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Abstract

When a chemostat is perturbed from its steady state, it displays complex dynamics. For instance, if the identity of the growth-
limiting substrate is switched abruptly, the substrate concentration and cell density undergo a pronounced excursion from the steady
state that can last several days. These dynamics occur because certain physiological variables respond slowly. In the literature,
several physiological variables have been postulated as potential sources of the slow response. These include transport enzymes,
biosynthetic enzymes, and ribosomes. We have been addressing this problem by systematically exploring the role of these variables.
In previous work Shoemaker et al. (J. Theor. Biol., 222 (2003) 307-322), we studied the role of transport enzymes, and we showed
that transients starting from low transport enzyme levels could be quantitatively captured by a model taking due account of
transport enzyme synthesis. However, there is some experimental data indicating that slow responses occur even if the initial enzyme
levels are high. Here, we analyse this data to show that in these cases, the sluggish response is most probably due to slow adjustment
of the ribosome levels. To test this hypothesis, we extend our previous model by accounting for the evolution of both the transport
enzyme and the ribosomes. Based on a kinetic analysis of the data in the literature, we assume that the specific protein synthesis rate
is proportional to the ribosome level, and the specific ribosome synthesis rate is autocatalytic. Simulations of the model show
remarkable agreement with experimentally observed steady states and the transients. Specifically, the model predictions are in good
agreement with (1) the steady-state profiles of the cell density, substrate concentration, RNA, proteins, and transport enzymes, (2)
the instantaneous specific substrate uptake, growth, and respiration rates in response to a continuous-to-batch shift, and (3) the
transient profiles of the cell density, substrate concentration, and RNA in response to feed switches and dilution rate shifts. Time-
scale analysis of the model reveals that every transient response is a combination of two fundamental (and simpler) dynamics,
namely, substrate-sufficient batch dynamics and cell-sufficient fed-batch dynamics. We obtain further insight into the transient
response by analysing the equations describing these fundamental dynamics. The analysis reveals that in feed switches or dilution
rate shift-ups, the transport enzyme reaches a maximum before RNA achieves its maximum, and in dilution rate shift-downs the cell
density reaches a maximum before RNA achieves a minimum.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The chemostat is a convenient laboratory approxima-
tion to natural water bodies. Consequently, microbial
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growth in a chemostat is of fundamental interest in
microbial ecology (Egli, 1995). In natural water
bodies, many bacterial species grow simultaneously on
mixtures of several growth-limiting substrates. How-
ever, these complex systems cannot be fully understood
until questions concerning the growth of only one
species on a single growth-limiting substrate have been
resolved.
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Chemostat dynamics are also important from an
engineering standpoint (Nielsen and Villadsen, 1992).
Industrial bioreactors are prone to abrupt changes in the
flow rate and feed concentrations. The transient
response to these perturbations frequently involves
massive loss of cells from the reactor and overshoots
of the substrate concentration (see, for instance, Figs. 1
and 2). These dynamics can cause regulatory violations
in wastewater treatment plants and product deteriora-
tion in industrial fermenters. A mathematical theory of
chemostat dynamics would facilitate the development of
rational operating protocols and model-based control
strategies (Ramkrishna, 2003).

The cell loss and substrate overshoot occur because of
slow physiological adaptation. Although the environ-
ment changes rapidly, the specific growth and substrate
uptake rates of the cells respond slowly (Fig. 2c). Since
these rates are in turn determined by some intracellular
components, the question arises: Which intracellular
components are responsible for the slow response of the
specific growth and substrate uptake rates?
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We are addressing this question by systematically
investigating the role of potential candidates. In recent
work, we studied the role of peripheral enzymes, i.e., the
enzymes that catalyse the transport and peripheral
catabolism of substrates (Shoemaker et al., 2003). This
study was motivated by the dynamics of substrate
switches. Fig. 1 shows an example of such an experi-
ment. When the growth-limiting carbon source of a C.
heintzii culture is switched from glucose to nitrilotriace-
tic acid (NTA), there is almost no substrate uptake, and
hence, no growth for ~ 30h (see Figs. 1a,b). We argued
that this is because synthesis of the peripheral enzymes
for NTA is inducible, and hence, autocatalytic. Since the
cells have not seen NTA until the substrate is switched,
the initial level of the peripheral enzymes for NTA is
vanishingly small (Fig. 1c). Because inducible enzyme
synthesis is autocatalytic, it takes several hours to build
sufficiently high levels of these enzymes. We showed that
a model taking due account of inducible enzymes and
their autocatalytic synthesis captured these dynamics
quantitatively (Shoemaker et al., 2003).
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Fig. 1. Transient response of a C. heintzii culture to a switch in the identity of the growth-limiting substrate (data from Bally and Egli (1996),
simulations of our earlier model (Shoemaker et al., 2003)). At <0, the culture is growing on glucose at a dilution rate of 0.061/h. At ¢ = 0, the carbon
source in the feed is switched from glucose to nitrilotriacetic acid (NTA), while the dilution rate is held fixed. (a) Concentration of NTA (b) Cell
Density (c) Activity of NTA-monooxygenase scaled such that the maximum activity is 1. The dashed lines in (a) and (b) show the theoretical washout
curves, i.e., the profiles that would be obtained in the absence of substrate consumption and growth, respectively. The close agreement between the
theoretical washout curves and the experimental data for the first ~ 30 h implies that there is virtually no substrate uptake and growth during this

period.
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Fig. 2. Transient response of a glucose-limited culture of E. coli K12 to a dilution rate shift-up (from Yun et al., 1996). At 1<0, the culture is at the
steady-state corresponding to the dilution rate, Dy = 0.21/h, and feed concentration, sy = 5g/L. At =0, the dilution rate is shifted up to
D =0.61/h, while the feed concentration is held constant. The figures show the evolution of the (a) Cell density and substrate concentration (b)
Ribosome level (c) Specific substrate uptake and growth rates calculated from the curves in (a) by appealing to the formulas, r, = [D(sy — s) —
ds/dt]/c and r, = (dc/dt — Dc)/c, which follow from the mass balances for the substrate and cells.
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It is well known, however, that similar dynamics are
observed even if the chemostat is subjected to dilution
rate shift-ups. Indeed, when a glucose-limited culture of
E. coli is subjected to a dilution rate shift-up, the cell
density decreases and the substrate concentration
increases (Fig. 2). But the steady-state peripheral
enzyme levels are high at all D>0.11/h (Fig. 3b). In
fact, the enzyme levels are even higher than the levels
observed at the maximum (washout) dilution rate. The
existence of such high peripheral enzyme levels suggests
that the dynamics of dilution rate shift-ups starting from
sufficiently large initial dilution rates cannot be due to
slow substrate uptake. What then is responsible for the
sluggish response in such dilution rate shift-ups?

The source of the slow dynamics in dilution rate shift-
ups is revealed by examining the initial response to
continuous-to-batch shifts. In these experiments, cells
maintained at steady state in a chemostat are abruptly
exposed to excess substrate concentrations. The initial
response is obtained by measuring the rates of various
processes within 10-15min of the shift to substrate-
excess conditions. Fig. 4 shows the initial response of the
substrate uptake, biosynthesis, respiration, and excre-
tion in continuous-to-batch shifts of glucose-limited
cells. It is evident that the specific substrate uptake rate
increases to the maximal levels obtained near the
washout dilution rate (Fig. 4a). However, the specific
rate of RNA and protein synthesis increases only
partially if the culture has been growing at low dilution
rates, and shows no perceptible increase if the culture
has been growing at high dilution rates (Fig. 4b). It
follows that when cells growing at steady state in a
chemostat are exposed to substrate-excess conditions,
the substrate enters the cell at near-maximal rates, but
the catabolic products derived from it are, at best, only
partially channeled into biosynthesis. The excess sub-
strate is eliminated by instantly increasing the rates of
respiration (Fig. 4c), excretion (Fig. 4d), and storage
(Harvey, 1970; Tempest et al., 1967). Thus, we conclude
that the response is sluggish in dilution rate shift-ups
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because the specific RNA and protein synthesis rates do
not achieve maximal levels instantly.

We wish to extend the model to account for these
observations. Before attempting this, it must be asked
why the specific RNA and protein synthesis rates fail to
achieve maximal levels instantly. Clearly, some variable
involved in the synthesis of RNA and proteins is
limiting. The steady-state data suggests two possibilities.
The biosynthetic enzyme, glutamate dehydrogenase
(GDH), which supplies 80% of the amino acids in
nitrogen-sufficient cultures (Reitzer and Magasanik,
1987) and the RNA (ribosome) levels, which catalyse
the synthesis of protein from amino acids, are increasing
functions of the dilution rate. It follows that in a
dilution rate shift-up, the initial levels of GDH and
ribosomes are lower than their final levels (Figs. 3b,c).
This observation, by itself, does not explain the absence
of the instantaneous increase in the specific growth rate.
For, if these variables were subsaturated, the rapid
increase in precursor levels would stimulate rapid
synthesis of amino acids and proteins. However, if
GDH or RNA are saturated with respect to their
substrates, the desired result follows immediately.

1. If GDH is saturated, amino acid synthesis cannot be
improved significantly until more GDH synthesized.
In this case, the specific protein synthesis rate will be
proportional to the activity of GDH throughout the
transient following a continuous-to-batch shift.

. If the ribosomes are saturated with amino acids, the
protein synthesis rate remains at its pre-shift level
until more ribosomes are synthesized, and the specific
protein synthesis rate will be proportional to the
ribosome level throughout a continuous-to-batch
transient.

There is some evidence supporting the first hypothesis.
Harvey has shown that the specific growth rate is
proportional to the activity of GDH during the transient
that follows a continuous-to-batch shift (Fig. 5a). On
the other hand, several studies have shown that during
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Fig. 3. Variation of steady states with respect to the dilution rate in carbon-limited cultures of K. aerogenes: (a) Cell density, substrate (glycerol)
concentration and biomass yield (Tempest et al., 1967; Tempest and Hunter, 1965). (b) The peripheral enzyme levels pass through a maximum (data
for p-galactosidase and phosphotransferase system (PTS) from Smith and Dean (1972) and Hunter and Kornberg (1979), respectively). The activity
of the biosynthetic enzyme, glutamate dehydrogenase (GDH), increases monotonically (from Harvey, 1970). (c) The RNA content increases
monotonically, while the protein content decreases monotonically (Tempest et al., 1967; Tempest and Hunter, 1965).
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Fig. 4. Initial response of glucose-limited steady-state continuous cultures to supersaturating concentrations of glucose. The dashed line shows the
rate of a process when the culture is in steady state at a particular dilution rate. The full line shows the rate of the same process immediately after the
steady-state culture has been exposed to supersaturating concentrations of glucose. The data in (b) was obtained with glycogenless mutants of E. coli
B at 30°C. All other data was obtained with wild-type K. aerogenes at 37°C. The data shows that immediately after exposure to substrate-excess
conditions, the specific substrate uptake, respiration, and excretion rates jump to maximal or supramaximal levels. The specific rate of RNA and
protein synthesis shows a partial increase at low dilution rates, and no perceptible increase at high dilution rates. (a) Substrate uptake rate (from
O’Brien et al., 1980); (b) biosynthesis rate (from Harvey, 1970); (c) respiration rate (from Neijssel et al., 1977); (d) excretion rate (from Cooney et al.,

1976; O’Brien et al., 1980).
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Fig. 5. Transient response of glucose-limited cultures to continuous-to-batch shifts: (a) The specific growth rate is proportional to GDH activity
throughout the transient (Harvey, 1970). (b) The evolution of GDH activity has a sigmoidal profile (Harvey, 1970). (c) The evolution of RNA
concentration also has a sigmoidal profile (Nagai et al., 1968). The three curves correspond to three different dilution rates.

the transients in substrate-excess conditions, the specific
protein synthesis rate is proportional to the ribosome
level (Brunschede et al., 1977; Maaloe and Kjeldgaard,
1966; Nielsen and Villadsen, 1992). In this work, we
assume that biosynthesis is limited by ribosomes. A
model accounting for both biosynthetic enyzmes and
ribosomes is currently being investigated.

The initial response of continuous-to-batch shifts
reveals the identity of the variables that prevent the

biosynthesis rate from increasing instantly, but sheds no
light on the reason for the slow response of these
variables. We gain some insight into the mechanism of
the slow response by examining the evolution of GDH
and ribosome levels in continuous-to-batch shifts (Figs.
5b,c). These transients suggest that synthesis of GDH
and ribosomes is autocatalytic. The synthesis rates are
small initially, accelerate subsequently, and subside
finally after passing through an inflection point. It is
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conceivable that these autocatalytic kinetics occur
because an increase in the activity of GDH results in
elevated amino acid levels, which activate the synthesis
of ribosomal RNA and ribosomes (Bremer and Dennis,
1975; Jensen and Pedersen, 1990; Zhang et al., 2002),
thus stimulating the synthesis of even more GDH. As
attractive as this hypothesis may be, the molecular
mechanism by which amino acids stimulate RNA and
ribosome synthesis remains a subject of some contro-
versy. The debate is centered around the identity of the
“messenger’” molecules that communicate the availabil-
ity of the amino acids to the machinery synthesizing the
ribosomal RNA. Gourse and coworkers claim that the
nucleotides (ATP, GTP) are the key messenger mole-
cules (Gaal et al., 1997). Others have argued that ppGpp
plays this role (Petersen and Moller, 2000; Zhang et al.,
2002). In what follows, we assume that synthesis of
RNA is autocatalytic without making any attempt to
model the underlying molecular mechanism.

There are numerous models of continuous culture
dynamics. In microbiology, the models have focused on
the dynamics of RNA and protein synthesis (Bremer,
1975; Koch, 1970). These models assume that the
protein synthesis rate is proportional to the concentra-
tion of RNA, and the RNA synthesis rate, in turn, is
proportional to the concentration of proteins. This cycle
of quasi-reactions implies that synthesis of RNA and
proteins is, in effect, autocatalytic, which provides a
mechanistic explanation for the slow response. In
engineering, on the other hand, one is particularly
interested in the dynamics of the substrate concentration
and the cell density. Powell (1969) and Yun et al. (1996)
formulated a simple model that yields a slow response,
and also accounts for the variations of the substrate
concentration and the cell density. Both models assume
that the specific growth rate is proportional to RNA
levels, and the specific substrate uptake rate is propor-
tional to the specific growth rate. The slow responses are
obtained by assuming that the synthesis rate of RNA is
proportional to the concentration of RNA." However,
the assumption that substrate uptake and growth are
coupled is inconsistent with experiments (Figs. 4a,b).
Consequently, these models are unable to capture the
cell density overshoot observed in dilution rate shift-
downs (see Yun et al., 1996, Figure 6). Simulations of
several detailed models that take due account of this
uncoupling show good agreement with experimentally
observed transients (Baloo and Ramkrishna, 1990;
Domach et al., 1984; Nielsen and Villadsen, 1992), but
the large number of variables prevents a precise analysis
that would yield deeper insights. In this work, we

"The model in Shoemaker et al. (2002) is formally similar to these
models, the only difference being that it is the peripheral enzyme,
rather than RNA, that is synthesized autocatalytically (Shoemaker
et al., 2003).
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Fig. 6. Kinetic scheme of the model. Here, S denotes the substrate, E
denotes the inducible enzyme(s) catalysing the uptake and peripheral
catabolism of S, X denotes the inducer for E, P denotes the
biosynthetic precursors derived from catabolism of X, R denotes
rRNA, C™ denotes proteins, and C denotes the entire cell consisting of
E. X, P, R, and C™. The positive feedback loops represent induction of
enzyme synthesis and autocatalytic synthesis of RNA. The negative
feedback loop represents the inhibition of substrate uptake by
precursors.

formulate a detailed model accounting for the role of
several intracellular variables. We show, however, that
no more than 2 variables are relevant on the time scale
of interest. This simplification allows us to perform a
rigorous analysis that reveals the simple motifs under-
lying these dynamics. Specifically, we show that every
transient is a combination of two basic dynamics
typically observed in batch and fed-batch cultures. We
show, furthermore, that the model captures and explain
the data shown in Figs. 2-5 and additional data
discussed below.

We begin by formulating the extended model (Section
2). We then simulate and analyse the model to show that
it yields results in qualitative agreement with the data
(Section 3). Finally, we discuss the extent to which the
model captures the key results of the experimental
literature (Section 4), and summarize the conclusions
(Section 5).

2. The model

Fig. 6 shows the kinetic scheme of the model. Here, S
denotes the growth-limiting carbon and energy source, E
denotes the peripheral enzymes that catalyse the
transport and peripheral catabolism of the carbon
source and X denotes the internalized form of the
substrate that induces the synthesis of E;> P denotes the
pool of precursors produced by catabolism of X; R

2For example, if S is lactose, then E is any one of the three
coordinately controlled enzymes of the lac operon and X is allolactose
(Lin, 1987). Likewise, if S is glucose, then E is any of the enzymes of
the phosphotransferase system (PTS) and X is phosphorylated glucose
(Plumbridge, 2003).
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denotes ribosomes or ribosomal RNA (rRNA);* and C~
denotes proteins. The entire cell consisting of E, X, P, R,
and C™ is denoted by C. The term biosynthesis will be
used to refer to the synthesis of RNA and proteins, and
growth will refer to the synthesis of all intracellular
components.

Throughout this work, the instantaneous concentra-
tions of the variables are denoted by the corresponding
lower-case letters s, e, x, p, r, ¢—, and ¢, while steady
state and quasisteady state concentrations are denoted
by overlaying the letters with ~ and —, respectively (for
instance, ¥ and X). The concentrations of the environ-
mental variables, s and ¢, are based on the volume of
chemostat (g/L and gdw/L, respectively), and the
concentrations of the physiological variables, e, x, p, r,
and ¢~ are based on the dry weight of biomass (g/gdw).

We make the following assumptions regarding the
kinetics of the processes.

1. The specific substrate uptake rate, denoted ry, satisfies
the kinetic law

s 1

CES Ry
where the factor 1/(1 4+ p/K;) denotes the inhibition
of substrate uptake by precursors. The experimental
data suggests that such feedback inhibition exists.
Indeed, if there were no feedback inhibition, the
specific substrate uptake immediately after a contin-
uous-to-batch shift would be proportional to the
preexisting steady-state enzyme level (7; ~ V;€). Since
¢ increases three-fold as D decreases from 0.61/h to
0.21/h (Fig. 3b), 7y should be three-fold higher for
cultures growing at D = 0.21/h compared to cultures
growing at D = 0.61/h. But Fig. 4a shows that 7 is
the same for cultures growing at dilution rates
between 0.2 and 0.61/h. This suggests that in cultures
growing at low dilution rates, feedback inhibition
acts to prevent the specific substrate rate from
exceeding its value at high dilution rates.

2. The specific rate of breakdown of X into energy and
precursors P, denoted r,, is given by

ry = kX

3. The specific rate of respiration is

Teoy = kcozp-

4. The specific rate of enzyme synthesis, denoted r, is

r 1 + Kyx?

=7, .
e Ko+ r K3 + Ko

(1)

*We use the terms ribosome and rRNA interchangeably. This is
appropriate because synthesis of ribosomal RNA and ribosomes is
tightly coupled through a negative feedback loop involving regulation
of ribosomal protein synthesis (Nomura, 1984).

Underlying these kinetics is the fact that the enzyme
synthesis rate is precisely the rate at which the
messenger RNA (mRNA) for the enzyme is trans-
lated by the ribosomes. We assume that the specific
translation rate of the enzyme is k.mr/(K, + r), where
m and r denote the concentration of mRNA and
ribosomes, respectively. Now, the evolution of
mRNA is given by the equation dm/dt=r/, —r, —
rym, where 1t =V, (1 + Kyx?) /(K3 + Kyx?) is the
specific transcription rate,* r; =k, m is the specific
degradation rate, and rym is the dilution rate. Since
mRNA has a half-life of ~2min (k,, = 201/h)
(Gausing, 1977), it rapidly reaches the quasisteady
state concentration, m ~ r}/k, . Substituting this
concentration in the expression for the specific
translation rate yields (1) with V., =k.V,, /k,,.

5. The specific rate of (ribosomal) RNA synthesis is
given by

rf=klrp,
where the dependence on r reflects the assumption
that rRNA synthesis is autocatalytic.

6. The specific rate of protein (C™) synthesis is given by

+ V ) p

T Kewp
where the dependence on r accounts for the fact that
ribosomes catalyse protein synthesis.

7. The specific rates of peripheral enzyme, rRNA, and
protein degradation, denoted r;, r;, and r,, respec-
tively, are given by

r

r,=kye, ro=kr, r.=kc.
8. The synthesis of peripheral enzymes, rRNA and
proteins depletes the pool of precursors. Likewise,

their degradation replenishes the pool of precursors.

A mass balance on the state variables yields

Y Dy -9 e @
dem . _ lde\ _
?—rc—rc—<D+Ea>(/ . (3)
de . _ 1dc

a—re —Ve —<D+cdt)e, (4)

“These kinetics reflect the fact that transcription of the mRNA for
the peripheral enzymes involves the binding of a repressor molecule to
two inducer molecules (Yagil and Yagil, 1971). Thus, K, is the
equilibrium constant for binding of a repressor to two inducer
molecules, and K3 is proportional to the equilibrium constant for
binding of the repressor to the operator. Note that since repressor-
operator binding is not perfect, K3 is finite, so that mRNA is
transcribed even in the absence of the inducer (| ,.—g = (V,,/K3)>0).

m

This phenomenon is called constitutive enzyme synthesis.
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dr . _ 1 de
a—}’r -r, —<D+Za>r, (5)
dx 1 de
dz:}"s—l"x—<D+cdt>x, (6)
d
ﬁ_rx Tco, (Vc r;)—(rj—re)
1
~e == (D415 ™
c dt

where sy denotes the concentration of S'in the feed, and
D denotes the dilution rate. These equations define
(1/c)(de/dt) implicitly in terms of the other derivatives.
We can solve for (1/c)(dec/dr) explicitly by observing
that the mass fraction of all intracellular entities equals
unity, i.e.

¢ t+e+r+x+p=1. ®)
Hence, addition of Egs. (3)—(7) yields

1 de

Zaznr—rcoz (9)
which can be rewritten in the more familiar form
de
a = (rg - D)Ca

where r, denotes the specific growth rate, and is defined
as

o = 1y~ Feon. (10)

Eqgs. (9) and (10) imply that the last term in Egs. (3)—(7)
represents the dilution of the corresponding physiologi-
cal concentration due to growth.

Thus, we arrive at

g = D(sy — ) —ryc, (11)
e B
%:rj'—rc_ —ryc”, (13)
%:r: —r, —rge, (14)
%:ﬁ—ﬁ—w, (15)
Table 1

Parameter values used in the simulations (see Appendix A for details)

%:rs—rx—rg% (16)
%=rx—rcoz_(rj—_r;)_(r:_rﬂ‘_)

—(rf =) = ryp, (17)
where r, is given by Eq. (10). It is worth noting that Eq.
(8) implies that Egs. (13)—(17) are linearly dependent.
Hence, we can replace any one of these equations with
Eq. (8).

3. Simulations
The simulations were done with the parameter values
in Table 1. The rationale for order-of-magnitude

estimates of these parameters is given in Appendix A.

3.1. Steady states

To analyse the steady states, we replace Eq. (17) with
Eq. (8). Thus, we consider

ds K 1

—:D - — — VS — =Y, 1
a = Plr =9 ( ‘K151 +p/Ki>C 0 (18)
de

= (ry — D)c =0, (19)
de™ P _

—=V, — ) =0, 2
T rKc+p (rg +k,)c 0 (20)
de r 1 + K>x? _

~=vV, — =0, 21
dr K.+ rK;+ K)x2 (rg +k;)e=0 @
dr =kp—ry—k =0, (22)
dt f

dx K3 1

5, = V€ — Uy x)X =Y, 2
T VeKS+s1+p/Ki (rg+k)x=0 (23)
p=1—(c +e+r+x), (24)

where r, is given by Eq. (10). These equations admit
three types of steady states—the persistence steady state
(¢>0,7>0), the washout steady state (¢ = 0, 7>0), and
the death steady state (¢ =0, 7=0). For a given
microbial species and growth-limiting substrate, these
steady states can depend on two parameters—the
dilution rate and the feed concentration.

Vy=2x10*g/g-h K,=10"2g/L K;=5x107%g/gdw ky=10°g/g-h Ve=75x10"*g/gdw-h
K, =0.1g/gdw K, = 10" (gdw/g)’ K3 =5x10° k, =0.075g/g-h k" =100 gdw/g-h
k, =0.1g/g-h V.=3g/g-h K. =0.002g/gdw k; =0.05g/g-h keo, = 150g/g-h
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Fig. 7. Variation of the steady states with D at s, = 5 g/l. The persistence, washout, and the (stable) death steady states are represented by black, red,
and blue lines, respectively. Stable and unstable steady states are denoted by full and dashed lines, respectively. The full circle shows the bifurcation
point at which the persistence and washout steady state exchange stability. The stable death steady state is not shown in (a) and (b) since it overlaps

with the washout steady state.

3.1.1. Persistence steady state

The variation of the persistence steady state with
respect to the feed concentration is simple. If the feed
concentration is increased at a fixed dilution rate, the
cell density increases, but there is no perceptible change
in the substrate concentration (Grady et al., 1972; Senn
et al., 1994). There is no data on the variation of the
physiological steady states with respect to the feed
concentration. However, since the physiological state is
completely determined by the substrate concentration,
these steady states should also be independent of the
feed concentration. We show below that this property is
inherent in the model.

The variation of the persistence steady state with respect
to the dilution rate is more complex. The substrate
concentration and ribosome levels increase monotonically
(Figs. 3a,d). On the other hand, the cell density and
peripheral enzyme levels pass through a maximum (Figs.
3b,c). Fig. 7 shows that the model simulations are in good
agreement with this data. In what follows, we shed more
light on these simulations by deriving explicit expressions
for the steady-state values of all the variables.

To this end, observe that since & 7>0 at the
persistence steady state, Egs. (19) and (22) imply that
Fy =D and
D+k,

i
Thus, p increases linearly with D (Fig. 7f). Interestingly,

as D tends to zero, p approaches a positive limit. Thus,
we obtain “maintenance effects,” even though no

p(D) = (25)

maintenance was explicitly postulated. Indeed, substi-
tuting Eq. (25) in Eq. (10) yields

. - N D+ k-
VS:D—H'COZ:D—}—kCOzp:D—i—kmz( ’)

kr

7 +m, (206)
where ¥ =k /(k] + keo,) is the maximum yield of
biomass, and m = ke, (k, /k:r) is the maintenance
coefficient (which reflects the ““futile cycling” of rRNA
at vanishingly small dilution rates).

It follows immediately from Egs. (23) and (26) that

7y D/Y+m _D/Y +m
ke+D~ ke+D  k
so that X increases linearly with the dilution rate (Fig.
7e). To find the concentrations of the remaining
physiological variables, we observe that Eqs. (20) and
(21) imply that’

D) =

27)

B V. B
=ik "Dtk K.+p

i V. P14+ KX
o) = —e _ — r_Rax (28)

D+k, D+k, K.+FK;s+ K%'

The first relation in Eq. (28) implies that at steady state
7 D4k
& Vep/(Ke+p)
where the denominator represents the protein synthesis rate per unit

ribosome, often referred to as the peptide chain growth rate in the
microbiological literature. At high dilution rates, D>k, and
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Substituting these relations in Eq. (24) yields
- 1+ KQJNCZ
- = _+ — - =
D+k, Kc+p D+k, K. +7K;+K>X
=1-Xx-p (29)

V. 4 Ve F

7

which is a quadratic in 7. Since the LHS is an
increasing function of 7, and the RHS is independent
of 7, Eq. (29) has at most one positive root at any given
D. A simple approximation to 7(D) is obtained by
recognizing that &, X,p < 1. In this case, Eq. (29) yields
the relation

P F Dtk K.+p
-7 & V. p
ki D+k;
= < (K. +p). 30
o KetD) (30)
At high dilution rates, D> k_,k, and protein synthesis
is saturated (p> K,), so that
Fo_F_ D
1—F & V.+D

which implies that 7 increases (and ¢~ decreases) with D
(Fig. 7d). The steady-state enzyme level is obtained by
substituting #(D) in Eq. (28). It passes through a
maximum since the enzyme synthesis rate saturates at
large D, i.e., 7 ~ V, (Fig. 7c).

The steady-state substrate concentration can be
derived by appealing to the definition of r,. Thus

s 7

Ki+35 Ve/(+p/K)
We gain some insight into the variation of § with respect
to D (Fig. 7a) by recalling that 7; and p increase linearly
with D. At high dilution rates, é~ V,./D, so that
5/(Ks + 3), and hence, 5, increases with D.

The variation of the steady-state cell density with D
(Fig. 7b) follows immediately from Eq. (18). Thus

(31

(32)

At low dilution rates, §<s; and 7, ~ m; hence, ¢~
(sy/m)D. At high dilution rates, fs~D/Y, so that
¢ Y(sr—3).

Note that the steady-state concentrations of the
substrate and the physiological variables are indepen-
dent of the feed concentration, sy. This is because the

(footnote continued)

Vep/(K:+p)~ V. so that 7/¢” increases linearly with the dilution
rate. This relationship has been observed in numerous organisms, and
has led to the suggestion that there must a regulatory mechanism,
given the name growth rate control, that ensures that the ribosome
levels increase in proportion to the growth rate (Roberts, 1997).
Despite 4 decades of intense efforts, no mechanism has been
discovered. According to our model, the linear relationship is a simple
consequence of the fact that ribosomes catalyse protein synthesis, and
the chain growth rate saturates at high dilution rates.

steady-state concentrations of S and the five physiolo-
gical variables (C™, E, R, X, and P) are completely
determined by the six equations (19)—(24), which are
independent of the feed concentration.

3.1.2. Washout steady state

As noted above, at high dilution rates, the substrate
concentration corresponding to the persistent steady
state is an increasing function of D. When D becomes
sufficiently large, § = sy and ¢ =0, i.e., the cells wash
out of the chemostat. We refer to this steady state as the
washout steady state, and the corresponding dilution
rate, denoted D,, as the washout dilution rate. The
physiological variables corresponding to this steady
state are determined by Eqs. (20)~(24) with ry = r; — rco,
and § = s,. It follows that the washout steady state is
independent of the dilution rate.

Since the washout steady state is achieved when the
substrate concentration corresponding to the persistent
steady state equals sy, the washout dilution rate satisfies
the following equation obtained by letting § =, in
Eq. (31):

Ay }75
Ki+s Vie/(1+p/Ki)’

(33)

where p, 7y, and é are given by Eqgs. (25), (26) and (28),
respectively. Now, in typical experiments, ss ~ 1 g/L, so
that sy/(K + s7) ~ 1. Moreover, at large dilution rates
(D~ D,), p, Ty, and & can be approximated by the
relations

D D P

p Z E’ Iy o _f/ , D
since the loss of enzyme and rRNA by degradation is
negligible compared to their loss by dilution due to
growth (k,,k, <D); substrate consumption for main-
tenance (as opposed to growth) is negligibly small
(m<D/ f’); and enzyme induction is near-maximal
(rt ~ V.). We substitute these relations in Eq. (33) to
conclude that the washout dilution rate satisfies the
approximate relation

1 N
— D+ D ~YV,V,,
k:rK, W w s

which has a unique positive solution. In the absence of
feedback inhibition (K; — oc0), we obtain a simple
approximation, D,, ~ YV, V., which provides a con-
venient upper bound for the washout dilution rate.

3.1.3. Death steady states

A death steady state is characterized by the condition,
7 = 0. We refer to this as the death steady state for the
following reason. When the cells are starved of one or
more nutrients, they degrade preexisting RNA and
proteins to precursors, which are then oxidized to
generate the energy required for maintenance (Kaplan
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and Apirion, 1975). If starvation persists for a suffi-
ciently long time, the RNA level approaches zero,
synthesis of proteins and enzymes ceases, and the cells
die (Davis et al., 1986).

The death steady states satisfy

% = D(sr — ) —ryec=0, (34)
de

- (rg — D)c =0, (39)
de™ _ _

W = _(kC —+ Vg)C = O, (36)
de _

= —(k, +r4)e=0, (37)
dx

T ry— (ke +ry)x =0, (38)
l=c"4+e+x+p. (39)
At a death steady state, 7, <0, because Eq. (37) implies
that either 7, = —k,<0 or é =0, but in the latter case,
Fs=0 and 7; =7 —Feo, = —keo,p<0. Hence, Egs.

(34)—(35) imply that ¢ =0 and § = sy at a death steady
state. Thus, we are left with a system of four equations
(36)-(39). We will assume henceforth that the rates
k., k., ky, ke, are pairwise distinct. It is now easy to
see that there are only four possible cases

® (A) ¢ >0,7y=—k, .Inthiscase,e=0— 7, =0—
X =0. Since —k_, =7y, = —keo,p, we have that
k- k-
p=—", ¢ =1——"-.
kCOz kCOz
This steady state is therefore feasible® if and only if
k. <keo,.
® (B) ¢>0, 7y = —k,. In this case, ¢~ = 0. Furthermore,

0<Vs = (kx +’~’g))~f = (kx - k:)fc = kc&nﬁ - k:
Thus we can €Xpress
kcozﬁ B ke_

ky—k

e

_i.:

Using the functional form of 7y, we find that

R+ p/Ky)  (keo,p — k)1 + p/K)
- VJGf - VSGf '

Equation x 4+ e 4+ p = 1 now takes the form

(keopp — k, )1 + p/K5) . keorp — ki,
Vor k. —k

e

+h=1. (40

SFeasibility refers to the fact that all physiological state variables are
nonnegative. In particular, the specific substrate uptake rate ry must be
nonnegative. On the contrary, the specific growth rate r, may be
positive or negative.

The left-hand side of Eq. (40) is increasing in p, thus
at most one solution is possible. We conclude that
case B is feasible if and only if k, < min(k,, kc,, ).

e (C)¢ =é=0,%>0,7 = —k,. Since 7y = 0, we have
that —k, = —ko,p, and thus
kK
N kCOz ’ - kCOz '

This case is feasible if and only if k, <k, .
e (D) =e=x=0,p=1, and 7y = —ko,. This case
is always feasible.

For the parameter values in Table 1, only cases A, B,
and D are feasible.

The stability analysis of these steady states is shown in
Appendix B. This analysis shows that case D is always
unstable. Of the two remaining steady states (cases A
and B), one is always stable and the other is always
unstable. For the parameter values in Table 1, case A is
always stable, whereas cases B and D are always
unstable.

3.2. Transients

To simulate and analyse the transients, we replace Eq.
(13) with Eq. (8). Thus, we consider the equations.

d

d—j:D(sf—s)—rXc,

de

EZ(VQ—D)C,

d

d—j:rj ry —rge,

d

d—;;_r:r re =gl

dx

q s T ey

dp _ _

Eer_rCOZ_(rj_rc)_(rj_re)
—(rF =) —ryp,

cc=l—-e—r—x-—p.

It is shown in Appendix C that for all but a negligibly
small time interval, these equations can be approxi-
mated by the reduced equations

ds s 1

a:D(Sf—S)— <V‘Yel<s—i—sl—i—’5/1(i)c’ (41)
de

XD 42)
de r 1+ Kyx2

— = —kTe—rge, 43
dt “K,+rKs+ Krx32 e €1 “3)
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% =kfrp—k r—ryr, (44)

0~ Vet ! ko% (45)
T UK+ s1+p/K YT

0~ kX — keo,p — 1, (46)

where r, is given by

rg & VchC 7 k(M =r)y+kfrp—k.r. (47)

That is, the specific growth rate is effectively equal to the
specific rate of net rRNA and protein biosynthesis.

3.2.1. Continuous-to-batch shifts

In continuous-to-batch shifts, the initial rates of
various processes are measured within 10—15min of
exposing the culture to substrate-excess conditions (Fig.
4). To simulate these experiments with the model, we
observe that in this short time period, the peripheral
enzyme and ribosome levels remain essentially un-
changed, but the inducer and precursor concentrations
rapidly move to the new quasisteady state correspond-
ing to substrate-excess conditions. This new quasisteady
state is obtained by letting s/(K;+s)~ 1 in Egs.
(45)—(46), while the peripheral enzyme and ribosome
levels are held at their initial steady-state values, ey =
é(D) and ry = #(D). Thus

- Vseo/(1 +p/Ki)

XA 48
x I (43)
and p satisfies
1 P

Vieo———~ koo g+ Verog———

Tk T TR

—k, (1 —rp)+ kj'rop' — k, ro. (49)
S g
02 04 06 08 02 04 06 08
@) D (V/hr) (b) D (Vhr)

r. (g/gdw-hr)

02 04 06 08 ~<07 04 06 08
(e D (U/hr) f) D (Uhr)

If we assume that the degradation rates of rRNA and
protein are negligibly small compared to their synthesis
rates, and protein synthesis is saturated (5> K,.), Eq.
(49) can be solved to yield the approximate solution

2
_ Ki Vcro
PR = I+
2 ( (kco2 + ijO)Kz)

Vo
(kco2 + k:_VO)Ki

VseO - VCVO
(kc02 + k:FVO)Ki

(50)

which is accurate to within 10% of the exact (numerical)
solution for all ¢y and r(. The rates of various processes
immediately after a continuous-to-batch shift can now
be obtained by substituting the above concentrations
into the appropriate kinetic expressions (for example,
Fy = VSeO/(l +ﬁ/K1) and Fcoz = kcozp_)'

Fig. 8 shows the rates of various processes and the
quasisteady state concentrations (X,p) immediately after
the continuous-to-batch shift. The simulated rates are
consistent with the experimental data shown in Fig. 4.
At all but the smallest dilution rates, the specific
substrate uptake and respiration rates immediately jump
to high levels (Fig. 8a,b), but the specific growth rate
increases only partially (Fig. 8c). Thus, substrate uptake
and growth become uncoupled immediately after the
shift, resulting in a reduction of the instantaneous yield,
Y = ry/rs (Fig. 8d). The increase in the specific substrate
uptake and growth rates is largest at intermediate
dilution rates, and decreases at low and high dilution
rates. At high dilution rates, substrate uptake is already
saturated before the cells are exposed to substrate-excess
conditions (s> K;), so that further provision of the
substrate provokes no additional response. At low
dilution rates, the initial peripheral enzyme are too

02 04 06 08 02 04 06 08
(© D (1/hr) (d) D (1/hr)

02 04 06 08 02 04 06 08
(9) D (Uhr) (h) D (Uhr)

Fig. 8. Initial response following a continuous-to-batch shift. The dashed line shows the initial steady state value. The full line shows the value after
the cells have been exposed to substrate-excess conditions: (a) Specific substrate uptake rate (b) Specific respiration rate (c) Specific growth rate (d)
Yield of biomass (e) Net specific protein synthesis rate (r. = r} — r) (f) Net specific rRNA synthesis rate (r, = " — r;") (g) Precursor concentration

(h) Inducer concentration.
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small to support a substantial increment in the
specific substrate uptake rate, and the initial
rRNA Ievels are too small to support a substantial
increment in the protein and rRNA synthesis rates
(Figs. 8e,f).

3.2.2. Substrate switch

The transient response to substrate switches could be
captured by our earlier model (see Fig. 1). Simulations
of the extended model preserve these transients. The
specific substrate uptake and growth rates remain at
vanishingly small levels for the first ~ 20h (Figs. 9c.f).
Consequently, the substrate concentration and cell
density go through a massive overshoot and undershoot,
respectively (Figs. 9a,b). The peripheral enzyme
level shows a biphasic response: After an initial
increase, it becomes more or less constant at ¢t~ 25h
before increasing once again (Fig. 9d). These simula-
tions are in good agreement with the data shown in

Fig. 1. In addition to these dynamics, the
extended model also describes the evolution of rRNA
(Fig. 9e).

We can decompose these dynamics into four phases.
It is worth examining these phases in more detail. As we
show later, the dynamics of dilution rate shift-ups and
shift-downs reproduce the dynamics of one or more of
these phases.

Phase 1: During the first phase, the substrate attains
supersaturating concentrations within 10-15min. In-
deed, since the initial enzyme level is negligibly small
[eo = (Ve/K3)(D 4k, )ro/(K, 4 19) ~ 107 g/gdw],  so
is the initial substrate uptake rate. The initial motion

S. Gupta et al. | Journal of Theoretical Biology 232 (2005) 467-490

of the substrate concentration is, therefore, approxi-
mated by

ds
— =~ Dsy — D =
. sy s, $(0)=0

= 5(1) ~ s7[1 — exp(~D1). (51)

This equation describes the theoretical washout curve
shown as a dashed curve in Fig. 4a. It implies that the
substrate concentration increases to supersaturating
levels (s ~ K) within

_In(l — Ky/sy) ~ Ky/sp
D D

On this short time-scale, the cell density, the peripheral
enzyme level, and the ribosome level remain at their
initial values, but the inducer and precursor concentra-
tions constantly adjust to the rapidly increasing
substrate concentration. Hence, at the end of this phase,
c=cy, e=ey, r=ry but s reaches supersaturating
levels, and x,p achieve the corresponding quasisteady
state concentrations given by Egs. (48) and (50).

Phase 2: During the second phase, which lasts about
30 h, the substrate concentration is supersaturating, i.e.,
s/(Ks+s)~ 1. Under these conditions, the substrate
concentration and cell density change, but these changes
cannot be discerned by the cells, since they see the
environment through the ratio s/(K; + s), and this ratio
is approximately constant. Given this quasiconstant
environment, the physiological variables evolve toward
a quasisteady state. We shall refer to this transient as
substrate-sufficient batch dynamics because the quasis-
teady state reached by the physiological variables is
identical to the physiological state attained by a

0.1h.
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Fig. 9. Trajectories for a switch in the identity of the substrate at D = 0.21/h. Before the switch, the culture is in a steady state corresponding to the
absence of the substrate. The vertical dashed lines mark the end of Phases 1, 2 and 3.
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substrate-sufficient batch culture during the exponential
growth phase: All the physiological variables are
constant, and the cells grow exponentially at their
maximum specific growth rate (Fig. 9f). In the micro-
biological literature, this quasisteady state is frequently
referred to as the state of balanced growth.

The simulations show that during the approach to
balanced growth, the enzyme and ribosome levels
accumulate, pass through a maximum, and finally reach
the constant level characteristic of balanced growth. To
gain further insight into this transient, we observe that
throughout the approach to balanced growth, the
substrate concentration is supersaturating, so that the
inducer and precursor levels are in the quasisteady state
given by

Vie/(1+p/Ki)

X~ k.
2
_ K; Ver Vie—V.r
PR = 1+ T +
2 (kco2 + kr V)Kl' (kcoz + kr V)K,'
Ver

I — 52
(oo + k1K, (52)

The motion toward balanced growth is, therefore, two
dimensional: The slow variables, e and r, evolve
gradually according to Eqgs. (43)-(44), while the fast
variables, x and p, constantly adjust to the slow motion
in accordance with Eq. (52). Fig. 10a shows the phase
portrait for this two-dimensional motion. Note that

e The phase path intersects both null-clines before
reaching balanced growth. Hence, both ¢ and r pass
through extrema on their way to balanced growth.
Indeed, the eigenvalues of the linearization about the
quasisteady state corresponding to balanced growth

0.0002 0.0004 0.0006 0.0008
@ e (g/gdw)

are  imaginary  with  negative real parts
(412 = —1.1 £0.51). The quasisteady state is, there-
fore, a stable focus, i.e., the phase path spirals into the
quasisteady state.

e When the phase path crosses the null-cline for e (resp.
r), the sign of é (resp. 7#) changes from positive to
negative. This implies that both e and r pass through a
maximum before reaching balanced growth.

e The phase path intersects the null-cline for e before it
intersects the null-cline for r. It follows that e reaches
its maximum before r.

These dynamics reflect the fact that the specific enzyme
synthesis rate increases first, followed by the specific
ribosome synthesis rate, the specific protein synthesis
rate, and finally, the specific growth rate. Thus, the
peripheral enzyme and ribosome levels go through
maxima because their synthesis rates increase too much
before their dilution rates catch up, and the peripheral
enzyme level reaches its maximum before the ribosome
level because the synthesis rate of the enzyme increases
before the synthesis rate of the ribosomes.

Phase 3: During the third phase, the substrate
concentration switches from supersaturating to subsa-
turating levels. This transition, which marks the
end of balanced growth, occurs on a time-scale of
1 min. To see this, observe that at the beginning of this
phase, the substrate concentration is on the
order of K, and the substrate uptake rate, ryc, is on
the order of 1g/(L-h). It follows that within
K,/(rs¢c) ~0.01h of the end of balanced growth, the
substrate reaches the quasisteady state concentration
defined by

rs¢ & Dsy. (53)

At the same time, the inducer and precursor levels,
which  constantly adjust to the exogenous
substrate concentration, achieve the corresponding

0.2
. 015
2
(=)
2 o1 -

0.05

05 1 15 2 25 3

(b) ¢ (getwi)

Fig. 10. Phase portraits of the slow motion during a feed switches. (a) The slow motion toward balanced growth. The line with short dashes shows
the null-cline for e; the line with long dashes shows the null-cline for r; the intersection of the two null-clines represents the concentration of ¢ and r at
balanced growth; the full line shows the approach of e and r toward the state of balanced growth. (b) The slow motion away from balanced growth to
the ultimate steady state. The line with short dashes shows the null-cline for ¢; the line with long dashes shows the null-cline for r; the intersection of
the two null-clines represents the steady state concentrations of ¢ and r at D = 0.21/h; and the full line shows the motion of ¢ and r from balanced

growth toward the final steady state.
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quasisteady state values

_ DSf / c
X~ k.
___K.| Dsgfe—=V.r
P53 koo, + K DK,
D V ? D
| (Ble= Ve ) 4 Pule
(Keoy + k1)K, (Keo, + k; 1K

(54)

obtained by substituting Eq. (53) in Egs. (45)—(46). The
achievement of these quasisteady states is so rapid that
the cell density, the peripheral enzyme level and the
ribosome level remain at the values achieved at the end
of balanced growth.

Phase 4: During the last phase, s, x and p remain in
the quasisteady states defined by Egs. (53)—(54), while e,
r, and ¢ evolve slowly according to

de ro 1+ K2

—_— e - k) — gt 55
dr K.+ rK;+ K2 ¢ ¢~ Tee (33)
d

d—: ~ kg — ko —rgr, (56)
de

5~ =D, (57)

where r, is given by Eq. (47) and X,p are given by
Eq. (54).

The study of these dynamics is facilitated by observing
that p is independent of the enzyme level (see (54)). Thus,
we can study the slow motion during this phase by
confining our attention to the two-dimensional system
(56)+(57). At the heart of this simplification is that the fact
that during this phase, the cells consume nearly all the
substrate entering the chemostat. This ensures that the
specific substrate uptake rate is effectively independent of
the peripheral enzyme level (ry ~ Dss/c). Now, the
precursor levels sense the enzyme level through the specific
substrate uptake rate (see (46)). Since the specific substrate
uptake rate is independent of the enzyme level, so is p.
Thus, the ribosome level and cell density evolve without
seeing the changes in the peripheral enzyme level.

Fig. 10b shows the motion of ¢ and r on the phase
plane. Note that

1. The phase path intersects both null-clines before
reaching balanced growth. Hence, both ¢ and r pass
through extrema as they approach the steady state.
Here also, the steady state is a stable focus since the
eigenvalues of the linearization about the steady state
are A1p = —0.2 £ 0.1

2. When the phase path crosses the null-cline for ¢, the
sign of ¢ changes from positive to negative. When it

crosses the null-cline for r, the sign of 7 changes from
negative to positive. This implies that ¢ passes
through a maximum while r passes through a
minimum.

3. The phase path intersects the null-cline for ¢ before it
intersects the null-cline for r. It follows that ¢ reaches
its maximum before r attains its minimum.

These dynamics reflect that fact that the specific
ribosome synthesis rate decreases first, followed by the
specific protein synthesis and growth rates. Thus, at the
beginning of Phase 4, <0 because the synthesis rate of
ribosomes has decreased much more than their dilution
rate, and ¢>0 because of the inertia in the specific
growth rate. As r decreases, so does the specific growth
rate until it becomes equal to D = 0.21/h. This is the
point at which the cell density displays a maximum. As
the ribosome levels, and hence, the specific growth rate,
decrease further, the dilution rate of the ribosomes
progressively decreases until their synthesis and dilution
rates become equal. This is the point at which the
ribosomes display a minimum.

We shall refer to these transients as cell-sufficient fed-
batch dynamics because the fundamental property
underlying these dynamics—the complete consumption
of all the influent substrate (Ds,; ~ ryc)—is characteristic
of high-density fed-batch cultures.

3.2.3. Dilution rate shift-down

Fig. 11 shows the dynamics of a dilution rate shift-
down. We assume that the initial dilution rate is close to
the washout dilution rate, but not too close to it, so that
the initial substrate concentration satisfies the inequality
K, <5y <sy. The first inequality, so > K, implies that the
initial substrate concentration is at supersaturating
levels. Consequently, there is an initial phase during
which the cells continue to consume substrate and grow
at their pre-shift rates, r;o and Dy. The evolution of the
substrate concentration and cell density during this
initial growth phase is approximated by

~ D(sy — §) — rypc,

dt
d

€~ (Dy - De.
Since ryoco = Do(sy — o), these equations imply that
(1) &~ sy — (57 — s0) exp(Dg — D)1, (58)
c(t) = coexp(Dy — D)t. (59)

The second inequality, sy <s7, implies that the initial cell
density, ¢y ~ Y (s — s0) ~ Yy, is large compared to the
initial substrate concentration. The initial growth phase
should, therefore, last for a relatively short period of
time. This is indeed the case. To see this, observe that
the initial exponential growth phase persists until the
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Fig. 11. Transient response to a dilution rate shift-down. At #<0, the culture is at the steady state corresponding to the dilution rate, Dy = 0.81/h,
and feed concentration, sy = 5 g/L. At ¢ = 0, the dilution rate is shifted down to D = 0.21/h, while the feed concentration is held constant.
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Fig. 12. Response of a glucose-limited culture of E. coli K12 to a dilution rate shift-down (from Yun et al., 1996). At <0, the culture is at the steady
state corresponding to the dilution rate, Dy = 0.61/h, and feed concentration, sy = 5g/L. At ¢ = 0, the dilution rate is shifted down to D = 0.21/h,
while the feed concentration is held constant. The figures show the evolution of the (a) Cell density and substrate concentration (b) RNA level (c)

Specific substrate uptake growth rates calculated from the curves in (a).

substrate concentration drops to levels comparable to
the saturation constant (s ~ Kj). It follows from Eq.
(58) that the time taken to reach subsaturating substrate
concentrations is given by the expression

1 1 —K/sp\ __ (so— Ky)/sr
DO—Dln(l—so/sf> ~ (Do — D) (60)

which is ~ 0.2h if 59/s; = 0.1 and Dy — D = 0.51/h.

Once the substrate concentration reaches levels on the
order of K, the reactor replicates the dynamics of
phases 3 and 4 above. The cell density, the peripheral
enzyme level and the ribosome concentration evolve
slowly from the values achieved at the end of balanced
growth to their ultimate steady-state values, while the
substrate, inducer, and precursor levels remain at the
quasisteady state concentrations defined by Egs. (53)
and (54).

The simulations are in good agreement with the data
shown in Fig. 12, the only difference being that the
predicted time interval of the initial exponential growth
phase is smaller than the observed time interval of this
phase. This is because in this experimental system, the
initial substrate concentration and the saturation con-
stant are relatively large (so ~ 1 g/L, Ky, = 0.1 g/L). The
large initial substrate concentration increases the dura-
tion of the initial exponential growth phase (see (60)).
The high saturation constant increases the time required
for the substrate to switch from supersaturating to
subsaturating levels.

3.2.4. Dilution rate shift-up

The response to dilution rate shift-ups also replicates
the dynamics observed in feed switches. Fig. 13 shows
the simulations of three dilution rate shift-ups from
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Fig. 13. Transient response to dilution rate shift-ups. At <0, the culture is at the steady state corresponding to the dilution rate, Dy = 0.11/h, and
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Fig. 14. Phase portraits of the slow motion during dilution rate shifts. (a) The slow motion corresponding to the dilution rate shift-up from
Dy =0.11/h to D = 0.41/h. The line with short dashes shows the null-cline for c¢; the line with long dashes shows the null-cline for r; the intersection of
the two null-clines represents the steady-state concentrations of ¢ and r at D = 0.41/h; and the full line shows the motion of ¢ and r from balanced
growth toward the final steady state. (b) The slow motion corresponding to the large dilution rate shift-up from Dy = 0.11/h to D = 0.81/h. The line
with short dashes shows the null-cline for e; the line with long dashes shows the null-cline for r; the intersection of the two null-clines represents the
concentration of e and r at balanced growth; the full line shows the approach of e and r toward the state of balanced growth. (c) Classification of

dilution rate shift-up dynamics.

Dy =0.11/h to D =0.4, 0.6 and 0.81/h, respectively. In
all three cases, the substrate concentration, the specific
substrate uptake, and the specific growth rate rapidly
increase within 10-15min (Figs. 13a,c,f). However, the
subsequent behavior of the three transients is quite
different.

If the shift-up is small (D = 0.41/h), the substrate
concentration never achieves supersaturating concentra-
tions. This is because the shift-up is so small that the
rapid increment of the specific substrate uptake rate is
sufficient to match the increase in the substrate input
rate, Dsy. Thus, within 10-15min, the substrate reaches
the quasisteady state concentration given by Eq. (53).
The subsequent evolution is given by Egs. (42)—(44),
while,while s, x and p, are in the quasisteady states given
by Egs. (53) and (54), respectively. The phase portrait
for this motion is shown in Fig. 14a.

If the shift-up is large (D = 0.81/h), the substrate
concentration rapidly reaches supersaturating levels,
and remains at these levels throughout the subsequent
transient. In this case, the shift-up is so large that the
substrate uptake rate, 7;cy, cannot match the substrate
input, Dsy, even when the substrate concentration has
reached supersaturating levels. Thus, the substrate
concentration continues to increase, and remains at
supersaturating levels. The rapid attainment of super-
saturating substrate concentrations also stimulates the
specific growth rate. As expected from the earlier
analysis of continuous-to-batch shifts (Fig. 8), the
specific growth immediately increases to 0.31/h (Fig.
14f). But this enhanced specific growth rate falls well
below the new dilution rate (D = 0.81/h). Thus, in
addition to accumulation of the substrate, there is a
pronounced decline in the cell density which continues
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until the ribosome levels have been built up to
sufficiently high levels. These dynamics are similar to
the Phases 1 and 2 dynamics of the feed switch. The
phase portrait for this evolution is shown in Fig. 14b.

If the shift-up is intermediate (D = 0.61/h), the
substrate concentration saturates, and the physiological
variables begin their approach to balanced growth, i.e.,
the cells go through Phase 1 and enter Phase 2. But
before balanced growth is reached, the substrate
concentration returns to subsaturating levels, and the
cells switch to Phase 3 and 4 dynamics. Similar
transients have been observed in experiments. Fig. 15
shows the response of a glycerol-limited culture of K
aerogenes to a dilution rate shift-up from Dy = 0.0041/h
to D =0.241/h. The ribosome level, the specific
growth rate, and the specific substrate uptake rate
increase in a manner consistent with the approach to
balanced growth (Figs. 15b,c). However, balanced
growth is not fully attained because the substrate
concentration drops to subsaturating levels well
before the cells achieve balanced growth. Indeed, the
substrate concentration drops to subsaturating levels at
t ~ 10 h (Fig. 15a). At this point, the specific growth rate
is ~ 0.61/h, which is less than the maximum specific
growth rate of 0.8 1/h.

Intuition suggests that the magnitude of the dilution
rate shift-up required to provoke these dynamics
depends on the initial dilution rate. For, if the initial
dilution rate is very small, so is the initial enzyme
level. In this case, relatively small shift-ups should
yield supersaturating substrate concentrations, resulting
in Phase 1 and 2 dynamics. On the other hand, if the
initial dilution rate is large, the peripheral levels are so
high that the substrate concentration should remain
subsaturating throughout the transient, leading to Phase
3 and 4 dynamics. This is indeed the case. In fact,
given the response to continuous-to-batch shifts
(Fig. 4), one can predict the class of dynamics
corresponding to any pre-assigned initial and final
dilution rates. To see this, observe that the substrate
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concentration attains the quasisteady state given by Eq.
(53) if and only if 7(Do)co> Dsy, where (Do) denotes
the specific substrate uptake rate achieved immediately
after the cells have been exposed to supersaturating
concentrations (see Fig. 8a). But it follows from
Eq. (19) that ¢y & Dgsy/7y(Dg) at all but the highest
dilution rates. We conclude that s attains quasisteady
state if and only if

Dysy 7s(Do)
s FS(D()) >DS_‘f = D<D F'Y(D()) .

In words, the substrate concentration attains quasistea-
dy state if and only if the ratio by which the dilution rate
increases, D/ Dy, is less than ratio by which the specific
uptake rate increases in response to a continuous-to-
batch transition, #i(Dy)/7(Dy). Thus, we can classify the
dynamics by plotting the transition dilution rate

fS(DO)
0 iv(DO)

as a function of the initial dilution rate, Dy (Fig. 14c¢).
Given any Dy, Phase 1 and 2 dynamics are obtained if D
lies above the curve; Phase 3 and 4 dynamics are
obtained if D lies below the curve. In particular, one
can see that the simulations shown in Fig. 13 are
consistent with this classification.

D, =D

4. Discussion

Chemostat dynamics have been the subject of
numerous experimental studies. From this formidable
body of literature, Daigger and Grady (1982) and
Duboc et al. (1998) have distilled the key general-
izations. We begin by reiterating these generalizations
and interpreting them in terms of our model.

Based on an extensive review of the literature prior to
1980, Daigger and Grady classified the transients into
two categories: growth responses and storage responses.
Since our model does not account for storage, we
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Fig. 15. Response of a glycerol-limited culture of K. aerogenes to a dilution rate shift-up (from Tempest et al., 1967). At t<0, the culture is at the
steady state corresponding to the dilution rate, Dy = 0.0041/h, and feed concentration, sy = 15g/L. At ¢ =0, the dilution rate is shifted up to
D = 0.241/h, while the feed concentration is held constant. The figures show the evolution of the (a) Cell density and substrate concentration (b)
RNA level (c) Specific substrate uptake and growth rates calculated from the curves in (a).
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confine attention to the growth responses. They state
that

1. The growth responses possess the following

properties:

(a) Growth rate hysteresis (GRH): During periods of
varying substrate concentration, the specific
growth rate of the culture lags behind the value
predicted by the steady-state specific growth rate.
During periods of decreasing concentration, the
specific growth rate will be higher than predicted,
while during periods of increasing substrate
concentration, it will be lower than predicted.
The model exhibits growth rate hysteresis. In-
deed, Fig. 11f shows that immediately after the
dilution rate shift-down, the culture settles into a
specific growth rate that is higher than its final
value. Conversely, the specific growth rate im-
mediately after a dilution rate shift-up is lower
than its ultimate value (Fig. 13f).

(b) Available growth potential (AGP): Microbial

cultures possess the ability to rapidly increase
their growth and substrate uptake rates during a
transient response. As a general rule, the degree
to which a culture can immediately increase its
growth and substrate removal rates increases as
the steady state specific growth rate of the culture
is decreased.
Simulations of the continuous-to-batch shifts
show that the specific substrate uptake and
growth rates do increase immediately (Figs.
8a,c). Moreover, the increments in these rates
increase as the dilution rate of the culture
decreases. But this is true only up to a point. At
sufficiently low dilution rates, the increments
decrease once again because at very low dilution
rates, the peripheral enzyme and ribosome levels
become small.

2. In many instances, both phenomena are observed.

For example, the specific growth rate immediately
after exposure to substrate-excess conditions is great-
er than the rate before (AGP), but less than the
maximum rate which the culture could attain.
However, with the passage of time, the specific
growth rate gradually increases, and eventually
reaches the maximum rate. Throughout this period,
the specific growth rate is less than the maximum
specific growth rate (GRH).

This property is evident in Figs. 9f and 13f.

. The concept of physiological adaptation may be used
to understand these growth responses. When a
microbial culture is grown at a submaximal specific
growth rate, the culture adapts to that growth
environment. In particular, the RNA content, the
enzyme levels, and concentration of intracellular
metabolites are lower than the values attained at

the maximum specific growth rate. When the cells are
exposed to a substrate-excess environment, the
culture is unable to grow at its maximum rate.
This is because the physiological adaptation is not
complete, so that the culture possesses only a limited
ability to immediately increase its specific growth
rate (AGP). As time passes, the levels of RNA,
enzymes, and intracellular metabolites gradually
increase. Thus, the specific growth rate of the culture
increases progressively until it eventually reaches
its maximum value (GRH).

This train of events is precisely what transpires in the
model (see Figs. 9 and 13).

More recently, Duboc et al. arrived at the following
conclusions based on extensive dilution rate shift-up
experiments with S. cerevisiae (Duboc et al., 1998).

1. There is an immediate increase in the catabolic
activity. Moreover, the increase in the catabolic
activity is always larger than the increase in the
growth rate, leading to a transient uncoupling of
catabolism and growth.

This model displays this characteristic as is evident
from Figs. 8a,c,d. To capture the different response
times of the catabolic and anabolic rates, Duboc et al.
assumed that these rates followed the phenomenolo-
gical equations

Teat % = (et —Tea)y Ty % = (r;nax —rg)

and unique time constants, 7., and 7, were chosen
for each experiment in order to fit the data. Our
model may be viewed as an attempt to give a
physiological basis for the foregoing phenomenolo-
gical equations.

2. In some experiments, such as the dilution rate shift-

up of aerobic cultures limited by acetic acid, the
transient behavior of the culture is similar to the
adaptation of the metabolism during a batch experi-
ment where substrate is in large excess and does not
influence the specific growth rate. In yet other
experiments, such as the dilution rate shift-up of
glucose-limited aerobic cultures, the substrate
did not accumulate.
According to our model, these two transients reflect
Phase 1/Phase 2 and Phase 3/Phase 4 dynamics,
respectively. Since the maximum specific growth
rate on acetic acid is much lower than the maximum
specific growth rate on glucose, the very same
dilution rate shift-up, i.e., the very same Dy and D,
could lead to substrate-sufficient batch dynamics
in the first case, and cell-sufficient fed-batch dynamics
in the second case.

The model yields further insights into these
observations.
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1. The substrate concentration exists in either one of
two states. It is either at supersaturating levels or at
the subsaturating levels attained when the substrate
reaches quasisteady state. Transitions between these
two states are so fast (on the order of minutes) that
they may be ignored on the time-scale of interest (on
the order of hours).

2. The dynamics corresponding to these two states are
canonical in the following sense. The transients
observed in response to a wide variety of perturba-
tions are a combination of these two classes of
dynamics. Thus, in dilution rate shift-ups, the
substrate is supersaturating throughout the transient
if the final dilution rate is close to the maximum
specific growth rate. It is subsaturating throughout
the transient if the final dilution rate is close to the
initial dilution rate. It switches from supersaturating
to subsaturating levels when the shift-ups are
moderate. The latter is also the case in feed switches
where the substrate concentration is supersaturating
at first, but switches to subsaturating concentrations
later. It follows that a complete understanding of
these two classes of dynamics is sufficient for under-
standing all other dynamics.

3. These two classes of dynamics possess the following
experimentally testable properties:

(a) During the approach to balanced growth, the
peripheral enzyme and ribosome levels pass
through a maximum, but the enzyme level reaches
a maximum before the ribosome level.

(b) During the approach to the final steady state, the
cell density passes through a maximum and the
ribosome level passes through a minimum. The
cell density reaches its maximum before the
ribosome level reaches its minimum.

We can express these observations more concisely in the
parlance of nonlinear dynamics. We have shown, in
effect, that the chemostat displays excitable dynamics.
In other words, there are two ‘‘slow” submanifolds
(surfaces) embedded within the space of all variables in
the model. The motion into and out of these submani-
folds is very fast. The dynamics on the time-scale of
interest (h) occur only when the variables lic in one of
the submanifolds. The motion on these two submani-
folds corresponds to Phase 1/Phase 2 and Phase 3/Phase
4 dynamics, respectively.

We note finally that the model does not account for
certain features of microbial growth. As observed in
Section 1

1. There is evidence indicating that biosynthesis is
limited by GDH rather than ribosomes.

2. The excess substrate imported by the cell is eliminated
by respiration, excretion and storage.

Extensions of the model accounting for the roles of
GDH, excretion, and storage are currently under
investigation.

5. Conclusions

We have formulated a model of microbial growth
accounting for both inducible enzyme synthesis and
ribosome-mediated protein synthesis. The fundamental
assumption made was that synthesis of ribosomes is
autocatalytic, an assumption based on the experimen-
tally observed RNA synthesis rates. Both the steady
states and the transients of the model show remarkable
agreement with a wide variety of experimental data.
Analysis of the model yields simple explanations of
seemingly complex behavior.

1. Steady states

(a) The cell density decreases at low dilution rates.
This behavior does not stem from an ad hoc
maintenance. It falls out naturally as a conse-
quence of the futile cycling of RNA at low
dilution rates.

(b) The peripheral enzyme level passes through a
maximum. This reflects the competing effects of
enzyme induction and dilution. At low dilution
rates, induction dominates, so that the peripheral
enzyme level is an increasing function of D. At
high dilution rates, dilution dominates, and the
peripheral enzyme level is a decreasing function
of D.

(c) The ribosome levels approach a nonzero level at
small dilution rates. According to the model, this
is the result of the futile cycling of proteins.

As the dilution rate increases, the ribosome levels
increase monotonically. This is a consequence of
the assumption that protein synthesis rate is
proportional to the concentration of ribosomes.
It provides a simple answer to the question of
growth rate control (Roberts, 1997): Why does the
steady-state ribosome level increase linearly with
the dilution rate?

2 Transients

(a) The model shows good agreement with a wide
variety of transients including continuous-to
batch shifts, feed switches, dilution rate shift-ups
and dilution rate shift-downs.

(b) We show that the bewildering array of transients
observed are in fact combinations of two cano-
nical dynamics, namely, the approach to balanced
growth under supersaturating substrate concen-
trations, and the approach to steady state under
subsaturating substrate concentrations. In dilu-
tion rate shifts, for instance, only one of these
canonical dynamics occurs. In feed switches, the
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two canonical dynamics occur sequentially. The
cells begin by approaching balanced growth
under supersaturating concentrations, and then
move toward the final steady state under sub-
saturating substrate concentrations.
The practical importance of this result is the
following. To understand the dynamics of a
chemostat, it suffices to confine attention to these
two canonical dynamics. All other dynamics can
be inferred from them.

(c) The particular class of canonical dynamics that
will be observed in dilution rate shift-ups can be
predicted from continuous-to-batch shift data.

Appendix A. Order-of-magnitude estimates of the
parameter values

The orders of magnitude of the parameters for

substrate uptake and peripheral enzyme synthesis are
based on kinetic properties of the lac operon.

1.

The maximum velocity of lactose transport is 60,000
molecules per minute per permease molecule (Chung
and Stephanopoulos, 1996). Since the molecular
weights of lactose and permease are 342 and 46,504
(Neidhardt et al., 1987, p. 1446), respectively

Vs~ 10* g/(g enzyme-h).

. The saturation constant for lactose transport is
5 x 10~*moles/l (Chung and Stephanopoulos, 1996)

K,~10"2g/L.

. The inducer concentration is 10~ g/gdw (Chung
and Stephanopoulos, 1996). Since r; ~ 1 g/(gdw-h),
Eq. (45) implies that

k. ~ 10’ g/(g inducer-h).

. The maximum velocity of permease synthesis is
10_8mole/min_1 (Chung and Stephanopoulos,
1996). Since each liter of cell volume contains
roughly 400 gdw

Ve~ 10"*g/(gdw-h).

. Vogel and Jensen exposed exponentially growing
cells growing at various specific growth rates to
supersaturating concentrations of IPTG, a gratui-
tous inducer of the lac operon, and measured the
specific ff-galactosidase rate immediately after the
exposure (Vogel and Jensen, 1994). They found that
the instantaneous specific enzyme synthesis rate is
an increasing function of the specific growth rate,

10.

11.

12.

13.
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and achieves half-saturation at r, &~ 0.11/h. Since
7~ 0.1g/gdw at this dilution rate

K, ~0.1g/gdw.

. The equilibrium constant K is lO”(L/mol)2 (Yagil

and Yagil, 1971). Since the molecular weight of the
repressor (~ 10° g/mol) is much larger than the
molecular weight of the inducer (~ 10? g/mol)

K, ~ 10”(gdw/g)2.

. The enzyme degradation rate is on the order 0.01 I/h

(Neidhardt et al., 1987, Chapter 44)
k; ~107%1/h.

. At D~1 1/h, 90% of the rRNA synthesized is

incorporated into biomass and the remaining 10% is
degraded (Gausing, 1977), i.e.,’

k1

Ty

=55 = k ~ 0.11/h.

. The precursor concentration is on the order of

0.01 g/gdw (Neidhardt et al., 1990); we assumed that
K., K;~0.001g/gdw.

The protein degradation rate is on the order of
0.011/h (Neidhardt et al., 1987, Chapter 44)

ko ~0.011/h.

The specific protein synthesis rate is on the order of
0.1 g/(gdw-h). Since r ~ 0.1 g/gdw

V.~ lg protein/(g RNA-h).

The specific rRNA synthesis rate is on the order of
0.1g/(gdw-h) (Gausing, 1977). Since r| =k pr~
0.1g/gdw, p ~ 0.01g/gdw, and r ~ 0.1 g/gdw

k't ~ 100 gdw/(g-h).

According to the model, the maximum yield on
biomass is k) /(k; + keo,) (see (26)). Since the
maximum yield for typical sugars is ~ 0.4 gdw/g,
we assumed that

Keoy ~ 1501/h.

At low dilution rates (D ~ 0.0071/h), the specific degradation rate is
higher (k, ~ 0.161/h), since 30% of the rRNA synthesized is
incorporated into biomass, and 70% is degraded. However, the order
of magnitude remains unchanged.
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Appendix B. Stability of the death steady states -k 0 v, KL-%—p 0
The variational matrix W of Eqs. (34)—(39) is given by Je=| ~ dug ~% PORE) -Fe  —Fe
b e -
a(s’ C) or 081’1/ ~  or 0('31‘5, ~ k" I;r kgrq—’: k" or O(')rq ~
W a(S,C) (61) é(?i_alf;x B,_(f_é_c;x T;_é_}x D_; Y
B o, e,y X) (63)
o™, e, 1, X) Two eigenvalues of Jp are given by
where k; —k; and k'p—k +k,
a6, ¢) (—D —Ts > and the remaining two are determined by the submatrix
as,c) \ 0 -D)’
(5) o ory . ory ..
Since the submatrix 8(s,¢)/d(s,c) contributes two e € T

negative eigenvalues —D and r, — D, the stability of a
death steady state is determined exclusively by the
submatrix J = o(¢™, é,F, x)/d(c™, e, r, x).

We begin by observing that Eq. (39) together with

Vesr /(K + sy)
Vs =———————, rg =ry — k
T +pKy w0l
imply that
ory % _ org

A =Y ~ k 0
0z 0z 0Oz + oo, >

for any choice of the physiological variable z €
{7 e,r,x}.

B.1. Stability of case A

In this case, Ff=é=%=0,¢,p>0, and 7, = —k_.

The submatrix J is given by

Ja

| 0 k-k PORO) 0

N 0 kp—k +k 0 |
0 L 0 k, — ki

(62)

where p(r)=Vr/(K,+7r) and R(x)=(1+K;x?)/
(K3 + K»x?). The eigenvalues of J, are simply given
by the diagonal entries. Since —g% ¢~ <0, the equili-
brium of case A is stable if and only if

k. _ -
kjk;—k,. + k. <0.

COon

k< min(k;, ky),

B.2. Stability of case B

In this case, 7 = ¢ =0, &,X,p>0, and 7y = —k, . The
submatrix J is given by

J, =
B ors  ory érs_%;c

Oe 6ex ox  ox

In the remainder of this section, we show that the matrix
J is always stable, i.e. it contributes two negative
eigenvalues. We begin by reiterating that

%_6&

oy %_Grs
e Oe

+k002>05 ax —a"‘kc()z >0

In addition, the functional form of r; implies that

Ory _ Ors Ty
de  ox &’
so that

ory _ Org Ty Org Ory
de  Ox e’ Oe Ox >0.

Taking these relations into account, the matrix J'; can
be equivalently written as

81’(, P _%g
J = oe ox
B ory .
a(l —-X) - kcoz

The determinant of J’; is given by

oe

Org (oOr
+_ge(8_eg(1 _x) _kcoz)s

detJ; = %e(sz —%(l —x))

ox

which simplifies to

detJ'y = ko, <% - %) >0.

The trace of J'; is given by

trJy = ——ee+—;(1 — X) — keo,.
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Since a"e_rv+%;’e and e + x+ p = 1, we have that

Since in addition,

or 1
g _ Ki
ox 0] +%+kc°2’

we finally obtain that

P
trJ, = —rx<1 - K"ﬁ) — keoy(1 — p) <0,

1+

Since det J >0 and tr J <0, the matrix J% is a stability
matrix.

To summarize, the equilibrium of case B is stable if
and only if both inequalities

k; —k, <0 and k'p—k +k, <0

hold. Note that death states A and B cannot be stable
simultaneously because the state A has the eigenvalue
k. —k, and the state B has the eigenvalue k, — k.
These quantities clearly have opposite signs.

B.3. Stability of case C

In this case, F=é=¢ =0, X,p>0, and 7; = —k,.
The submatrix J is given by

ky —k; 0 Verls 0
T 0 ky—k, p'(0)R(x) 0
“- 0 0  k'p—k +ke 0
e  Org ~ Org ~ ory
0 - Bk A
(64)

Similar to case A, the eigenvalues of J¢ are simply given
by the diagonal entries. Since — a—f’x<0 the equilibrium
of case C is stable if and only if

jor K

ky<min(k,,k,), 'k
COp

-k +k,<O0.

B.4. Stability of case D

In this case, F=é=¢ =
—keo,-

=
=
=
Il
—
o
=3
o
~
<«

The submatrix J is given by

keoy — k. 0 Vg

0 koo, — K, p'(0)R(0) 0
Jp = Z

0 0 keo, — K 0

0 &s 0 keoy — ki

(65)

Again, the eigenvalues of Jp are given by the diagonal
entries. The equilibrium of case D is stable if and only if

keo, <min(k, , k, k., ky).

c2>'e>r 2

Appendix C. Derivation of the reduced equations

If we define the dimensionless variables

.S . cC . X
sS=—, (=—, X=—,
Sy Sy Xy
ézﬁ, }751, ﬁzﬁ,
er Iy D
P [GN t
C =—1=—,
cr t
where
ViV,

Sr - S/, Cl = Sf7 xr = k B

Vé’ Vs Ve V\ Vé’
€ = Y] ry = ’ r = H

Z Ve " 7T ke,

_ 1
¢ =1, t=
ViV,
we obtain the dimensionless equations
ds
— =D -5 —#e 66
=D -9 - i, (66)
de A
— = (#, — D)¢, 67
o=y~ D) (©7)
de A a
d_§ == — 7y, (68)
a7
d% =B — Ry, (69)
dx . A
TXE =Ty — Py — TyFyX, (70)
dp _ . T S WS e

Ui Fo—Teoy — (Fy —7,) =1 (7] —7,)

— e FS — 7)) — tpfyp, (71)
¢ =1—rF—eé—xX—pp, (72)
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with dimensionless rates

.. 8 1 . P14+ KR
ry=¢€ —x T 5 e =3 N X 00
K, +381+p/K; K.+ 7 K3+ K>%
A— A A—
A— ~ A+t _ AR A A
Fe = ke e I, =Kpr, I, = kr >
N
'y =X, rCOzzpa rc =r— JRE)
ctp
Fo=k, 0, Fyg=Ty—Te,
and dimensionless parameters
A > Ks > i > e
DED[V: KSE_y KiE_9 KEE_s
Sy Dy Ty
K, = szr, ke = ke_lr,
~+ k) ks 1 1
= ’ . = rs Tx = ’ Tp = ’
' kcoz ! ' kxty k002 Ir
K.=—, k, =k.t,

Since 1y, Tp, e, X, p, <1, Eqgs. (70)~(72) become

O’wﬁs_fxa
0&/%—?002—(f:r—f;)—r,.(f:r—f';),

1~ ¢ +rr.

It follows from the first two equations that

Py =Py — Feoy = (FF — 7))+ 1,(FF — 7).

In other words, X and P rapidly achieve quasisteady
state, and the specific growth rate during the subsequent
motion is effectively the sum of the net specific protein
and RNA synthesis rates. Thus, we arrive at the
equations

ds - N o n
Fr D(1 —5) — isc,
de . Al
E:(VQ—D)C,
de e A A
Ezre_re_r!l&
dr

oAt A A A
E_rr — 7 =747,
O%?s_fm

A

Omrx_ﬁcoz_rga

The reduced equations are obtained from these equa-
tions by reverting to the original (dimensional) vari-
ables.

The approximate “‘slow” manifold is unique and
globally stable. To see this, consider the approximate

b}

“fast” equations

. Ve a(s)
X = IST%I — kxx, (73)
p = kxx - kCOzp - Vcrm

—kfrp+ ik r+k e (74)

and assuming that the slow variables s, e, r, ¢~ >0 are
constant, we can show the following:

1. If x =0 and p>0 then x>0 due to Eq. (73). If p =0
and x>0 then p>0 due to Eq. (74). Hence both x and
p remain strictly positive at all times.

2. If p=0 and x becomes too large, namely if x> V,gf",
then x <0 due to Eq. (73). Hence x remains bounded
at all times. Since x remains bounded, Eq. (74)
implies that p also remains bounded.

3. For any combination s, e, r, ¢~ >0, the Jacobian of
Eqgs. (73)—(74) has the form

Ly (- -
J‘@(x,p)‘(+ —)' (73)

This implies several things:

(a) Since the divergence of Eqgs. (73)—(74) (equiva-
lently, the trace of J) is negative for all x, p=0,
the system (73)—(74) cannot have periodic solu-
tions. Since all positive solutions are bounded,
every positive solution must converge to a steady
state. In addition, the signs of the off-diagonal
entries of J are such that the orbits in the (x,p)
plane rotate counterclockwise.

(b) At any steady state of Eqgs. (73)—~(74), we have
that trJ <0 and detJ>0. Thus all steady states
must be stable. Therefore, only one positive
steady state of Eqgs. (73)—(74) must exist.

We conclude that for any combination s, e, r, ¢~ >0,
the fast system (73)—(74) admits a unique globally stable
quasisteady state (X, p). Hence, the QSSA is well defined
forall s, e, r, ¢ >0.
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