note how general uncertainty at the component level becomes 
structured uncertainty at the system level. 

2.4 Properties of LFTs 
One of the features of LFTs is that they can be manipulated much like 
state-space realizations of transfer functions. We can cascade, add, 
invert them and so on. Some examples are given below. 

Operat ions O n  LFTs 
Given two systems with realizations 

define A = [ $ :, 1. Then the cascade system has a realization 

and the addition of G1 and G2 has a realization 

(GI  + G z ) ( A )  = 

Inversion formulas  
Suppose F J ( M ,  A )  is square and well-defined for all desired A and 

Mi1 is nonsingular. Then (Fc(M, A))-' = Ft($f, A )  with & given by 

Suppose that G = Ft(P,Ii') with P ,  P12, and P21 are all square 
and nonsingular. Then we can solve for K and K = Fu( P-',  G ) .  This 
formula is easily verified by writing the equations for the LFT - -  r . l  I;] = P I : ] ,  u = K y  

and solving them to yield 

U = F,,(P-' ,G)y 
K = F,(P- ' ,G)  

3 Structured Singular Value 
3.1 Definitions 
We consider matrices M E CnX" and an underlying block structure A,  
(a  prescribed set of block diagonal matrices) on which everything in the 
sequel depends. In this paper we will only consider the purely complex 
case (i.e. the block structure contains only complex uncertainties). For 
the mixed real and complex case see [YoND]. 

Two nonnegative integers, S and F, represent the number of re- 
peated scalar blocks and the number of full blocks, respectively. 

A = {diag [611k1,.  . . , b s IkS ,A l , .  . . , A F ]  : 6i E C ,  Ai E Cks+ixks+i  I 
(3.7) 
(3.8) B A  = { A  E A : 8 ( A ) <  1) 

For notational convenience all of the repeated scalar blocks appear 
first, and the full blocks are square, but this is easily relaxed. 
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Definition 3.1 For M E C n X “ , p ~ ( M )  is defined 

p ~ ( ( n 4 )  := 
min {ii (A) : A E A:det ( I  - A4A) = 0) (3’9) 

unless no A E A makes I- M A  singular, in which case p ~ ( A 4 )  := 0. 

It follows immediately that ~ A ( M )  = max p (MA)  where p 

denotes the spectral radius. It is instructive to  consider the following 
Ufeedback” interpretation of p~ (M). 

A E B A  

n 

v = Au 

If I - M A  is nonsingular, then the only solutions are U = v = 0, 
while if I - M A  is singular, then there are infinitely many solutions 
and the norms 11~11, llvll of the solutions can be arbitrarily large. With 
a slight abuse of convention, we might call these systems “stable” and 
“unstable,” respectively. Viewed this way, ~ A ( M )  is a measure of the 
smallest structured A that causes “instability.” 

We can relate p ~ ( A 4 )  to  familiar linear algebra quantities when 
A is one of two extreme sets. 

If A = (61: 6 E C} ( S = l , F = O , k l = n ) ,  then p ~ ( A 4 )  = p ( h f ) .  

If A = Cnx” ( S = O , F = l , k l = n ) ,  then p ~ ( h f )  = a ( M )  
Obviously, for a general A as in (3.7) we must have 

(61, : 6 E C} C A c C”’”. (3.10) 

Hence directly from the definition we conclude that 

5 pA(M) 5 (3.11) 

These bounds alone are not sufficient for our purposes, because the 
gap between p and ii can be arbitrarily large. They are refined by 
considering transformations on M that d o  not  affect ~ A ( M ) ,  but d o  
affect p and e. To do this, define the following two subsets of CnX” 

Q = {Q E A : Q’Q = In} (3.12) 

(3.13) 1 = { diag[Dl,.. . ,Ds,dlIm,,..  . , d F - l I ~ F - , , I ~ F ]  : 
D, E C‘”’*, Di = DS > 0,d j  E R,d,  > 0 

Note that for any A E A ,  Q E Q, and D E D, 

Q’ E Q Q A  E A AQ E A ii(QA) = a ( A Q )  = U(A) (3.14) 

DA = AD (3.15) 

Consequently, 

Theorem 3.2 For all Q E Q and D E D 

PA(MQ) = PA(QA4) = pA(A4) = PA(Dh4D-l) 

Therefore, the bounds in (3.11) can be tightened to  

(3.16) 

maxp(QM) 5 p ~ ( A 4 )  5 inf ii (DA4D-1) 
QEQ D O  

(3.17) 

The lower bound is always an equality ([Doy]), but p (QM)  can 
have multiple local maxima which are not global. Thus local search 
cannot be guaranteed t o  obtain p,  but can only yield a lower bound. 
For computation purposes one can derive a slightly different formula- 
tion of the lower bound as a power algorithm which is reminiscent of 
power algorithms for eigenvalues and singular values ([PacFD]). While 
there are open questions about convergence, the algorithm usually 
works quite well and has proven to  be an effective method t o  com- 
pute p. 

The upper bound can be reformulated as a convex LMI problem, 
so the global minimum can, in principle, be found. Unfortunately, 

the upper bound is not always equal to  p. For block structures A 
satisfying 2.9 + F 5 3, the upper bound is always equal t o  p ~ a ( M ) ,  
and for block structures with 2 S + F  > 3, there exist matrices for which 
p is less than the infimum. The above bounds are much more than just 
computational schemes. They are also theoretically rich, and can unify 
a number of apparently quite different results in linear systems theory, 
as will be seen below and in the companion papers. 

3.2 p and LFTs 
Consider a complex matrix M partitioned as in (2.1) and suppose there 
are two defined block structures, A1 and Az, which are compatible in 
size with M11 and respectively. Define a third structure A = 
(diag(A1,Az) : A1 E A1,Az E A2 }. Now there are three structures 
with which we may compute p with respect to. The notation we use 
to keep track of this is as follows: P I ( . )  is with respect t o  AI, pz (.) 
is with respect to Az, : PA(.) is with respect to  A. In view of this, 
p1 ( M ~ I ) ,  p2 (M22) and p ~ a ( M )  all make sense, though for instance, 
p1 (M) does not. The constant matrix problem we wish to  solve is: 

determine whether the LFT fi  (M, Az) is well posed for all A2 E 
A2 with a(Az)  5 p,  and, 

bounded set of perturbations. 
if so, then determine how “large” Fl (M, A,) can get for this norm- 

The following three simple theorems answer this problem. The first 
theorem is nothing more than a restatement of the definition of p. 

Theorem 3.3 The linear fractional transformation Fl ( M ,  Az) is well 
posed for all A2 E BA2 if and only if p2 ( M z z )  < 1. 

As the “perturbation” Az deviates from zero, the matrix Fi (M, Az) 
deviates from Mll. The range of values that p1 ( f i  (M, Az)) takes on 
is intimately related to  p a ( M ) ,  as follows: 

Theorem 3.4 (MAIN LOOP T H E O R E M )  The following ape 

equivalent: 

This theorem forms the basis for all uses of p in linear system 
robustness analysis, whether from a state-space, frequency domain, or 
Lyapunov approach. The importance of the theorem is summarized 
as: Suppose a property P, of a matrix W can be related to a “p test” 
on the matrix, in particular, 

matrix W satisfies property P ($ p b ( W )  < 1. 

Then thelinear fractional transformation F/ (M, A)  is well defined, and 
has the property P for every A E BA if and only i f p d  (M) < 1, where 
A := {diag[Ap,A] : Ap E Ap, A E A}. In other words, whenever a 
property of a matrix can be related to  a p test, then there will be a p 
test (of greater complexity) to  determine if the property is robust to  
structured linear fractional transformations. 

The role of the block structure A2 in the MAIN LOOP theorem 
is clear - it is the structure that the perturbations come from. However 
the role of the perturbation structure A1 is often misunderstood. Note 
that PI( . )  appears on the right hand side of the theorem, so that the 
set A1 defines what particular property of Fl (M, Az) is considered. 

As an example, consider the following version of the small gain the- 
orem using the block structures A1 := {&In : 61 E C}, A2 = CmXm, 
and 
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h 

p ( A )  < 1 and max a ( D  + C61 (I - A61)-' B) < 1 
6iEC 
1611<1 

iff a ( D ) < l  and max P ( A + B A Z ( I - D A ~ ) - ~ C )  < 1  
AaECmXm 
a(Aa)<l 

iff /'A(M) < 1. 

Note that the max a is just the €I, norm of the transfer function. 

3.3 State-Space/Frequency Domain Tests 
It is known [PacD], that when the block structure includes repeated 
scalars (S > 0), i t  is possible that the upper bound is much larger 
than p. How should these differences be interpreted when using the 
upper bound to  perform analysis tests for robustness properties? We 
answer that question by considering the robust performance problem 
for an uncertain difference equation, and outline the various tests and 
corresponding conclusions (see also [BoyYI and [PacD3] for additional 
interpretations). Performance will be characterized in terms of the 
induced 12 gain from disturbance to  error, which for LTI systems, is 
the same as the 11. 11, norm of the transfer function. 

Consider the uncertain difference equation in (2.5) and (2.6). De- 
fine three augmented block structures, AN, As and Ap as 

AN := {diag[611n,Az] : 61 E C,As  E Cnpx"p} (3.18) 

As := {diag [AN, A] : AN E AN, A E A} (3.19) 

Ap := {diag [Az, A] : A2 E Cnpxnp, A E A }  (3.20) 

along with the corresponding scaling sets DN, D s  and Dp .  We begin 
with the main result for linear, time-invariant perturbations, [DoyWS], 

Theorem S.6 (T ime inva r i an t ,  robus t  performance) Given the 
matrices and sets as defined above, the following conditions are equiv- 
alent: 

1. There exists a constant p E [0, 1) such that for each fixed A E BA, 
the uncertain system (2.6) is well-posed (I - MmA is invert- 
ible), stable, and for zero-initial-state-ronse, the error e satisfies 

POYPI. 

11~11Z 5 Plldllz 
2. PA(M39) < 1 and PAN(fi ( M ,  A)) < 1 

3. PA#) < 1 W P )  
4. p(M11) < 1 and max p&(Fu (M,."I,,)) < 1 (Fop 1. 

ec[o,z~i 
Item 1 in this theorem is the desired robust performance conclu- 

sion. Item 2 rephrases Item 1, using the p characterization of 11.11, < 1. 
Items 3 and 4, known respectively as the "statespace p test (SSp)" 
and the ''frequency domain p test (FDp)" are the computational tests 
involving computing p for various matrices. We will investigate the 
additional conclusions that are possible when the a (DMD-I )  upper 
bound is used to implement the computational tests of items 3 and 
4. The FDp test is the most common use of p, essentially Bode plots 
with p ( e )  replacing 8 (a). The SSp test was introduced in [DoyP]. 

Using the @ (DMD-') upper bound in place of p,  sufficient con- 
ditions for robust performance are the 'statespace upper bound test" 
and the "frequency domain upper bound test". 

3' inf ~ ( D ~ M D ; ' )  < 1 (SSUB) 

49 max inf a [ D ~ F ,  (M,~-+'I,,) D;'] < 1 (FDUB) 

DsEDs  

O€[O,Z*l DpEDp 

is actually equivalent to 

inf max [DpF, ( M , d e I n )  D;'] < 1. (3.21) 

This condition is much stronger than the frequency domain upper 
bound test, since in (3.21), the same D p  E D p  must work for all 
8 E [0,2*]. For that reason, we call equation (3.21) the frequency 
domain constant D test, FDCD. Now, from strongest to weakest, the 
various conditions are: 

D p E D p  &[0,24 

inf a ( D ~ M D ; ~ )  < 1 (SSUB) 

D p E D p  eE[o,zr] I U (  n) -'I < 1 (FDCD) 

max inf [Dp  F,(M,ejeZn) D,'] < 1 (FDUB) 

D s C s  
ir 

U gap 

U gap 
8 € [ 0 , Z X ]  max p A p ( ~ u ( ~ , ~ s ~ n ) )  < 1 

lt 

$ 

inf max B D ~ F  M , @ I  D ,  

ee[o,zri D ~ E D ~  

P A d W  < 1 (SSP) 

ROBUST PERFORMANCE with LTI perturbations 

Note in both instances where the implication is given as 4 rather 
than $, there truly is a gap. Also, there are two such "gaps" between 
the state space tests, SSUB and SSp, while there is only one gap be- 
tween the frequency domain tests, FDUB and FDp. The top conditions 
are the strongest, and are equivalent to a very strong form of robust 
Lyapunov stability, [BoyW. The SSUB and SSp tests can be thought 
of as defining two extreme notions of robust stability and performance. 
The motivation for this will be discussed in later, where we will refer 
to  the SSUB test as Q stability and performance and the SSp test as 
p stability and performance. 

Given that the upper bound is computable, which test should be 
used, the state space upper bound test, SSUB (equivalently FDCD), or 
the frequency domain upper bound test, FDUB? The answer depends 
on the assumptions that are made about the perturbations. 

State space u p p e r  bound  test 
If the SSUB is used, and successful, then the robust performance 

conclusion holds for time-varying perturbations (and with proper in- 
terpretation, cone bounded nonlinear perturbations). 

Theorem 3.6 Let M be given as in (2.51, along with an uncertainty 
structure A. If there is a DS E D s  such that 

a (D~MD;~)  = p < 1 (3.22) 

then there exist constants c1 2 c~ > 0, such that for all perturba- 
tion sequences {Ak}EO with Ak E A,B(Ak) < i, the time-varying, 
uncertain system 

(3.23) 

is zero-input, exponentially stable, and furthermore, if {dk}zO E 12, 

then 
c2 (1 - P) 1 1 ~ 1 1 ~  + 11e113 I P211~ll3 + C l l l ~ 0 l l Z  

In particular, 11e11$ I Pzll# + clIIzollz. 

Remark:  Note that DS will appear as Ds = diag[Dl,dzI,D], where 
D1 = D; > O,D1 E Cnx". The constants cl and cz are the 
maximum and minimum singular values of D1. 
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Fkequency domain  uppe r  bound  test 
Since FDUB is a weaker condition than the SSUB, it is "closer" 

to  the exact condition for robust performance under LTI perturba- 
tions. Therefore, if the perturbations are better modeled as linear, 
time-invariant perturbations, this frequency domain test is more ap- 
propriate, but no general conclusion can we reached about time-varying 
perturbations. Nevertheless, some results using frequency dependent 
scalings and non-LTI perturbations are indeed possible. In [Saf] mul- 
tiplier methods are used to  derive restrictions on the frequency de- 
pendent scalings D ( e ) ,  which yield robustness theorems for slope- 
bounded, nonlinear perturbations. In [PacT], frequency dependent 
scalings are used with the swapping lemma to get robustness bounds 
on time-varying perturbations, in the form of absolute value bounds 
on the perturbations and their time-derivatives. 

We have considered several different measures of robust stability and 
performance for the system in (2 .6 ) ,  from SSp to  the SSUB. We will 
concentrate on these two measures, and compare them briefly with 
another very important measure that has emerged in the L1 theory 
of robust performance with structured uncertainty. Space constraints 
preclude a review of the L1 theory, which has undergone a dramatic 
and impressive development in the last 5 years in the work of Dahleh, 
Khammash, Ohta, Pearson, and coauthors (see [KhaP] and references 
therein). For simplicity, we will refer to  the SSp test as simply p and 
the SSUB upper bound as Q, since it is directly related to  quadratic 
stability, and focus our attention on the robust performance problem, 
which clearly includes robust stability as a special case. 

The p,  Q, and L1 tests all guarantee robust performance, but 
with different assumptions about perturbations and the norm for the 
performance objective. The p and Q theories are for Lz induced norms, 
while the L1 theory is for Zm induced norms. The other distinction is 
that the p theory treats LTI perturbations, and the Q and L1 handle 
Nonlinear and Time-Varying perturbations (NTV). This is summarized 
in the table below. 

LTI NTV MI 
Note that with the exception of Q each test is necessary and suffi- 

cient for robust performance, and it is conjectured that Q is necessary 
and sufficient for certain block structures. Recall that in general, p is 
computed using bounds, but that Q involves solving LMIs, so is at- 
tractive computationally. Interestingly, L1 is probably the easiest to  
compute, involving only the computation of L1 norms and finding the 
spectral radius of a positive matrix ([KhaP]). 

As a final comparison, it can be easily shown that the tests are 
ordered, with 

P S Q I L 1  (4.24) 

What this means is that for a given system, if the Q test passes, the p 
test must, and similarly for L1 and Q. That p 5 Q was shown above, 
and Q 5 L1 follows immediately from the equivalence of the SSUB and 
the FDCD problems and the fact that the L1 norm of a convolution 
kernal is greater than the H ,  norm of it's transform, together with the 
results in [KhaP]. The inequalities are typical strict and it is possible 
for the gaps to  be arbitrarily large. 

It is not clear exactly what are the implications of these results for 
control design as well as for further research. Clearly there is a need for 
more refined results, the ability to  combine LTI and NTV uncertainty 
and exploit additional structure such as the slowly-varying nature of 
some perturbations. The results in [Saf] and [PacT] suggest how this 
might be done in the LFT/p/Q framework, but much more work is 

needed. We also need much more precise modeling and ID methods t o  
exploit the detailed structure of the uncertainty in our models. 

If one accepts Q as the measure of robust performance, a rich 
theory can be developed, with generalizations t o  uncertain systems of 
conventional theories of robust stability and performance, balanced re- 
alizations, model reduction, stabilization, optimal control, and model 
validation. These will be pursued in the companion papers. It is not 
surprising that the easiest generalizations of standard results to  un- 
certain LFT systems is done using the Q framework. Indeed, most of 
the standard results rely on Q machinery, but since j~ and Q are the 
same for these simple block structures, we are less aware of the distinc- 
tion. Once we begin extending our results to  systems with uncertainty, 
the distinction becomes significant. Of course, a key feature of the Q 
theory is that computation involves solving LMIs. 

5 Linear Matrix Inequalities (LMIs) 
The general LMI problem involves sets of the form 

(5.25) 
= { diag [ X I , .  . . , X s ,  212,. . . ,zFI] : 

and alist of matrices A;, B; ,  C;, Di. The simplest general LMI problem 
is whether there exists X E X such that 

I Xi E Cr*xr l ,X;  = X f , z j  E R  

ATXA; - B f X B i  + XC; + C:X + Di < 0 Vi  

Depending on the particular problem, the < may be a 5. It is easy 
to see that such conditions produce a set of solutions which are con- 
vex, which makes LMIs attractive computationally. This is a decision 
problem; the answer is yes or no. Sometimes, however, the Ai, B; ,  Ci ,  
and D; are functions of a real, positive parameter (I, and we want t o  
know, for example, what is the largest (I for which there is no solution. 
Typically this involves an iteration on (I, and consequently, answering 
the decision question many times. 

Numerical methods for the solution of LMI problems are reviewed 
in [Beck]. In this section we give several standard examples of LMIs. 
The companion papers to  this paper consider further applications of 
LMIs. 

S t a b i l i t y  

A discrete-time system is stable iff p ( A )  < 1. It is well-known that 
this is equivalent to  the following conditions. 

P(A) < 1 
U 3 T :  3(TAT-')  < 1 
U 3 T : TAT-'(TAT-')* - I < o (5.26) 

3T : A(T*T)-'A' - (T*T)-' < 0 
w 3 X > O :  A X A ' - X  < 0 

Note that the last condition involves 2 LMIs on an unstructured X .  

A are in the open left half plane, or equivalently, 

3 X > O :  A X + X A '  < 0 

Similarly, a continuous time system is stable iff all eigenvalues of 

S tab i l i za t ion  

Consider a discrete time system with realization G(z) = 

with A E Rnx" and B E RnxP. 

equivalently, the stabilizability of the pair ( A ,  B )  in terms of 2 LMIs. 

L e m m a  5.1 Suppose the matriz B in G(z) i s  of full column mnk (with 
rank(B) = p < n), where B l  E Rnx("-P) is such that BTB = 0 and 
[ B BI  ] is invertible. Then thew ezists a static feedback matriz F 

[*I 
The following lemma characterizes the stabilizability of G, or 
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such that the closed loop system matriz A + BF is stable if and only if 
there ezist a X > 0 such that 

BfAXA'Bl- B f X B l <  0 

p Upper Bound 
The upper bound from (3.17) may be expressed as an LMI. 

e 3 0  > 0 : T(DMD-l) < p 

w 3 6 > 0 :  M'D2M-pZb2 < 0 

P ( M )  < II 

H 3D > o : D - 1 ~ ~ D 2 ~ b - l -  p21 < o 

W 3 X > O :  M'XM-PZX < 0 

Note that (5.26) is a special case of (5.28). 

H, Norms and Riccati Equations 

(5.27) 

(5.28) 

Let M ( z )  = [g] E R'H, and define 

E := A + B(I - D'D)-'D'C 
G := -B(I - D'D)-'B' 
Q := C'(Z- DD')-'C 

Suppose E is nonsingular and define a symplectic matrix as 

E + GE'-lQ -GE'-' 
-E'-'Q El-1 ] [ s := 

Then the following statements are equivalent: 

(a) llM(411m < 1 
(b) S hasnoeigenvalueson theunit circleand IJC(I-A)-'B+DII < 1 

(e) 3X >- 0 with I - D'D - B'XB > 0, (I+ GX)-'E stable, and 

E'XE-X-E'XG(I+XG)-'XE+Q = O  

(f) 3X > Osuch that I -  DID- B'XB > Oand 

E'XE - X - E'XG(I + XG)-'XE + Q < 0 

(g) 3X > 0 such that 

(h) 3 T nonsingular such that 

Note that (h) is the SSUB and is equal to p because of the block 
structure. I t  is equivalent to (g), which is 2 LMIs. The connection 
between (f) and (g) is just the Schur complement formula for positive 
definite matrices. 

6 Towards a postmodern control theory 
This session is on the theoretical end of what might be called post- 
modern control theory. While it may seem pretentious to  use such a 
term, there is emerging a philosophy and set of techniques that seem 
distinct enough from classical and modern control to  warrant a new 
label. Without getting into the philosophy here, it may be useful to 
outline how the methods of postmodern control compare with their 
classical and modern origins. 

The central object of study in classical control, the transfer func- 
tion, was displaced in modern control by state-space theory. In post- 
modern control, the central objects of study are LFTs, and their gener- 
alizations to  nonlinear systems. While classical control was concerned 
with issues like margins and bandwidth, modern control focused on 

such things as eigenvalues, norms, and variances. Singular values and 
MIMO robust stability results provided a starting point for a blend 
of the classical and modern, and a bridge to the postmodem, with its 
focus on robust performance with structured uncertainty using p, Q, 
and L1 theories. 

Classical loopshaping in its various guises gave way to  optimal 
control in the modern era. A bridge was formed by multivariable loop- 
shaping and H,, but a fully developed synthesis theory for robust 
performance has yet to be developed, in spite of the recent success of 
p-synthesis. The results in [PZPB] suggest what directions a postmod- 
ern synthesis theory might take. 

Throughout this session, an emphasis is placed on reducing a va- 
riety of problems to  solving LMIs. LMIs play the same central role in 
the postmodern theory as Lyapunov and Riccati equations played in 
the modern, and in turn various graphical techniques such as Bode, 
Nyquist and Nichols plots played in the classical. 

The companion papers use the postmodern machinery reviewed 
here to  extend standard modern results in a number of directions. In 
[WDBG] balanced truncation model reduction is extended to  uncertain 
LFT systems, with similar extensions of the parametrization of all 
stabilizing controllers in [LuZD] and H ,  theory in [PZPB]. The LFT 
machinery not only extends the standard results in important ways, i t  
simplifies the proofs, often substantially. Exciting new developments 
in handling real parametric uncertainty are reviewed in [YoND], while 
recent work on model validation is presented in [Newl]. In all cases, 
LMIs play a central role in the computation. 
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