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In this paper, we take a holistic approach to the protocol architecture design in multihop
wireless networks. Our goal is to integrate various protocol layers into a rigorous frame-
work, by regarding them as distributed computations over the network to solve some opti-
mization problem. Different layers carry out distributed computation on different subsets
of the decision variables using local information to achieve individual optimality. Taken
together, these local algorithms (with respect to different layers) achieve a global optimal-
ity. Our current theory integrates three functions—congestion control, routing and sched-
uling—in transport, network and link layers into a coherent framework. These three
functions interact through and are regulated by congestion price so as to achieve a global
optimality, even in a time-varying environment. Within this context, this model allows us
to systematically derive the layering structure of the various mechanisms of different pro-
tocol layers, their interfaces, and the control information that must cross these interfaces to
achieve a certain performance and robustness.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The success of communication networks has largely
been a result of adopting a layered architecture. With this
architecture, its design and implementation is divided into
simpler modules that are separately designed and imple-
mented and then interconnected. A protocol stack typically
has five layers, application, transport (TCP), network (IP),
data link (include MAC) and physical layer. Each layer
controls a subset of the decision variables, hides the
complexity of the layer below and provides well-defined
services to the layer above. Together, they allocate
networked resources to provide a reliable and usually
best-effort communication service to a large pool of com-
peting users.

However, the layered structure addresses only abstract
and high-level aspects of the whole network protocol
design. Various layers of the network are put together
often in an ad hoc manner, and might not be optimal as
a whole. In order to improve the performance and achieve
. All rights reserved.
efficient resource allocation, we need to understand inter-
actions across layers and carry out cross-layer design.
Moreover, in wireless networks there does not exist a good
interface between the physical and network layers. Wire-
less links are unreliable and wireless nodes usually rely
on random access mechanism to access the wireless chan-
nel. Thus, the performance of link layer is not guaranteed,
which will result in performance problems for the whole
network such as degraded TCP performance. So, we need
cross-layer design, i.e., to exchange information between
physical/link layer with higher layers in order to achieve
better performance.

Motivated by the duality model of TCP congestion con-
trol [16,22,18,23], one approach to understand interactions
across layers is to view the network as an optimization sol-
ver and various protocol layers as distributed algorithms
solving an optimization problem. This approach and the
associated utility maximization problem were originally
proposed as an analytical tool for reverse engineering
TCP congestion control where a network with fixed link
capacities and prespecified routes is implicitly assumed.
A natural framework for cross-layer design is then to
extend the basic utility maximization problem to include
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decision variables of other layers, and seek a decomposi-
tion such that different layers carry out distributed compu-
tation on different subsets of decision variables using local
information to achieve individual optimality, and taken
together, these local algorithms achieve the global opti-
mality. This approach has come to be known as layering-
as-optimization-decomposition; see [6] for an extensive
survey.

We apply this approach to design an overall framework
for the protocol architecture in multihop wireless net-
works, with the goal of achieving efficient resource alloca-
tion through cross-layer design. We first consider the
network with fixed channel or single-rate devices, and
formulate network resource allocation as a utility maximi-
zation problem with rate constraints at the network layer
and schedulability constraints at the link layer. We then
apply duality theory to decompose the system problem
vertically into congestion control, routing and scheduling
subproblems that interact through congestion prices.
Based on this decomposition, a distributed subgradient
algorithm for joint congestion control, routing and sched-
uling is obtained, and proved to approach arbitrarily close
to the optimum of the system problem. We next extend
the dual subgradient algorithm to wireless multihop net-
works with time-varying channels and adaptive multi-rate
devices. The stability of the resulting system is proved, and
its performance is characterized with respect to an ideal
reference system. We finally apply the general algorithm
to the joint congestion control and medium access control
design over the network with single-path routing and to
the cross-layer congestion control, routing and scheduling
design in the network without prespecified paths.

Our current theory integrates three functions—conges-
tion control, routing and scheduling—in transport, network
and link layers into a coherent framework. While the inte-
gration of all protocol components remain a big challenge,
this framework is promising to be extended to provide a
mathematical theory for network architecture, and allow
us to systematically derive the layering structure of the
various mechanisms of different protocol layers, their
interfaces, and the control information that must cross
these interfaces to achieve a certain performance and
robustness. We also present a general technique and re-
sults regarding the stability and optimality of the dual
algorithm in face of time-varying parameters. As the flow
contention graph that will be used to characterize feasible
rate regions of the networks is a rather general construc-
tion and can be used to capture the interdependence or
contention among parallel servers of any queueing net-
works, these results are applicable to any systems that
can be modelled by a general model of queueing network
that is served by a set of interdependent parallel servers
with time-varying service capabilities.

The remainder of this paper is organized as follows. The
next section briefly discusses related work. Section 3 pre-
sents details of the system model for the network with
fixed channel or single-rate devices, and Section 4 presents
a distributed algorithm for joint congestion control, rout-
ing and scheduling via dual decomposition. Section 5
extends the dual algorithm to handle the network with
time-varying channel and adaptive multi-rate devices. As
specific cases of the general model and algorithm devel-
oped in Sections 4–6 discusses joint congestion control
and medium access control design in multihop wireless
networks with single-path routing, and Section 7 discusses
cross-layer congestion control, routing and scheduling de-
sign in the network without prespecified paths. We con-
clude in Section 8.
2. Related work

The utility maximization framework [16,22,18] on TCP
congestion control has been extensively applied and
extended to study protocol design, especially congestion
control (see, e.g., [48,49]), fair channel access (see, e.g.,
[25,39,19,9,35,8]), and cross-layer design (see, e.g.,
[44,5,20,3,4]), in wireless networks. Xue et al. [48] and Yi
et al. [49] are among the first to formulate schedulability
constraints at link layer for congestion control over multi-
hop wireless networks. Xiao et al. [44] study joint routing
and resource allocation, and are among the first to apply
dual decomposition to cross-layer design in wireless net-
works. Chiang [5] is among the first to study joint conges-
tion and power control. Lin et al. [20] and Chen et al. [3] are
among the first to study joint congestion control and
scheduling. Chen et al. [3] and Wang et al. [41] are among
the first to study cross-layer design in the network with
contention-based medium access.

The work presented in Section 6 (see also [3]) is origi-
nally motivated to solve TCP unfairness problem over mul-
tihop wireless networks; see, e.g., [10,37,45–47]. The
model used in Section 7 (see also [4]) is motivated by Neely
et al. [26] that studies dynamic power control and routing
for time-varying wireless networks and by Hajeck et al.
[11] and Kodialam et al. [17] that study joint routing and
scheduling to determine the achievable rates in multi-
hop wireless networks; similar decomposition for the
network with deterministic wireless channel has also been
revealed in the journal version of [26] and in [20].

The utility maximization in time-varying wireless net-
works is first studied in the context of fair scheduling. It
has been shown that a family of primal scheduling algo-
rithms maximize the sum of the utilities of the long-run
average data rates provided to the users; see, e.g.,
[39,19,35]. In contrast, the result presented in Section 5
(see also [4]) is for the dual algorithms. An earlier result
for the dual scheduling algorithm is by Eryilmaz et al. [8]
that studies fair resource allocation using queue-length
based scheduling and congestion control. Another similar
result is by Neely et al. [27] that studies fairness and opti-
mal stochastic control for heterogeneous networks. All
these three works use stochastic Lyapunov method to
establish stability, but the technical details are somewhat
different. Especially, the stability and optimality result pre-
sented in Section 5 is based only on general properties of
convexity and the definition of subgradients, and can be di-
rectly applied to a variety of time-varying systems that can
be solved or modelled by the dual algorithms. Another
comparable result is by Stolyar [36] that proposes greedy
primal–dual algorithm to maximize network utility. It uses
a very different technique to establish optimality.
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Here, we focus on dual decomposition, but there are
many different ways to decompose a given problem, each
of which corresponds to a different layering scheme. See
the survey article [6] and the references therein for various
recent work on cross-layer design.
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Fig. 1. Example of a multihop wireless network with 4 nodes and
6 logical links and the corresponding flow contention graph.
3. System model

Consider a multihop wireless network with a set N of
nodes and a set L of directed logical links. We assume a sta-
tic topology and each link l 2 L has a fixed finite capacity cl

bits per second when active, i.e., we implicitly assume that
the wireless channel is fixed or some underlying mecha-
nism is used to mask the channel variation so that the
wireless channel appears to have a fixed rate. This assump-
tion will be relaxed in Section 5. Wireless channel is inter-
ference limited, where links contend with each other for
exclusive access to the channel. We will use the flow con-
tention graph to capture the contention relations among
links. The feasible rate region at link layer is then a convex
hull of the corresponding rate vectors of independent sets
of the flow contention graph. We will further describe rate
constraints at the network layer by linear inequalities in
terms of user service requirements and allocated link
capacities. The resource allocation of the network is then
formulated as a utility maximization problem with sched-
ulability and rate constraints.

3.1. Flow contention graph and schedulability constraint

The interference among wireless links is usually speci-
fied by some interference model that describes physical
constraints regarding wireless transmissions and success-
ful receptions. For example, in a network with primary
interference, links that share a common node cannot trans-
mit or received simultaneously but links that do not share
nodes can do so. It models a wireless network with multi-
ple channels where simultaneous communications in a
neighborhood are enabled by using orthogonal CDMA or
FDMA channels. In a network with secondary interference,
links mutually interfere with each other whenever either
the sender or the receiver of one is within the interference
range of the sender or receiver of the other. Given an inter-
ference model, we can construct a flow contention graph
that captures the contention relations among the links;
see, e.g., [25]. In the contention graph, each vertex repre-
sents a link, and an edge between two vertices denotes
the contention between the corresponding links: two links
interfere with each other and cannot transmit at the same
time. Fig. 1 shows an example of a simple multihop wire-
less network with primary interference and the corre-
sponding flow contention graph.

Given a flow contention graph, we can identify all its
independent sets of vertices. An independent set is a set
of vertices that have no edges between each other [7].
The links in an independent set can transmit simulta-
neously. Let E denote the set of all independent sets with
each independent set indexed by e. We represent an inde-
pendent set e as a jLj-dimensional rate vector re, where the
lth entry is
re
l :¼

cl if l 2 e;

0 otherwise:

�

The feasible rate region P at the link layer is then defined
as the convex hull of these rate vectors

P :¼ r : r ¼
X

e

aere; ae P 0;
X

e

ae ¼ 1

( )
: ð1Þ

Thus, a link flow vector y satisfies schedulability constraint
if y 2P.

The contention graph is a general construct, and can
capture the interdependence or contention among parallel
servers of any queueing networks. For example, it can
characterize the contention relations in the network where
wireless nodes are equipped with multiple radios or com-
municate through multiple channels.

3.2. Rate constraint

Let fl P 0 denote the amount of capacity allocated to
link l. From the schedulability constraint, f should satisfy

f 2 P: ð2Þ

Assume that the network is shared by a set S of sources,
with each source s 2 S transmitting at rate xs bits per sec-
ond. In the following, we will formulate rate constraints
for networks with different kinds of routing.

The network with single-path routing
Each source s uses a path consisting of a set Ls � L of

links. The sets Ls define an jLj � jSj routing matrix

Rls ¼
1 if l 2 Ls;

0 otherwise:

�

Thus, the aggregate rate over link l is
P

s2SRlsxs. The rate
constraint is written as

Rx 6 f ; ð3Þ

i.e., the aggregate link rate should not exceed the link
capacity.

The network with multipath routing
Each source s can send traffic along a set Ts of given

paths. Each path r 2 Ts contains a set of Ls
r � L of links,
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which defines a jLj � jTsj routing matrix Hs whose (l,r) th
entry is given by

Hs
lr ¼

1 if l 2 Ls
r;

0 otherwise:

�

Denote by xr
s the rate at which source s sends along path r.

Thus, the source rate xs ¼
P

r2Ts
xr

s. The rate constraint is
written asX
s;r2Ts

Hs
lrx

r
s 6 fl; l 2 L: ð4Þ
The network without prespecified paths
Since no end-to-end path is given, we will use multi-

commodity flow model for routing. Let D denote the set
of destination nodes of network layer flows. Let f k

i;j P 0 de-
note the amount of capacity of link (i, j) allocated to the
flows to destination k. Then the aggregate capacity on link
(i, j) is fi;j :¼

P
k2Df k

i;j. Let xk
i P 0 denote the flow generated at

node i towards destination k. Then the aggregate capacity
for its incoming flows and generated flow to the destina-
tion k should not exceed the summation of the capacities
for its outgoing flows to k

xk
i 6

X
j:ði;jÞ2L

f k
i;j �

X
j:ðj;iÞ2L

f k
j;i; i 2 N; k 2 D; i–k: ð5Þ

Eq. (5) is the rate constraint for resource allocation. For
simplicity of presentation, we assume that there is at most
one flow between any node and destination pair
[i,k] 2 S � D. Thus, xk

i ¼ xs if i is the source node of flow
s = [i,k], and xk

i ¼ 0 otherwise.

3.3. Problem formulation

We see from the last subsection that all three kinds of
rate constraints are expressed as linear inequalities. If we
represent the ‘‘routing” of the user (source) service
requirement by a linear function H(x) of the source rates
x, and represent the ‘‘allocation” of the service capacity
by a linear function A(f) of the link capacities f, since the
service requirement should not exceed the allocated ser-
vice capacity, we have the following inequality constraint

HðxÞ 6 Aðf Þ: ð6Þ

The linear constraint (6) is a very general relation. The rate
constraints (3)–(5) are just its different concrete
representations.

Following [16,22,18], assume each source s attains a
utility Us(xs) when it transmits at a rate xs. We assume
Us(�) is continuously differentiable, increasing, and strictly
concave. Our objective is to choose source rates x and allo-
cated capacities f so as to solve the following global
problem

max
x;f

X
s

UsðxsÞ; ð7Þ

subject to HðxÞ 6 Aðf Þ; ð8Þ
f 2 P: ð9Þ

The system problem (7)–(9) is a convex optimization prob-
lem, but it is impractical to solve it centrally in real net-
works. Distributed algorithm can be derived by solving
its Lagrange dual problem, as we will show in the next
section.

4. Distributed algorithm via dual decomposition

4.1. Distributed algorithm

Consider the Lagrangian of the problem (7)–(9) with re-
spect to the rate constraint

Lðp; x; f Þ ¼
X

s

UsðxsÞ � pTðHðxÞ � Aðf ÞÞ:

Given p, the above Lagrangian has a nice decomposition
structure: it is the summation of two independent terms,
of source rates and link capacities respectively. Interpret-
ing p as the ‘‘congestion price” and maximizing the
Lagrangian over x and f for fixed p, we obtain the following
joint congestion control and scheduling algorithm:

Congestion control: At time t, given congestion price p(t),
the sources adjust flow rates x according to the congestion
price

xðtÞ ¼ xðpðtÞÞ ¼ arg max
x

X
s

UsðxsÞ � pTðtÞHðxÞ: ð10Þ

Scheduling: Over link l, send an amount of data for each
flow according to the rates f such that

f ðtÞ ¼ f ðpðtÞÞ 2 arg max
f2P

pTðtÞAðf Þ: ð11Þ

Note that there does not exist an explicit routing compo-
nent in the dual decomposition. Instead, the routing is
implicitly solved in (10) if the set of paths from which a
source can choose is given, and solved in (11) if no path
is prespecified for the source. We see that, by dual decom-
position, the flow optimization problem decomposes into
separate ‘‘local” optimization problems of transport, net-
work and link layers respectively, and they interact
through congestion prices.

Defining dual function D(p) = maxx,f2PL(p,x, f), by dual-
ity we have (see, e.g., Chapter 5 in [2])

max
x;f

X
s

UsðxsÞ ¼min
pP0

DðpÞ ¼min
pP0

max
x;f2P

Lðp; x; f Þ:

The dual problem minpD(p) can be solved by using the sub-
gradient method [33,2], where the Lagrangian multipliers
are adjusted in the opposite direction to the subgradient
of the dual function

gðpÞ ¼ Aðf ðpÞÞ � HðxðpÞÞ: ð12Þ

Congestion price update: The network (links or nodes) up-
dates the congestion price, according to

pðt þ 1Þ ¼ ½pðtÞ þ ctðHðxðpðtÞÞÞ � Aðf ðpðtÞÞÞÞ�þ; ð13Þ

where ct is a positive scalar stepsize, and ‘‘+” denotes the
projection onto the set Rþ of nonnegative real numbers.
The algorithm has a nice interpretation in terms of law of
supply and demand and their regulation through pricing.
Eq. (13) says that, if the demand H(x(p(t))) for service
capacity exceeds the supply A(f(p(t))), the price p will rise,
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which will in turn decrease the demand (see Eq. (10)) and
increase the supply (see Eq. (11)).

Before proceeding, we explain the notation used in this
paper. We denote a link either by a single index l or by
the directed pair (i, j) of nodes it connects. We use s or alter-
natively node pair [i,k] to denote a network layer flow. We
overload the use of the source rate x, the link capacity f and
the congestion price p throughout this paper, depending on
different kinds of routing involved. For example, x refers to
the source rate xs or the source rate xk

i at node i towards des-
tination k, depending on the specific context. Similarly, f re-
fers to both the link capacity {fi,j} and the capacity f k

i;j

n o
over

link (i, j) that is allocated to destination k.

4.2. Convergence analysis

Using results on the convergence of the subgradient
method [33,2], we show that, for constant stepsize, the
algorithm is guaranteed to converge to within a neighbor-
hood of the optimal value. For diminishing stepsize, the
algorithm is guaranteed to converge to the optimal value.
We would like a distributed implementation of the subgra-
dient algorithm, and thus a constant stepsize ct = c is more
convenient. Note that the dual cost usually will not mono-
tonically approach the optimal value, but wander around it
under the subgradient algorithm. The usual criterion for
stability and convergence is not applicable. Here we define
convergence in a statistical sense [3]. Let �pðtÞ :¼ 1

t

Pt
s¼1pðsÞ

be the average price by time t.

Definition 1. Let p* denote an optimal value of the dual
variable. Algorithm (10)–(13) with constant stepsize is said
to converge statistically to p*, if for any d > 0 there exists a
stepsize c such that lim supt!1Dð�pðtÞÞ � Dðp�Þ 6 d.

Clearly, an optimal value p* exists. The following theo-
rem guarantees the statistical convergence of the subgradi-
ent method.

Theorem 2. Let p* be an optimal price. If the norm of the
subgradients is uniformly bounded, i.e., there exists G such
that kg(p)k2 6 G for all p, then

Dðp�Þ 6 lim sup
t!1

Dð�pðtÞÞ 6 Dðp�Þ þ cG2

2
; ð14Þ

i.e., the algorithm (10)–(13) converges statistically to p*.
Proof. The first inequality Dðp�Þ 6 lim supt!1Dð�pðtÞÞ
always holds, since D(p*) is the minimum of the dual func-
tion D(p). Now we prove the second inequality. By Eq. (13),
we have

kpðt þ 1Þ � p�k2
2 ¼ k½pðtÞ � cgðpðtÞÞ�þ � p�k2

2

6 kpðtÞ � cgðpðtÞÞ � p�k2
2

¼ kpðtÞ � p�k2
2 � 2cgðpðtÞÞTðpðtÞ � p�Þ

þ c2kgðpðtÞÞk2
2

6 kpðtÞ � p�k2
2 � 2cðDðpðtÞÞ � Dðp�ÞÞ

þ c2kgðpðtÞÞk2
2;

where the last inequality follows from the definition of sub-
gradient. Applying the inequalities recursively, we obtain
kpðt þ 1Þ � p�k2
2 6 kpð1Þ � p�k2

2 � 2c
Xt

s¼1

ðDðpðsÞÞ � Dðp�ÞÞ

þ c2
Xt

s¼1

kgðpðsÞÞk2
2:

Since kpðt þ 1Þ � p�k2
2 P 0, we have

2c
Xt

s¼1

ðDðpðsÞÞ � Dðp�ÞÞ 6 kpð1Þ � p�k2
2 þ c2

Xt

s¼1

kgðpðsÞÞk2
2

6 kpð1Þ � p�k2
2 þ tc2G2:

From this inequality we obtain

1
t

Xt

s¼1

DðpðsÞÞ � Dðp�Þ 6 kpð1Þ � p�k2
2

2tc
þ cG2

2
:

Since D is a convex function, by Jensen’s inequality,

Dð�pðtÞÞ � Dðp�Þ 6 kpð1Þ � p�k2
2

2tc
þ cG2

2
:

Thus, lim supt!1Dð�pðtÞÞ 6 Dðp�Þ þ cG2

2 , i.e., the algorithm
converges statistically to p*. h

The assumption of bounded norm for subgradient g(p)
is reasonable, since f is finite and we always have an upper
bound on x in practice. Theorem 2 implies that the conges-
tion price p approaches p* statistically when the stepsize c
is small enough.

Let the primal function be PðxÞ :¼
P

sUsðxsÞ and achieve
its optimum at x*. Define �xðtÞ :¼ 1

t

Pt
s¼1xðsÞ, the average

data rate up to time t. As time goes to infinity, �xðtÞ must
be in the feasible rate region (determined by Eqs. (8) and
(9)), otherwise �pðtÞ will go unbounded as time goes to
infinity, which contradicts Theorem 2.

Theorem 3. Let x* be the optimal source rates. Under the
same assumption of Theorem 2, the algorithm (10)–(13)
converges statistically to within a small neighborhood of the
optimal values P(x*), i.e.,

Pðx�ÞP lim inf
t!1

Pð�xðtÞÞP Pðx�Þ � cG2

2
: ð15Þ
Proof. The first inequality Pðx�ÞP lim inf t!1Pð�xðtÞÞ holds,
since �xðtÞ is in the feasible rate region as t goes to infinity.
Now we prove the second inequality. By Eq. (13), we have

kpðt þ 1Þk2
2 6 kpðtÞ � cgðpðtÞÞk2

2

¼ kpðtÞk2
2 � 2cgðpðtÞÞT pðtÞ þ c2kgðpðtÞÞk2

2

¼ kpðtÞk2
2 þ 2c

X
s

UsðxsðtÞÞ

� 2c
X

s

UsðxsðtÞÞ � pTðtÞHðxðtÞÞ
 !

� 2cpTðtÞAðf ðtÞÞ þ c2kgðpðtÞÞk2
2

6 kpðtÞk2
2 þ 2c

X
s

UsðxsðtÞÞ

� 2c
X

s

Us x�s
� �
� pTðtÞHðx�Þ

 !

� 2cpTðtÞAðf ðtÞÞ þ c2kgðpðtÞÞk2
2

¼ kpðtÞk2
2 þ 2cPðxðtÞÞ � 2cPðx�Þ þ c2kgðpðtÞÞk2

2

� 2cpTðtÞðAðf ðtÞÞ � Hðx�ÞÞ
6 kpðtÞk2

2 þ 2cPðxðtÞÞ � 2cPðx�Þ þ c2kgðpðtÞÞk2
2;
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where the second inequality follows from the fact that x(t)
is the maximizer in the problem (10), and the third inequal-
ity follows from the fact that f(t) is the maximizer in prob-
lem (11). Applying the inequalities recursively, we obtain

kpðt þ 1Þk2
2 6 kpð1Þk

2
2 þ 2c

Xt

s¼1

ðPðxðsÞÞ � Pðx�ÞÞ

þ c2
Xt

s¼1

kgðpðsÞÞk2
2:

Since kpðt þ 1Þk2
2 P 0, we have

2c
Xt

s¼1

ðPðxðsÞÞ � Pðx�ÞÞP �kpð1Þk2
2 � c2

Xt

s¼1

kgðpðsÞÞk2
2

P �kpð1Þk2
2 � tc2G2:

From this inequality we obtain

1
t

Xt

s¼1

PðxðsÞÞ � Pðx�ÞP �kpð1Þk
2
2 � tc2G2

2tc
:

Since P is a concave function, by Jensen’s inequality,

Pð�xðtÞÞ � Pðx�ÞP �kpð1Þk
2
2 � tc2G2

2tc
:

Thus, lim inf t!1Pð�xðtÞÞP Pðx�Þ � cG2

2 , i.e., the algorithm
(10)–(13) converges statistically to within a small neigh-
borhood of the optimal values P(x*). h

Since P(x) is continuous, Theorem 3 implies that the
average source rate approaches the optimal x* when c is
small enough.

5. Extension to networks with time-varying channels

In the last section, we consider wireless multihop net-
works with fixed channels or single-rate devices, i.e., the
capacity cl is a constant when link l is active. However, re-
cent years have seen the growing popularity and demand
of multi-rate wireless network devices (e.g., 802.11a cards)
that can adjust transmission rate according to the time-
varying channel state and improve overall network utiliza-
tion. Here, we consider the networks with time-varying
channels and adaptive multi-rate devices.

5.1. Distributed algorithm

We assume that time is slotted, and the channel is fixed
within a time slot but independently changes between dif-
ferent slots.1 Let h(t) denote the channel state in time slot t.
Corresponding to the channel state h, the capacity of link l is
cl(h) when active and the feasible rate region at the link layer
is P(h), which is defined in a similar way as in (1). We fur-
ther assume that the channel state is a finite state process
with identical distribution q(h) in each time slot,2 and define
the mean feasible rate region as
1 It is straightforward to extend our results to a network where the
channel state process is modulated by a hidden Markov chain.

2 Even if the channel state is a continuous process, we only have finite
choices of modulation schemes. The corresponding capacities take discrete
values.
P :¼ �r : �r ¼
X

h

qðhÞrðhÞ; rðhÞ 2 PðhÞ
( )

: ð16Þ

Ideally, we would like to have a distributed algorithm that
solves the following utility maximization problem

max
x;f

X
s

UsðxsÞ ð17Þ

subject to HðxÞ 6 Aðf Þ; ð18Þ

f 2 P: ð19Þ

However, if we solve the above problem via dual decompo-
sition, we may get a link rate assignment which is infeasi-
ble for the channel state at a given time slot. Instead we
directly extend the algorithm (10)–(13) to handle the
time-varying channel.

Congestion control: At time t, given congestion price p(t),
the sources adjust flow rates x according to the congestion
price

xðtÞ ¼ xðpðtÞÞ ¼ arg max
x

X
s

UsðxsÞ � pTðtÞHðxÞ: ð20Þ

Scheduling: In the beginning of period t, each node moni-
tors the channel state h(t), and over link l send an amount
of data for each flow according to the rates f such that

f ðtÞ ¼ f ðpðtÞÞ 2 arg max
f2PðhðtÞÞ

pTðtÞAðf Þ: ð21Þ

Congestion price update: The network (links or nodes) up-
dates the congestion price, according to

pðt þ 1Þ ¼ b½pðtÞ þ cðHðxðpðtÞÞÞ � Aðf ðpðtÞÞÞÞ�þc: ð22Þ

Here ‘‘bc” denotes the function floor with respect to c2. We
choose such a discrete congestion price to facilitate the sta-
bility analysis in the next subsection.

The above algorithm cannot be derived from the dual
decomposition of the problem (17)–(19). However, we will
use the problem (17)–(19) as a reference system, and char-
acterize the performance of the above algorithm with re-
spect to it.

5.2. Stochastic stability

Note that congestion price p(t) takes discrete values.
Thus, congestion price p(t) evolves according to a discrete-
time, discrete-space Markov chain. We need to show that
this markov chain is stable, i.e., the congestion price process
reaches a steady state and does not become unbounded. It is
easy to check that the Markov chain has a countable state
space, but is not necessarily irreducible. In such a general
case, the state space is partitioned in transient set T and dif-
ferent recurrent classes Ri. We define the system to be stable
if all recurrent states are positive recurrent and the Markov
process hits the recurrent states with probability one [38].
This will guarantee that the Markov chain will be ab-
sorbed/reduced into some recurrent class, and the positive
recurrence ensures the ergodicity of the Markov chain over
this class. We have the following result.

Theorem 4. The Markov chain described by Eq. (22) is stable.



486 L. Chen et al. / Computer Networks 55 (2011) 480–496
Proof. Denote the dual function of the problem (17)–(19)
by DðpÞ with an optimal price p* and subgradient �gðpÞ,
i.e., �gðpÞ ¼ Að�f ðpÞÞ � HðxðpÞÞ with �f ðpÞ 2 arg maxf2PpT Aðf Þ.
Consider the Lyapunov function VðpÞ ¼ kp� p�k2

2, we have

E½DVtðpÞjp� ¼ E½Vðpðtþ1ÞÞ�VðpðtÞÞjpðtÞ ¼ p�

¼ E½Vðb½pðtÞ�cgðpðtÞÞ�þcÞ�VðpðtÞÞjpðtÞ ¼ p�

¼ E½Vð½pðtÞ�cgðpðtÞÞ�þ � �Þ�VðpðtÞÞjpðtÞ ¼ p�
6 E½VðpðtÞ�cgðpðtÞÞÞ�VðpðtÞÞjpðtÞ ¼ p�

þE½�2� � ð½pðtÞ�cgðpðtÞÞ�þ �p�Þþk�k2
2jpðtÞ ¼ p�

6 E½VðpðtÞ�cgðpðtÞÞÞ�VðpðtÞÞjpðtÞ ¼ p�

þ2� �p� þk�k2
2;

where � = [p(t) � cg(p(t))]+ � b[p(t) � c g(p(t))]+c. Note that
0 6 � < c21, with 0 denoting the zero vector and 1 the vec-
tor with every component being 1. Thus, 2� � p� þ k�k2

2 <

2c2kp�k1 þ c4k1k2
2. Let D ¼ 2kp�k1 þ c2k1k2

2, we have

E½DVtðpÞjp�6 E½VðpðtÞ� cgðpðtÞÞÞ �VðpðtÞÞjpðtÞ ¼ p� þ c2D

¼ E½�cgðpðtÞÞTð2ðpðtÞ � p�Þ
� cgðpðtÞÞÞjpðtÞ ¼ p� þ c2D

¼ 2c�gðpÞTðp� � pÞ þ c2E½kgðpðtÞÞk2
2jpðtÞ ¼ p� þ c2D

6 2c�gðpÞTðp� � pÞþ c2ðG2 þDÞ;

where we again use the assumption that the norm of
g(p(t)) is bounded above by G. By the definition of subgra-
dient, we further get

E½DVtðpÞjp� 6 2cðDðp�Þ � DðpÞÞ þ c2ðG2 þ DÞ:

Let

d ¼ max
DðpÞ�Dðp�Þ6cðG2þDÞ

kp� p�k2

and define A ¼ fp : kp� p�k2 6 dg. We obtain

E½DVtðpÞjp� 6 �c2ðG2 þ DÞIp2Ac þ c2ðG2 þ DÞIp2A;

where I is the index function. Thus, by Theorem 3.1 in
[38], which is an extension of Foster’s criterion [1], the
Markov chain p(t) is stable. h

The above proof shows that the distance to the optimal
p* has negative conditional mean drift for all prices that
have sufficiently large distance to p*, and implies that the
congestion price will stay near p* when c is small enough.

5.3. Performance evaluation

We now characterize the performance of the algorithm
(20)–(22) in terms of the dual and primal objective func-
tions of the reference system problem (17)–(19).

Theorem 5. The algorithm (20)–(22) converges statistically
to within a small neighborhood of the optimal value Dðp�Þ, i.e.,

Dðp�Þ 6 DðE½pð1Þ�Þ 6 Dðp�Þ þ cðG2 þ DÞ
2

; ð23Þ

where p(1) denotes the state of the Markov chain p(t) in the
steady state, and D ¼ 2kp�k1 þ c2k1k2

2.
Proof. The first inequality Dðp�Þ 6 DðE½pð1Þ�Þ always
holds, since Dðp�Þ is the minimum of the dual function
DðpÞ. Now we prove the second inequality. From the proof
of Theorem 4, we have

E½DVtðpÞjp� ¼ E½Vðpðt þ 1ÞÞ � VðpðtÞÞjpðtÞ ¼ p�

6 2cðDðp�Þ � DðpÞÞ þ c2ðG2 þ DÞ:

Taking expectation over p, we get

E½DVtðpÞ� ¼ E½Vðpðt þ 1ÞÞ � VðpðtÞÞ�

6 2cðDðp�Þ � E½DðpÞ�Þ þ c2ðG2 þ DÞ:

Taking summation from s = 0 to s = t � 1, we obtain

E½VðpðtÞÞ� 6 E½Vðpð0ÞÞ� � 2c
Xt�1

s¼0

E½DðpðsÞÞ� þ 2ctDðp�Þ

þ tc2ðG2 þ DÞ:

Since E[V(p(t))] P 0, we have

2c
Xt�1

s¼0

E½DðpðsÞÞ� � 2ctDðp�Þ 6 E½Vðpð0ÞÞ� þ tc2ðG2 þ DÞ:

From this inequality we obtain

1
t

Xt�1

s¼0

E½DðpðsÞÞ� � Dðp�Þ 6 E½Vðpð0ÞÞ� þ tc2ðG2 þ DÞ
2tc

:

Note that p(t) is stationary and ergodic in some steady
state by Theorem 4, and so is DðpðtÞÞ. Thus,

lim
t!1

1
t

Xt�1

s¼0

E½DðpðsÞÞ� ¼ E½Dðpð1ÞÞ�:

So,

E½Dðpð1ÞÞ� � Dðp�Þ 6 cðG2 þ DÞ
2

:

Since DðpÞ is a convex function, by Jensen’s inequality,

DðE½pð1Þ�Þ � Dðp�Þ 6 cðG2 þ DÞ
2

;

i.e., the algorithm converges statistically to within c
(G2 + D)/2 of the optimal value Dðp�Þ. h

Since DðpÞ is a continuous function, Theorem 5 implies
that the congestion price p approaches p* statistically
when c is small enough.

Corollary 6. x(t) is a stable Markov chain. Moreover, the
average arrival rates E½xð1Þ� 2 P, where x(1) denotes the
state of the process x(t) in the steady state.
Proof. x(t) is a deterministic, finite-value function of p(t).
x(t) is a stable Markov chain, since p(t) is E½xð1Þ� 2 P,
otherwise the average congestion price E[p(1)] will be
unbounded, which contradicts Theorem 4. h
Theorem 7. Let PðxÞ be the primal function and x* be the
optimal source rates of the reference system problem (17)–
(19). The algorithm (20)–(22) converges statistically to
within a small neighborhood of the optimal value Pðx�Þ, i.e.,

Pðx�ÞP PðE½xð1Þ�ÞP Pðx�Þ � cðG2 þ DÞ
2

: ð24Þ
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Fig. 2. An example of a simple multihop wireless network.
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Proof. The proof for the theorem is a straightforward
extension of the proof of Theorem 3, following similar pro-
cedure as in the proof of Theorem 5. We skip the details
here. h

Since PðxÞ is a continuous function and has a unique
optimal, Theorem 7 implies that the average source rate
approaches the optimal of the ideal reference system
(17)–(19) when stepsize c is small enough. Theorems 5
and 7 show that, surprisingly, the algorithm (20)–(22)
can be seen as a distributed algorithm to approximately
solve the ideal reference system problem that is not readily
solvable due to stochastic channel variations.

Our proofs for stability and performance bounds are
rather general. They only use general properties of convex-
ity and Markovity and the definition of subgradients. We
thus have presented a general technique and results regard-
ing the stability and optimality of dual algorithm for convex
optimization in face of time-varying parameters. As the
flow contention graph is a rather general construct and
can be used to capture the interdependence or contention
among parallel servers of any queueing networks, the afore-
mentioned results are applicable to any systems that can be
modelled by a general model of queueing network that is
served by a set of interdependent parallel servers with
time-varying service capabilities. In the next two sections,
we will discuss two such applications. Other examples in-
clude fair scheduling in a generalized switch [34], and TCP
[22] with time-varying capacity as in last-hop wireless net-
works. It can include power control as well [5], as power
does not change convexity of the feasible rate region.

As specific cases of the general model and algorithm
presented in Sections 4 and 5, we will discuss joint conges-
tion control and medium access control design in multihop
wireless networks with single-path routing and cross-layer
congestion control, routing and scheduling design in the
network without prespecified paths in the next two sec-
tions, respectively.

6. Joint congestion control and media access control
design

TCP was originally designed for wireline networks,
where links are assumed to have fixed capacities. However,
as wireless channel is a shared medium and interference-
limited, wireless links are ‘‘elastic” and the capacities they
obtain depend on the bandwidth sharing mechanism used
at the link layer. This may result in various TCP perfor-
mance problems in wireless networks.

One such problem is TCP unfairness over multihop wire-
less networks. Many existing wireless MAC protocols, such
as DCF specified in IEEE 802.11 standard [13], are traffic
independent and do not consider the actual requirements
of the flows competing for the channel. These MAC proto-
cols suffer from the unfairness problem, caused by the loca-
tion dependency of the contentions, and exacerbated by the
contention resolution mechanisms such as the binary expo-
nential backoff algorithm adopted in DCF. When they inter-
act with TCP, TCP will further penalize these flows with
more contention. This will result in significant TCP unfair-
ness in multihop wireless networks [10,37,45–47]. To illus-
trate this, consider the example in Fig. 2, and assume there
are four network-layer flows A ? B, C ? D, E ? F and
G ? H. The flow C ? D experiences more contention and
will build up a queue faster than the other three flows.
TCP will further penalize it by reducing the congestion win-
dow more aggressively, and the resulting throughput of
flow C ? D will be much less than that of the other flows.

In addition to the location dependency of contentions,
correlation among links is also the key to understand the
interaction between transport and MAC layers. In wireline
networks, link bandwidth is well defined and links are dis-
joint resources. But in wireless networks, as we mentioned
above, links are correlated due to interference, and net-
work-layer flows that do not transverse a common link
may still compete with each other. Thus, congestion is lo-
cated at some spatial contention region [47]. Consider again
the example in Fig. 2, and assume there are two network-
layer flows A ? F and G ? H. Link-layer flows BC, CD, DE
and GH contend with each other, and congestion is located
in the spatial contention region denoted by the rectangle.
So, unlike wireline networks where link capacities provide
constraints for resource allocation, in multihop wireless
networks the contention relations between link-layer flows
provide fundamental constraints for resource allocation.
We need to exploit the interaction between transport and
link (MAC) layers, in order to improve the performance.

Eqs. (2) and (3) capture the constraints that arise from
channel contention among wireless links. We model the
resource allocation for multihop wireless networks as a
utility maximization problem with these constraints,

max
x;f

X
s

UsðxsÞ ð25Þ

subject to Rx 6 f ; ð26Þ
f 2 P; ð27Þ

which is a special case of the system problem (7)–(9). With
this formulation, we can explicitly exploit the interaction
between transport and MAC layers, and systematically car-
ry out joint design of congestion and media access control.
In the next subsection, a dual algorithm solving the system
problem (25)–(27) is derived by applying the algorithm
(10)–(13). The algorithm motivates a scheme for media ac-
cess control in which link-layer flows are scheduled
according to congestion prices.
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6.1. Distributed algorithm

Consider the Lagrangian of the problem (25)–(27) with
respect to the rate constraint

Lðp; x; f Þ ¼
X

s

UsðxsÞ � pT Rx� fð Þ: ð28Þ

Interpreting pl as the congestion price at link l, we can use
the algorithm (10)–(13) to solve the problem (25)–(27) and
its dual.

Rate control: At time t, given congestion price p(t),
source s adjusts its sending rate xs according to the aggre-
gate congestion price

P
lRlspl along its path

xsðtÞ ¼ U0�1
s ð
X

l

RlsplðtÞÞ: ð29Þ

Scheduling: Over link l, send an amount of data for each
flow according to the rate f such that

f ðtÞ ¼ f ðpðtÞÞ 2 arg max
f2P

pT f : ð30Þ

If the network with time-varying channel is considered,
each node monitors channel state h(t) and over link l sends
an amount of data for each flow according to the rate f such
that

f ðtÞ ¼ f ðpðtÞÞ 2 arg max
f2PðhðtÞÞ

pT f : ð31Þ

Congestion price update: Each link l updates its price,
according to

plðt þ 1Þ ¼ plðtÞ þ ct

X
s

RlsxsðpðtÞÞ � flðpðtÞÞ
 !" #þ

: ð32Þ

The above algorithm motivates a joint design scheme
where the link layer flows are scheduled according to con-
gestion prices of the links. Also, note that Eqs. (29) and (32)
are completely distributed and can be implemented at
individual sources and links using only local information.
We will discuss the distributed solution to the scheduling
problem (30) in the next subsection.

6.2. Scheduling over multihop networks

We now come to the scheduling problem (30), which
will also show up in the next section. Scheduling over mul-
tihop networks is a difficult problem and in general NP-
hard. To see this, note that problem (30) is equivalent to
a maximum weight independent set problem over the flow
contention graph, which is NP-hard for general graphs. It is
easy to design some heuristic algorithm but is hard to
bound its performance.

With the primary interference model, the scheduling
problem (30) is equivalent to the maximum weighted
matching problem3 over the connectivity graph {N,L} of
the network. Maximum weighted matching problem can
be computed in polynomial time (see, e.g., [29]), but this re-
3 A matching in a graph is a subset of links, no two of which share a
common node. The weight of a matching is the total weight of all its links. A
maximum weighted matching in a graph is a matching whose weight is
maximized over all matchings of the graph.
quires centralized implementation. If implemented over a
multihop network, each node needs to notify the central
node of its weight and local connectivity information such
that the central node can reconstruct the network topology
as a weighted graph. This will lead to an immense commu-
nication overhead which is expensive in time and resources.
There also exist simpler greedy sequential algorithms to
compute a weighted matching at most a factor of 2 away
from the maximum; see, e.g., [30]. But they also require cen-
tralized implementation. We seek a distributed algorithm
where each node participates in the computation itself using
only local information.

A few distributed approximation algorithms exist for
maximum weighted matching problem; see, e.g.,
[40,42,12]. In [12], the author presents a simple distributed
algorithm to compute a weighted matching at most a factor
of 2 away from the maximum in linear running time O(jLj).
This algorithm is a distributed variant of the sequential
greedy algorithm presented in [30]. We have utilized this
algorithm to solve the scheduling problem (30) distributed-
ly, see [4] for details. The resulting scheduling algorithm for
multihop wireless networks is one of the best distributed
algorithms in terms of computational complexity and
performance bound. It has a linear complexity O(jLj). Such
a low complexity is important for the scalability and
efficiency of multihop wireless networks. It achieves a per-
formance of 1/2 of the maximum weight in the worst case,
and in practice, numerical simulations show it typically
achieves a performance within about 4/5 of the maximum
weight. There also exist few other distributed approxima-
tion algorithms; see, e.g., [21,43,24,14,32,28]. Especially,
in [14,32,28] the authors present distributed random access
algorithms that achieve nearly 100% throughput.

As for the overall performance of our cross-layer design
with approximate scheduling, we can extend the result in
[21] to show that the performance is no worse than that
achieved by an exact design with a feasible rate region
1
2 P at the link layer. Moreover, in [4] we also see that this
distributed scheduling algorithm only results in a very
small degradation in the performance of the cross-layer
design for the network with time-varying channel, since
in this situation the exact solution of the scheduling is not
as important and reasonable approximations work well.

6.3. Numerical examples

In this subsection, we provide numerical examples to
complement the analysis in previous subsections. We con-
sider a simple network with secondary interference as
shown in Fig. 2, and assume that there are three network
layer flows G ? H, A ? F and D ? F with the same utility
function Us(xs) = logxs. We have chosen a simple topology
to facilitate discussion.

The network with fixed channel and single-rate devices
We first consider a network with fixed link capacities.

For simplicity, we assume that all the links have one unit
of capacity when active. Fig. 3 shows the evolution of
source rates and their averages with the joint algorithm
(29), (30), (32) with stepsize c = 0.2. We see that the source
rates converge quickly to a neighborhood of the optimal
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Fig. 3. The evolution of source rates in the network with fixed link capacities.
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Fig. 4. The evolution of congestion prices in the network with fixed link capacities.
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and oscillate around the optimal. This oscillating behavior
mathematically results from the non-differentiability of
the dual function and physically can be interpreted as
due to the scheduling process. However, the average
source rates are smooth and approach the optimum mono-
tonically. Fig. 4 shows the evolution of the corresponding
end-to-end congestion prices and the averages of the three
flows. Similarly, the congestion prices approach the opti-
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Fig. 5. The evolution of source rates in the network with time-varying link capacities.
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mum quickly. We also note that the performance of the
algorithm is much better than the bound of cG2/2 specified
in Theorems 2 and 3.

The choice of the stepsize c is important. It character-
izes the ‘‘optimality” of the algorithm, as shown in Theo-
rems 2 and 3 (and also in Theorems 5 and 7). It also
affects the convergence speed. In oder to study the impact
of different choices of the stepsize on the performance of
the algorithm, we have run simulations with different
stepsizes. We found that the smaller the stepsize, the
slower the convergence and the closer to the optimal,
which is a general characteristic of any gradient based
algorithm. So, there is a tradeoff between convergence
speed and optimality. In practice, the end user can first
choose large stepsizes to ensure fast convergence, and sub-
sequently, the stepsizes can be reduced once the source
rate starts oscillating around some mean value.

The network with time-varying channel and multirate devices
We now consider a network with time-varying link

capacities. For simplicity, we assume that the capacities
of all links are identically, uniformly distributed over 0.5,
1 and 1.5 units. Thus, the average capacity for each link
when active is the same as that in the example with fixed
link capacities.

Figs. 5 and 6 show the evolution of source rates, conges-
tion prices and their averages with the same stepsize
c = 0.2. The source rates and congestion prices have much
larger variations than those with fixed channel, due to
the channel variations. But the average source rates and
congestion prices are still smooth, and converge quickly
and monotonically to optimal values. Our simulation re-
sults have confirmed the conclusions from Theorems 5
and 7, which say that the average source rates and conges-
tion prices approach the optimum of an ideal system with
the best feasible rate region at the link layer, and that algo-
rithm (29), (31) and (32) can been seen as a distributed
algorithm to solve this ideal system problem. Also note
that, although the average link capacities when active are
the same as those in fixed channel, each flow achieves lar-
ger sending rate. This is due to multi-user diversity: our
‘‘optimal” scheduling (31) has implicitly considered mul-
ti-user diversity.

6.4. Summary

We have presented a model for the joint design of con-
gestion control and media access control for multihop
wireless networks, where the resulting dual algorithm is
to solve a utility maximization problem with constraints
that arise from contention for the wireless channel. This
algorithm motivates a joint design where link-layer flows
are scheduled according to the congestion prices of the
links.

There exist other ways to solve the resource allocation
problem (25)–(27). In [3], we also derive a primal
algorithm by solving the relaxation of the system problem
(25)–(27). Based on the algorithm, we propose a traffic-
dependent scheme for contention-based medium access
control and generate congestion price directly from
the MAC layer. As scheduling in multihop wireless net-
works is an intrinsically hard problem, contention-based
medium access seems a must. To further integrate
congestion control and contention-based medium access
in the utility maximization framework will be a future
research step.
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Fig. 6. The evolution of congestion prices in the network with time-varying link capacities.
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7. Joint congestion control, routing and scheduling
design

In the last section, we have discussed the resource allo-
cation in multihop wireless networks where the path for
each network layer flow is given. However, as wireless
spectrum is a scarce resource, it may be costly to maintain
end-to-end paths, and congestion control based on end-
to-end feedback may consume too much bandwidth in
signalling. Moreover, most routing schemes for multihop
networks select paths that minimize hop count; see, e.g.,
[15,31]. This implicitly predefines a path for any source–
destination pair, independent of the pattern of traffic
demand and interference/contention among links. This
may result in congestion at some region while other re-
gions are underutilized. In order to achieve high end-to-
end throughput and efficient resource allocation, the paths
should not be decided exogenously but jointly optimized
with congestion control and scheduling.

Since the actual paths that will be used are not specified
a priori, we will use a multicommodity flow model for
routing and model the resource allocation as a utility max-
imization problem with the constraints (2) and (5),

max
x;f

X
s

UsðxsÞ ð33Þ

subject to xk
i 6

X
j:ði;jÞ2L

f k
i;j �

X
j:ðj;iÞ2L

f k
j;i; ð34Þ

f 2 P; ð35Þ

where i 2 N, k 2 D, i – k, and xk
i ¼ 0 if [i,k] R S � D. Again, this

problem is a special case of the system problem (7)–(9). In
the next subsection, we apply the algorithm (10)–(13) to
obtain a distributed subgradient algorithm for joint
congestion control, routing and scheduling. This algorithm
motivates a joint design where the source adjusts its send-
ing rate according to the congestion price generated locally
at the source node, and backpressure from the differential
price of neighboring nodes is used for optimal scheduling
and routing.

7.1. Distributed algorithm

Consider the Lagrangian of the problem (33)–(35) with
respect to the rate constraint

Lðp;x; f Þ ¼
X

s

UsðxsÞ �
X

i2N;k2D;i–k

pk
i xk

i �
X

j:ði;jÞ2L

f k
i;j þ

X
j:ðj;iÞ2L

f k
j;i

 !
:

ð36Þ

Interpreting pk
l as the congestion price at node i for the

flows to destination k, we can use the algorithm (10)–(13)
to solve the problem (33)–(35) and its dual.

Rate control: At time t, given congestion price p(t), the
source s adjusts its sending rate xs according to the local
congestion price at the source node

xsðpÞ ¼ U0s
�1ðpsÞ; ð37Þ

where ps ¼ pi
k for s = [i,k] 2 S � D. In contrast to traditional

TCP congestion control where the source adjusts its send-
ing rate according to the aggregate price along its path,
in this algorithm the congestion price is generated locally
at the source node.

Note that, since

X
i;k

pk
i

X
j

f k
i;j �

X
j

f k
j;i

 !
¼
X
i;j;k

f k
i;j pk

i � pk
j

� �
;
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the scheduling problem is equivalent to the following
problem

max
f2P

X
i;j

fi;j max
k

pk
i � pk

j

� �
: ð38Þ

This motivates the following joint scheduling and routing
algorithm:

Scheduling: Each node i collects congestion price infor-
mation from its neighbor j, finds destination k(t) such that

kðtÞ 2 arg maxk pk
i ðtÞ � pk

j ðtÞ
� �

, and calculates differential

price wi;jðtÞ ¼ pkðtÞ
i ðtÞ � pkðtÞ

j ðtÞ and passes this information
to its neighbors. Allocate capacities ~f i;jðtÞ over links (i, j)
such that
~f ðtÞ 2 arg max

f2P

X
ði;jÞ2L

wi;jðtÞfi;j: ð39Þ

If the network with time-varying channel is considered,
each node monitors the channel state h(t) and allocates
capacities ~f i;jðtÞ over links (i, j) such that
~f ðtÞ 2 arg max

f2PðhðtÞÞ

X
ði;jÞ2L

wi;jðtÞfi;j: ð40Þ
A D

 E

 F

C

B

Fig. 7. A simple network with two network layer flows. All links are
bidirectional.
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Fig. 8. Source rates and congestion prices in
Routing: Over link (i, j), send a number of bits for destination
k(t) according to the rate determined by the scheduling.

The wi,j values represent the maximum differential con-
gestion price of destination k flows between nodes i and j.
The above algorithm uses backpressure to do optimal
scheduling and find optimal routing. Also note that the
scheduling problem is solved by the following assignment,

f k
i;jðtÞ ¼

~f i;jðtÞ if k ¼ kðtÞ;
0 if k – kðtÞ:

(

Congestion price update: Each node i updates its price with
respect to destination k, according to

pk
i ðt þ 1Þ ¼ pk

i ðtÞ þ ct xk
i ðpðtÞÞ �

X
j:ði;jÞ2L

f k
i;jðpðtÞÞ

  "

�
X

j:ðj;iÞ2L

f k
j;iðpðtÞÞ

!!#þ
; ð41Þ

and passes the price pk
i to its neighbors. Note that pk

i ðtÞ is
interpreted as congestion price at the beginning of times
lot t.

The above dual algorithm motivates a joint congestion
control, routing and scheduling design where at the trans-
port layer sources s individually adjust their rates accord-
ing to the local congestion price at the source nodes, and
nodes i individually update their prices according to (41),
and at the network/link layer nodes i solve the scheduling
(39) and route data flows accordingly. Also, note that the
congestion control is not an end-to-end scheme. There is
no need to maintain end-to-end paths and no communica-
tion overhead for congestion control.
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Fig. 9. The average source rates and congestion prices in the network with fixed link capacities.
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Fig. 10. Source rates and congestion prices in the network with time-varying link capacities.
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7.2. Numerical examples

In this subsection, we provide numerical examples to
complement the analysis in the previous subsections. We
consider a simple multihop network with primary interfer-
ence as shown in Fig. 7, and assume that there are two net-
work layer flows A ? F and B ? E with the same utility
Us(xs) = logxs.



0 10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Time

Av
er

ag
e 

So
ur

ce
 R

at
es

Flow AF
Flow BE

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

Normalized Time

Av
er

ag
e 

C
on

ge
st

io
n 

Pr
ic

es

Flow AF
Flow BE

Fig. 11. The average source rates and congestion prices in the network with time-varying link capacities.
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Fig. 12. Layering as dual decomposition.
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The network with fixed channel and single-rate devices
We consider first the network with fixed link capacities.

For simplicity, we assume that links CE, EC, BF and FB have
one unit of capacity and all other links have 2 units of
capacity when active. Fig. 8 shows the evolution of source
rate and congestion price of each flow with the joint algo-
rithm (37), (39) and (41) with stepsize c = 0.2. We see that
they converge quickly to a neighborhood of the optimal
and oscillate around the optimal. However, Fig. 9 shows
that the average source rates and congestion prices are
smooth and approach the optimum monotonically. We
again note that the performance of the algorithm is much
better than the bound of cG2/2 specified in Theorems 2
and 3.

The network with time-varying channel and multirate devices
We now consider the network with time-varying link

capacities. For simplicity, we assume that links CE, EC, BF
and FB’s capacities are identically, uniformly distributed
over 0.5, 1 and 1.5 units, while other links’ capacities are
identically, uniformly distributed over 1, 2 and 3 units.
Thus, the average capacity for each link when active is
the same as that in the example with fixed link capacities.

Figs. 10 and 11 show the evolution of source rates, con-
gestion prices and their averages with the same stepsize
c = 0.2. The source rates and congestion prices have much
larger variations than those with fixed channel, due to
the channel variations. But the average source rates and
congestion prices are still smooth, and converge quickly
and monotonically to optimal values. Note that, although
the average link capacity when active is the same as that
in fixed channel, each flow achieves larger sending rates.
This is again due to multi-user diversity that we exploit
when doing scheduling. Also note that the increase in
sending rate of flow BE is much more notable. This is be-
cause node B has more neighbors and thus a much larger
multi-user diversity.
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7.3. Summary

We have presented a model for the joint design of con-
gestion control, routing and scheduling for multihop wire-
less networks. The resulting dual algorithm motivates a
joint design where at the transport layer, sources s adjust
their rates according to the local congestion price at the
source nodes, and at the network/link layer nodes solve
the scheduling and route data flows according to backpres-
sure in congestion between neighboring nodes. As our de-
sign only requires nodes exchanging local information
with their neighbors and does not need to maintain end-
to-end paths, it has a very low communication overhead
and can adapt to changing topologies such as those in mo-
bile multihop networks.
8. Conclusions

We have seen in this paper that, by formulating a gen-
eral utility maximization problem for the network design,
duality theory leads to a natural ‘‘vertical” decomposition
into functional modules of various layers of the protocol
stack and ‘‘horizontal” decomposition into distributed
computation across various network nodes or links. As
shown in Fig. 12, our current theory integrates three func-
tions—congestion control, routing and scheduling—in
transport, network and link layers into a coherent frame-
work. With this layering scheme, the dual variables of
the utility maximization problem capture the network
state information and are the information that is passed
across the interfaces among different layers. These layers
interact through and are coordinated by the dual variables,
i.e., congestion prices, so as to achieve global optimality.
Even though this framework does not provide all the de-
sign and implementation details (such as the implementa-
tion of congestion prices and signalling mechanism), it
helps us understand issues, clarify ideas, and suggests
directions, leading to better and more robust designs for
multihop wireless networks.

This framework—layering as dual decomposition in par-
ticular and layering as optimization decomposition in gen-
eral—holds promise for being extended to provide a
mathematical theory for network architecture, and to al-
low us to systematically derive the layering structure of
the various mechanisms of different protocol layers, their
interfaces, and the control information that must cross
these interfaces to achieve a certain performance and
robustness. In this general framework, application needs
(possibly, plus other performance metrics such as network
cost) form the objective function (i.e., network utility to be
maximized) and the restrictions in resource provisioning
are translated into the constraints of the generalized net-
work utility maximization problem. By choosing different
objective functions and having different sets of decision
variables involved, we can explicitly characterize and trade
off different design objectives such as performance, scala-
bility and robustness.

There exist, however, some challenging issues with this
framework. First, utility design, i.e., how to model the user
or application needs, is not an easy task, especially for real-
time applications. Second, the general utility maximization
problems may be nonlinear, nonconvex optimization with
integer constraints. Third, this framework only involves
the functionalities of the data plane of the network, but
leaves out the issues related to the control plane such as
implementation and management complexity. Addressing
these issues will be a future research step.
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