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Abstract 
The robustness analysis of system performance is one of the 

key issues in control theory, and one approach is to reduce this 
problem to that of computing the structured singular value, p. 
When real parametric uncertainty is included, then p must be 
computed with respect to a block structure containing both real 
and complex uncertainties, and this is the situation considered 
here. It is shown that p is equivalent to a real eigenvalue max- 
imization problem, and a power algorithm is developed to solve 
this problem. The algorithm has the property that p is (almost) 
always an equilibrium point of the algorithm, and that whenever 
the algorithm converges a lower bound for p results. Numerical 
experience with the algorithm is very encouraging. 

Introduction 

The structured singular value, p,  was introduced in [I] as a tool for 
robustness analysis. Its usefulness lies in the fact that many robustness 
problems can be re-cast as one of computing p with respect t o  some 
block structure. In general, it  is difficult to  compute p exactly, so 
computation has focused on upper and lower bounds. Such bounds 
are useful in their own right however, since an upper bound gives a 
(possibly conservative) limit on the size of allowable perturbations, 
and a lower bound yields a “problem perturbation”. Important issues 
then become the efficient computation of the bounds, the degree to  
which they approximate p,  and techniques for refining the bounds for 
a better approximation. 

For the purely complex case (i.e. the block structure contains only 
complex uncertainties) a tractable upper bound was suggested in [l] 
involving a singular value minimization. Computation schemes for 
lower bounds have been developed involving a smooth optimization 
problem, due to  Fan and Tits [2], and a power algorithm, due to  
Packard et. al. (31. Whilst the purely complex case is by no means 
completely solved, these methods are now routinely applied to large 
engineering problems. 

The mixed case (i.e. the block structure contains both real and 
complex uncertainties) however is a fundamentally more difficult prob- 
lem, and is much less well understood. An upper bound was recently 
presented by Fan et. al. [4] which involves minimizing the eigenvalues 
of a Hermitian matrix. This paper addresses the problem of comput- 
ing a lower bound for p in the mixed case. It is shown that / I  can be 
obtained as the result of a (non-convex) real eigenvalue maximization, 
and this problem can be tackled by means of a power algorithm. The 
power algorithm is an extension to the mixed case of Packard’s algo- 
rithm [3], which in turn is an extension of standard power iterations 
for eigenvalues and singular values. In general, there is no guarantee 
that the global maximum has been found and hence a lower bound for 
p results. 

2 Notation and Preliminaries 

The notation used here is fairly standard and is essentially taken 
from [4]. For any square complex matrix M we denote the com- 
plex conjugate transpose by M’. The largest singular value and the 
structured singular value are denoted by T ( M )  and p ~ ( A 4 )  respec- 
tively. The spectral radius is denoted p ( M )  and P R ( M )  = maz{lAl : 
X i s  a real eigenvalue of M }  , with ~ R ( M )  = 0 if M has no real 
eigenvalues. For any complex vector x, then Z* denotes the complex 

conjugate transpose, (21 the Euclidean norm, and llzllm the infinity 
norm. 

The definition of p is dependent upon the underlying block struc- 
ture of the uncertainties, which is defined as follows. Given a matrix 
M E CnX” and three non-negative integers m,, mcr and m c  with 
m := m, + m, + m c  5 n, the block structure IC(mr, m,, mc)  is an 
m-tuple of positive integers 

h: = (k lr . . . ,km ,,k m,+l, . . . ,k~~+m,.km,+m,+l, . . . ,km) (1) 

where we require CZl ki = n in order that the dimensions are compat- 
ible. This now determines the set of allowable perturbations, namely 
define 

X K  = {A = block diag(6;Ik , ,  . . .,6LrIkmr,6;Ikmr+l,. . ., 
~ ~ = I k m ~ t m = , A ~ , . . . , A ~ ~ )  : 

1 (2) 6; E R,6f E c , A f  E Ck=~tmct~Xkm~tmst~ 

Note that X K  E CnXn and that this block structure is sufficiently 
general t o  allow for repeated real scalars, repeated complex scalars, and 
full complex blocks. The purely complex case corresponds to  m, = 0. 

Definition 1 ([l]) The structured singular value, p x ( M ) ,  of a matriz 
M E Cnxn with respect to a block structure X(mrr  m,, mc)  is defined 
as 

(3) 

with ~ K ( M )  = 0 if no A E X K  solves de l (1-  AM) = 0.  

Whilst it is not a t  all obvious how to compute p from the definition 
(3) it is easy to  obtain the crude bounds 

p R ( M )  5 P K ( M )  5 z ( M )  (4) 

In order t o  refine these bounds further we define the sets 

& = {A E XK : 6;’ E (-1 1],6f‘6: = 1 , A Y A f  = Ikm,+,,,+,} (5) 

V K  = {block diag(e3*’ D1,. . . , elOmT D,,, Dm,+lr. .  . , Dmr+m,, 

diIkmptmct1,. . . ,dmcJkm) : 0, E [-- -1, A A  

2 2  
0 < D, = D: E Ckcxk‘ ,O < d, E R} (6) 

We note that these are not quite the “usual” scaling sets associated 
with p ,  since for m, # 0 matrices in &K are not necessarily Unitary, 
and matrices in ’DK are not necessarily Hermitian. Nevertheless it 
still holds that for any A E X K  and any D E DK, DA = AD and 
consequently we obtain 

Lemma 1 For any matriz M E CnXn, and any compatible block struc- 
ture X: then for all D E ’DK 

P K ( M )  = PK(DMD-’) (7) 

Now in order to  refine the lower bound we define the set 

BXh: = {A E XK :?(A) 5 l} (8) 

Then the following lemma follows almost immediately from the defi- 
nition of p. 
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Lemma 2 For any matrix M E CnXn, and any compatible block struc- 
ture K 

P d M )  = f'R(AM) (9)  

In the light of (7) and (9 ) ,  noting that QK c BXK we can refine the 
bounds in (4) to obtain 

Lemma 3 For any matrix M E Cnxn, and any compatible block struc- 
ture K 

It is clear that the use of V K  in the right hand inequality gains 
us nothing in terms of the upper bound over the more "usual" choice 
(see [4]) since any D E VK may be factored into the product of a 
Unitary and a Hermitian matrix, and singular values are invariant 
under Unitary transformations. However we choose to work with this 
set for reasons which will become clear later. 

3 Lower Bound as a Maximization 

The lower bound (10) for the mixed case is a real eigenvalue maximiza- 
tion problem. In the purely complex case ( m ,  = 0) we can replace p~ 
by p and it was shown by Doyle [l] that in fact the lower bound is 
equal to p. This represents a great reduction in the complexity of the 
problem over (9) since we are now only required to maximize over the 
boundary of the set. In this section we show that the lower bound 
for the mixed case (10) also holds with equality, and hence it is still 
sufficient to consider the complex uncertainties on their boundary. We 
note, however, that the definition of Q E  requires us to  search over the 
full range of the real perturbations. The following lemma is taken from 
111. 

Lemma 4 (111) Let p : C k  + C be a (multivariable) polynomial and 
dejne p = min{ l (z ) l ,  : p ( z )  = 0) then there exists a z E C k  such that 
p ( z )  = 0 and for every i, ]z i l  = p 

This is now used to prove the main result of this section. 

Theorem 1 For any matrix M E CnXn, and any compatible block 
structure K 

Proof: Trivial from (10) if p x ( M )  = 0. So assume p r ( M )  = ,LJ > 
0, and this value is achieved for some perturbation A, i.e. d e t ( 1 -  
AM) = 0 and T ( A )  5 $. Now fi the real perturbations at  these 
"optimal" values (6: = 8:,i = l,.. . ,mr with 5 $,- Now allow 
the complex part of A to vary and consider minimizing .(A) subject 
to det(Z - A M )  = 0. Performing an SVD on A we obtain det(Z - 
U C V M )  = 0 where U and 1.' are (block diagonal) Unitary matrices 
and 

= diag(b;Ik, ,. . . , &,Zk,,,, I 6f&,,7+, , . . . , 6kczk,,,,+m, ,?':, . . . 7%) 

with k = Cz,,+m,+l k;. This is a polynomial in 4, . . . ,6&, 74, :. . ,r; 
and so applying lemma 4 we have a solution with = . . . = 16&,1 = 
lYi1 = . . . = lqil = 1 and f i  2 p. Now suppose f i  > p,  say f i  = p t 6 

for some c > 0, then since the roots of a polynomial are continuous 
functions of the coefficients we can find a 6 > 0 so that 

P 

- 6 .  

6 .  

16: - 8:l < 6 , i  = 1,. . . , m r  * 16;- 6;l < 2 , z  = 1,. . . , m c  

Irf-i.fl< p = l , . . . , k  

Then move each lay( down by 4 and we can find a A solving d e t ( 1 -  
AM) = 0 with F(A) < contradicting the definition of p. Thus 
fi  = p and it is now easy to  check that for this solution PA = 0 E QK 
with p ~ ( 4 M )  = p = p ~ ( A ! f ) .  0 

4 Facts from Matrix Theory and Linear Al- 
gebra 

4.1 Eigenvalue Perturbation Theory 

This section reviews some eigenvalue perturbation theory we will need 
in Section 5.  The material is fairly standard and is presented without 
proof (see [5] for further details). 

Suppose we have a complex matrix M ( t )  E CnX" depending analyt- 
ically on the real parameter t. Then denote MO := M ( 0 )  and suppose 
that this matrix has a distinct (i.e. algebraic multiplicity one) eigen- 
value XO, with right and left eigenvectors xo and yo respectively, i.e. 
we have (after normalizing the eigenvectors appropriately) 

y;xo = 1 

Moxo = Xoxo 
Y;Mo = X O Y ;  

Then for t in a sufficiently small neighborhood of the origin M ( t )  
has an eigenvalue X ( t ) ,  with right and left eigenvectors x ( t )  and y ( t )  
respectively, all of which depend analytically on t. i.e. we have 

y( t )*x( t )  = 1 
M ( t ) x ( t )  = X(t )x( t )  

Y * ( W ( t )  = X(t)Y*(t) 
with X(0) = Xo, x ( 0 )  = 20, and y ( 0 )  = yo. Thus we can differentiate 
this eigenvalue, with respect to t, and this yields 

A(0) = y(O)*n;r(O)x(O) = y;n;r(o)xo (12) 

4.2 Linear Algebra Lemmas 

The following two linear algebra lemmas are due to Packard [3]. 

Lemma 5 ([3]) Let y E C" and x E C" be non-zero vectors. Then 
there exists a d E R, d > 0 such that y = dx iffRe(y*Gx) 5 0 for every 
G E Cnxn satisfying G t G8 5 0. 

Lemma 6 ([3]) Let y E C" and z E C" be non-zero vectors. Then 
there exists a Hermitian, Positive Definite D E Cnx" such that y = D x  
i f f  y'x E R and y'x > 0 .  

Now define the closed half space in the complex plane as, for some 
scalar 1c, E R 

H* = {Z : Re(e-j+z) 5 01 (13) 
Then we have the following elementary linear algebra lemmas. 

Lemma 7 Given any set of complex scalars 2 = (2;  : i = 1,. . . , m} 
and any real scalar 1c,. Then 2 C I€+ i f f  ELl aizi E H* for all real 
non-negative scalars ai, i = 1,. . . , m .  

Proof: (e) For each Zk choose a k  = 1 and ai = 0 for i # k. 

Lemma 8 Given any set of complex scalars 2 = (2 ;  : i = 1,. . . , m} 
define X := CE, aizi where ai,i = 1, ..., m are real non-negative 
scalars. Then X is not real and positive for any choice of the above a i s  
iff2 c €I* for some + E (-5 f). 

Proof: (+) By lemma 7 2 c H* implies X E HG and hence 
Re(e-j$X) 5 0. Suppose X is real and positive. Then this implies 
Re(e- j$)  _< 0 which means II, # (-f :) which is a contradiction. 

(*) Assume X is never real and positive. Now suppose 2 gt H* 
for any 1c, E ( - 4  4 ) .  First choose $ = 0. Then we must have a t  least 
one z E 2 with R e ( z )  > 0. Now we choose i l  as the element with 
R e ( z )  > 0 having minimum (arg(z ) (  (which must be non-zero). Now 
choose 1c, = arg(i1).  Then we must have a (non-zero) 22 E 2 with 
i z  $ H 4 .  Suppose 

1231 



i l  = r l (cos$+js in$) ,  i z  = rz(cos4+jsinq+) 

Then by our choice of il and iz straightforward trigonometry yields the 
following facts: Isindl 2 Isin$), sgn(sin4) = -sgn(sin$), I cos41 5 
I cos $1, and if I cos41 = 1 cos $1 then cos 4 = cos $. Now choose &I = 

and d.2 = A. Then we have 

Thus is real and positive which is a contradiction. 0 

5 Characterization of a Maximum Point 

We are interested in computing p , ( M ) ,  which by (9) and (11) is given 
by 

For reasons of tractability we choose to consider the problem 
maxqEQrpR(QM). However since this is a non convex problem we 
will in general only be able to  find local maxima, and hence we will 
obtain a lower bound for ~ K ( M )  (which is the global maximum). We 
would like this lower bound be "tight" (i.e. close to p )  and so wish 
to  rule out maxima of ~ R ( Q M )  which we know are only local. Thus 
we only consider Q E Q, which are local maxima of ~ R ( Q M )  with 
respect not only to  Q E QK but also to Q E BX,. 

Note that for any Q E QK and any A E EX,, then Q A  E BX, 
and AQ E BXK. Now suppose some matrix Q E QK achieves a local 
maximum of ~ R ( Q M )  over Q E BXK. Then it is easy to show that the 
matrix fi := QM has a local maximum O f  p~(Qu) over Q E BXI: at 
Q = I .  However since the real elements of Q are not restricted to be 
on their boundary we can say more than this. For any matrix Q E &K 
(see ( 5 ) )  define the index sets 

and define the allowable perturbation set 

We see that for sufficiently small E > 0 for any Q E QK and any 
A E E A , ( J ( Q ) , j ( Q ) ) ,  then Q A  E BX, and AQ E BX,. The point 
of all this is that if some matrix Q E QK achieves a local maximum 
of ~ R ( Q M )  over Q E EX, the? the matrix M := Q M  has a local 
maximum of p ~ ( Q f i )  over Q E BA,(J(Q),  j ( Q ) )  (for some t > 0) at  
0 = I (and in fact the converse is true provided we assume that for 
every i, 6: # 0). 

The notation here is unfortunately rather cumbersome and tends 
to obscure what is a really a rather simple concept. All that the above 
says is that if we are at a maximum point with some of the real pertur- 
bations at interior points (we do not need to  consider this possibility 
for the complex perturbations) then we stay inside the allowable set, 
and cannot increase the function, if we move these up or down (in 
magnitude). 

We introduce one further piece of notation. Suppose M E CnX" has 
an eigenvalue X with right and left eigenvectors x and y respectively. 
Then partition z and y compatibly with the block structure as 

X =  7 Y =  

where xTiryr, E Cki, xc,,yc, E Ck,r+,, xc , ,yc ,  E Ckmr+mc+i. These 
will be referred to  as the "block components" of x and y, and we make 
a "non-degeneracy" assumption that for every i (in the appropriate 

Theorem 2 Suppose the matrix M E Cnxn has a distinct real eigen- 
value XO > 0 with right and left eigenvectors z and y respectively, satis- 
fying the non-degenemcy assumption. Further suppose that ~ R ( M )  = 
Xo. Then if the function ~ R ( Q M )  attains a local maximum over the set 
Q E B A , ( Z , j )  (for some 6 > 0) at Q = I then there exists a matrix 
D E DK, with 8; = &$ for every i E 3, and a real scalar $ E (-f ;), 
such that y = ej+Dz. 

Proof: First we parametrize the perturbation set. Consider G E 

G = block diag(g;Ik, 3 . . ., ghrIkmr> gfIk,,tl 9 . . . t g&IkmrtmC, 

set), $,xr; # 0, yZizci # 0, Y;,~C, # 0. 

Xh: with 

G:,. . . ,  GC) (18) 
and the added restrictions 

g : s o  , i E 9  

G F + G Q . I O  , i = l ,  ..., mc 
Re(gf) 5 0 , i = 1,. . . , m, (19) 

Now it can be shown that for some 6 > 0 then the set of all matrices 
E(t) := ( I  t Gt)(I - Gt)-' for t E [0 6) and G as above is an open 
neighborhood of BA,(J ,  3) about E(0)  = I .  So now define the matrix 
R(t) := E(t)M. Then it is clear that ~ R ( Q M )  has attained a local 
maximum over the set Q E B A c ( J , 3 )  at Q = I iff pR(R(t)) has 
attained a local maximum over t E [0 6) at  t = 0 for arbitmry G as 
above. 

Since R(0) = M has a distinct real eigenvalue XO we have (for some 
non-empty interval about the origin) an analytic function X(t), with 
X(0) = XO, and X(t) an eigenvalue of R(t). Thus we can differentiate 
to  obtain 

A(0) = y*k(O)x = 2y'GMx = 2Xoy'Gz (20) 
In block notation this becomes 

Define the set of points 

2 = { z ;  : i = 1 , .  . . , m }  = {g:y{*xr : i = 1, .  . . , m,} U 

{giy;"z: : i = 1 , .  . . , m,} U {yf*Gfxf : i = 1,.  . . , m c }  (22) 

with the obvious identification for the elements zi. Now since we are at 
a maximum point we have that $0) is never real and positive. Thus, 
noting that we may independently scale gT,gF, GF by arbitrary non- 
negative scalars and still satisfy (19), then applying lemma 8 to (21) 
and (22) gives that this is true iff 2 c fl$ for some $ E (-4 4 )  for 
each G E X K  satisfying (19). It is tedious but straightforward to verify 
that the following conditions are necessary and sufficient to  ensure this 
(apply lemma 7 to (19) and use similar constructions to lemma 8): 

Re(ej+y:*xr) 2 o i = I , .  . . , m, 
Re(ej+yf'xl) = o i E j 

ej+y?x: E (0 cm) i = 1, ..., m, 

Re(ej$ypGcxy) 5 0 for all Gf with Gf -t Cy 5 0, 

i =  l , , . . , m c  (23) 
for some $ E (-4 4). Note that in the pure complex case the normal- 
ization condition y'z = 1 implies $ = 0. Since the scalar eJ$ terms 
may simply be absorbed into one of the vectors we can apply lemmas 
5 and 6 to each block component of x and y to obtain the equivalent 
conditions 

y: = eJ$ejei D;xr 0 < D; = D:, 0; E [-- ? T A .  -1, z = 1 , .  . . , m, 
2 2  

2 
A -  yr = ejGt?iD;zr 0 < Di = Dr,Oi = &-,i E J 
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Stacking these relations in matrix form yields y = ej*Dx with D of 
the required form. 0 

Remarks: We note from the proof that we immediately have a 
partial converse to theorem 2, namely that if y = ejGDx under the 
above assumptions, then no directional derivative (in the above sense) 
of the eigenvalue achieving ~ R ( Q M )  over the set Q E BAC(J ,3 )  is 
real and positive at  Q = I. 

The assumption of a distinct eigenvalue was made to ensure differ- 
entiability. Since we are maximizing this eigenvalue it is generic that 
it will be distinct at the maximum, and hence this assumption should 
not prove restrictive. This also suggests that it should be possible to  
eliminate this assumption. Another assumption in the theorem state- 
ment is that of non-degeneracy, which will also hold generically. It 
appears that the degenerate cases where the proof breaks down corre- 
spond to saddle points. Thus it is conjectured that theorem 2 and all 
the results which follow hold with both of these assumptions removed, 
and this is being investigated. 

6 A Decomposition at p 

Theorem 2 gives us a characterization of a maximum point of ~ R ( Q M )  
in terms of an alignment of the right and left eigenvectors of QM. This 
leads directly to the following decomposition. 

Theorem 3 Suppose Q E &K achieves the global maximum for the 
problem m w E Q F  ~ R ( Q M ) ,  and that the eigenvalue achieving ~ R ( Q M ) ,  
denoted p, is distinct and positive. Then if the right and left eigenvec- 
tors of Q M ,  denoted x and y respectively, satisfy the non-degenemcy 
assumption, there exists a matrix D E Vh: with D2 E 'DK and Bi = &: 
for i E Y ( Q )  such that 

Q D M D - ' ( D z )  = p D z  
(x'D*)QD'M(D')-' = px*D* 

with p = p ~ (  M ) .  

Proof: By theorem 1 we immediately have p = p x ( M ) .  Thus 
by lemma 2, Q E &K is also a-global maximum of ~ R ( Q M )  over 
Q E BXK. Hence the matrix M := Q M  achieves a maximum of 
p ~ ( o & )  over 4 E E A , ( J ( Q ) , j ( Q ) )  (for some e > 0) at 4 =*I. Now 
apply theorem 2 to  conclude y = eJ*Dx with D E 'DK and Bi = &$ 
for i E $(Q).  Now define D as the unique matrix such that D E VK 
and D2 = D. Substitution of this into the right and left eigenvalue 
equations of Q M  and simple manipulations (note that for any Q E QK 
and any D E 'DK, Q and D commute) yields the result. 0 

Remarks: We note from the proof that we have a decomposition 
as above (but with p not necessarily equal to  p x ( M ) )  at any Q E QK 
which maximizes ~ R ( Q M )  over Q E BXK under the above assumptions 
on the eigenvalue and eigenvectors. 

Employing simple manipulations of (25) yields a partial converse 
of this theorem. If we have a decomposition as in (25) with p real and 
positive and x non-zero, then we have that p is an eigenvalue of Q M  
with right and left eigenvectors x and y respectively (thus p is a lower 
bound for ~ K ( M ) )  where y = rej*D2z with D as above, T a positive 
real scalar (which we could thus absorb into D ) ,  and E [-f 41. If 
we add the further technical assumption that we are not in the special 
case of Bi = 6: for all i = I , . . . , m ,  and m, = 0 ,mc  = 0 then we 
have 1c, E (-4 4). 

It is well known that for the purely complex case we have a de- 
composition at  p (see Packard [3]) and (25) extends this result to  the 
mixed case (m,  # 0). 

Thus we (almost) always have a decomposition at p of the form 
(25), and any such decomposition gives us a lower bound for p. Now 
we reformulate this condition into a set of vector equations. 

Lemma B Suppose we have matrices Q E &K with a[ # 0 for i = 
l r . . . , m r  and D E 'DK with D2 E ?)IC and di = j$ for i E , f ( Q ) .  
Then we have a non-zero vector &, and a real positive scalar p such 
that 

i f l  there exists a matrix D E 'DK with 0, = 6f for i E Y ( Q )  and 
non-zero vectors b, a ,  z, w such that 

M b = p a  M f z = p w  
b = Q a  b =  D-'w 

z = Q'QDa 

Proof: (+) Define z = D& and b, a, z ,  w as 

z = Q'w 

b = D-1, a = D-lQ-12 
z = D & * z  w = D z  

Finally define D = D2 and the result follows. 
(-+) Defining D as the unique matrix D E VK such that D2 = D ,  

and B = b the result follows directly. 0 

Remarks: We note that assumption S[ # 0 for i = 1,. . . , m, was 
included to  ensure that Q was non-singular. This assumption was 
used in showing the necessity of (27) but was not required to  show 
sufficiency of (27). 

7 A Power Algorithm for the Lower Bound 
In light of lemma 9 the problem of computing a lower bound for p c ( M )  
is reduced to  one of finding a solution to  the set of equations in (27) 
which gives us a decomposition as in (25). In order to  do this we first 
note that if we partition b,a,z, w compatibly with the block structure 
as in (17) then the set of constraint equations 

b = Qa 
z = Q'QDa 

b = D-Iw 
z = Q'w 

can be broken down into a series of m similar independent constraint 
equations on the block components (since Q and D are block diagonal). 
These equations are of three types corresponding to  a repeated real 
scalar block, a repeated complex scalar block, or a full complex block. 
We now consider a generic constraint of each type. The following two 
lemmas are due to  Packard 131. 

Lemma 10 (Repeated Complex Scalar Block [3]) Let b, a, z, w E 
Ck be non-zero vectors with a*w # 0. Then there exists a complex 
scalarq with IqI = 1, and a complex matrix D E Ckxk  with 0 < D = D' 
such that 

b = qa 
z = q'qDa 

b = D-'w 
z = q'w 

i f  and only if 

Lemma 11 (Full Complex Block 131) Let b, a,  z, w E Ck be non- 
zeru vectors. Then there exists a complex matrix Q E C k x k  with 
Q'Q = I k ,  and a real positive scalar d such that 

b = Qa 
z = Q*Qda 

b = d-'w 
z = Q'w 

if and only if 
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Now we consider a repeated real scalar block, bearing in mind that 
we have additional constraints if the real perturbation is not on the 
boundary (i.e. for i E 3 ( Q ) )  

Lemma 12 (Repeated Real Scalar Block) Let b, a ,  z ,  w E Ck be 
non-zem vectors with a*w # 0. Then we have a real scalar q with 
) q )  5 1, a real scalar 0 E [-$ $1, and a complez matriz D E C k x k  with 
0 < D = D' such that 

b = qa 
z = q*qejsDa 

b = e-jsD-'w 
z = q'w 

with 6' = &$ for (91 < 1 iff 

z = q w  b = q a  (30) 

with 

Re(a*w) 2 0 f O T  q = 1 
Re(a*w) < O  f O T  q =  -1 
Re(a'w) = O  f o r  IqI < 1 

Proof: (+) Immediately we have z = qw and b = qa. Thus 
a*w = Lb'w = Lej8w*(D*)-Iw. Now q = 1 implies arg(a*w) = 6' and 
hence l$e(w*a) f 0. Similarly q = -1 implies arg(a*w) = 6' + s and 
hence Re(w'a) 5 0. Finally IqI < 1 implies arg(a*w) = 6' or B + s 
with B = &$. Thus arg(a'w) = &$ and so Re(a*w) = 0. 
(e) Immediately we have b = qa and z = q*w, and so b'w = 

qa*w. Denoting B = arg(b*w) we see that for q = 1 Re(a*w) 2 0 
which implies Re(b*w) 2 0 and so B E [-$ $1. Similarly for q = -1 
Re(a*w) 5 0 which implies Re(b*w) 2 0 and so 6' E [-4 51. Finally 
for (g( < 1 Re(a*w) = 0 which implies Re(b'w) = 0 and so B = &$. 
Now b*(e-jsw) is real and positive and so applying lemma 6 we have 
a matrix D with 0 < D = D* such that b = e- j shw.  Define D = D-' 
and we have b = e-jeD-'w and z = q'w = q*ejSDb = q*qej*Da. 
0 

These lemmas now allow us (with a few technical assumptions) 
to eliminate the matrices Q and D from (27). In order to  avoid the 
notation becoming excessive we consider a simple block structure with 
m, = m, = mc = 1 for the remainder of this section. We stress 
that this is purely for notational convenience, and that the general 
formulae for an arbitrary block structure, as defined in Section 2, are 
simply obtained by duplicating the appropriate formulae for each block. 
So given K: = ( k l ,  kz ,  k3)the appropriate scaling sets become 

7 r . A  
Dsub = {block diag(ejsD1,D2,dllk,) : 6' E [-- -1, 2 2  

0 < Dj = Df E Cktxk' ,O < di E R} (33) 

and we partition b,a,z,w compatibly with this block structure as 

where bj,aj,zj, wj E Cki .  Then we obtain our final form of (27) as 

Theorem 4 Suppose we have vectors b, a ,  z, w E C" partitioned as 
in (34) with bj,ui,zj, wi # 0 and a;wl,a;w2 # 0.  Then there exist 
matrices Q E &sub and D E vDJub, and a positive real scalar p such 
that 

Mb=,Ra M * z = p w  
b = Q a  b = D - ' w  

z = Q'QDa . z = Q*w 

with 6' E [-5 $1 and 6' = &$ for I Q r (  < 1 if 

M b  = pa 

M'z = p w  

for some real scalar q E [-1 11 with 

Re (a ;wl )>  0 f o r  q =  1 
Re(a;wl)<O for q =  -1 
Re(aYw1) = 0 f o r  IqI < 1 

(35) 

Proof: Apply lemmas 10, 11 and 12 to  the appropriate block com- 
ponents. 0 

Remarks: Since the relationships (35) and (36) are unaffected if 
we multiply b and a by an arbitrary positive real scalar a, and z and w 
by an arbitrary positive real scalar 7, then in searching for solutions to 
these equations we may impose the additional restriction la1 = lwl = 1. 

Any solution to  (35) and (36) immediately gives us a decomposition 
as in (25) and hence ,B is a lower bound for ~ K ( M ) .  We also note that, 
under certain technical assumptions (as given), there always exists a 
solution to these equations with p = p r ( M ) .  We now propose finding 
a solution to this system of equations via the following power iteration: 

pk+iak+i = Mbk 

where (ik+l and @k+l evolve as 

(37) 

Else = &k+l 

and &+l,I!jk+l are chosen positive red  so that lak+ll = IWk+ll= 1. 

It is now straightforward to verify that if the algorithm converges 
to some equilibrium point then we satisfy the appropriate constraints 
on each block component and hence by lemmas 10, 11, and 12 we have 
have non-zero vectors b,a,z,w E C", matrices Q E Qsub,D E 'Dsubr 
and positive real scalars p ,  such that 

M b = p a  M * z = p w  
b = Q a  b =  D-'w 

z = Q*w z = Q'QDa 
(39) 

Thus if p = I ! j  then we satisfy (27) and so have a decomposition-as i t  
(25), and hence p is a lower bound for phl(M). We note that if p # p 

1234 



then we have not found a decomposition as in (25_),Ahowever we still 
have Q M b  = f ib  and w’QM = Pw’, and so max(p,P) still gives us a 
lower bound for p x ( M ) .  

Note that the equilibrium points of the algorithm ale unaffected if 
we multiply the terms Re(a;,+l w l A ) ,  Re(a;k+lwlk+l )  by arbitrary real 
positive scalars, and hence we may employ this degree of freedom to  
select scaling parameters so as to aid convergence. 

For the purely complex case, m, = 0, this algorithm reduces to  
that of Packard [3], and hence many of the comments made there also 
apply here. In particular we note that there is a potential problem 
with the algorithm if any of the following occur: 

Mbk = 0 or M * q  = 0 

Ia1,I = 0 

la;kwzkl = 0 

la3,1 = 0 or l w ~ ~ l  = 0 

since any of these conditions will result in one of the terms in the algo- 
rithm being undefined. If this occurs then simply restart the algorithm 
from a new point (i.e. a new b l ,  201 and &). A scheme for computing 
the initial guesses b1 and wl for Packard’s algorithm is outlined in [3] 
and it would also seem to be a cheap way to generate reasonable first 
guesses here. The first guess for 6 2  is then simply chosen as I & (  = 
with sgn(B2) chosen so as to minimize Ibl, - 6za1,J.  

a12 

8 Numerical Experience 

The algorithm outlined in Section 7 has been implemented and initial 
test results are encouraging. The potential problems of certain terms 
becoming undefined do not seem to occur in practice (although it is 
possible to construct: matrices for which this occurs). It also appears 
that we obtain 6 = ,O in practice, and hence the algorithm gives us not 
only a lower bound for p x ( M )  but also a decomposition as in (25). 
Both of these issues are subjects of current research. 

For the purpose of comparison we used the upper bound of Fan et. 
al. [SI. Whilst numerical experience is still somewhat limited (due in 
part to our current lack of an efficient implementation of this upper 
bound) the lower bound algorithm has been tested on a fairly large 
number of random matrices. For a typical test run of 500 randomly 
distributed 5 x 5 complex matrices with 2 real scalar uncertainties 
and three complex scalar uncertainties the algorithm converged 96% 
of the time, in an average of 22 iterations, with an average ratio of 
0.96 to the upper bound. 

The algorithm has also been tested on a variety of other block struc- 
tures, and on much larger matrices (e.g. lOOx 100) and the convergence 
properties appear similar to those described above. An exception to 
this is the case m, = mc = 0 which appears to  have significantly 
poorer convergence properties than any other. There are important 
reasons for this that seem inherent to the problem, not the computa- 
tion scheme. This will be the subject of further papers. Whilst the 
results in this paper do apply to this case, the real-only case is of less 
engineering interest than the mixed case, since any robust performance 
p test will always involve at  least one complex block. 

For mixed problems, the growth rate in computational cost as a 
function of problem size appears to be reasonable. Experiments were 
carried out on random n x  n complex matrices with n = 10,20,50,100, 
with block structures consisting of all scalar blocks with n / 2  real and 
n / 2  complex. The growth rate in computation time for the existing 
implementation was less than n ,  but this is probably an artifice of 
the implementation in MATLAB, an interprative language. A more 
realistic measure is in terms of total floating point operations (flops), 
where the growth rate is approximately n2. This type of growth rate is 
similar to that of power iterations for eigenvalues and singular values. 

The convergence properties of standard eigenvalue and singular 
value power algorithms can be improved by inverse iteration, and sim- 
ilar adaptations to the algorithm described in (37) and (38) have been 

investigated. While the results are very preliminary, it appears that 
the convergence can be improved (to a success rate of better than 99% 
for the above example for instance). We believe further improvements 
are possible and this is being investigated. 

9 Conclusion 
The computation of a lower bound for p has been shown to  be equiv- 
alent to  finding a certain matrix decomposition, and this in turn has 
been shown to be equivalent to  finding a solution to a set of matrix- 
vector equations. This representation naturally leads to a power iter- 
ation scheme to  generate a lower bound for p. This scheme has been 
found to  have fairly good convergence properties, and work is under 
way to improve this further. Each iteration of the scheme is very 
cheap, requiring only such operations as matrix-vector multiplications 
and vector inner products, and the method is sufficiently general to  
handle arbitrary numbers of repeated real scalars, repeated complex 
scalars, and full complex blocks. 

To reliably compute p, the lower bound described in this paper 
would need to  be combined with an upper bound. The upper bound 
of Fan, et. al. [4] appears promising as it involves convex optimization 
very similar to existing upper bounds for the purely complex case. 
For most problems, these bounds will be close enough, but there are 
matrices for which the gap can be large and the bounds will need to be 
refined. A promising approach is to  use a standard branch and bound 
scheme such as the ones suggested by deGaston, Safonov, Sideris, et. al. 
(see [6] and references therein). The experimental work in [6] suggests 
that using their bounds, the growth rate of the subdomains in the 
branch and bound was modest and the total cost of computation is 
dominated by the cost of computing the bounds. Whether similar 
properties will hold using the bounds in this paper is not clear, as the 
partitioning algorithm in [G] made explicit use of information obtained 
in computing the bounds. Nevertheless, the results are encouraging 
and this avenue will be investigated. 
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