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ABSTRACT
The Internet is teeming with high variability phenomena, from mea-
sured IP flow sizes to aspects of inferred router-level connectivity,
but there still exists considerable debate about how best to deal with
this encountered high variability and model it. While one popular
approach favors modeling highly variable event sizes with conven-
tional, finite variance distributions such as lognormal or Weibull
distributions, Mandelbrot has argued for the last 40 years that there
are compelling mathematical, statistical, and practical reasons for
why infinite variance distributions are natural candidates for captur-
ing the essence behind high variability phenomena. In this paper,
we elaborate on Mandelbrot’s arguments and present a methodol-
ogy that often allows for a clear distinction between the two ap-
proaches. In particular, by requiring the resulting models to be
resilient to ambiguities (i.e., robust to real-world deficiencies in the
underlying network measurements) and internally self-consistent
(i.e., insensitive with respect the duration, location, or time of the
data collection), we provide a rigorous framework for a qualitative
assessment of the observed high variability. We apply the proposed
framework to assess previously reported findings about measured
Internet traffic and inferred router- and AS-level connectivity. In
the process, we also discuss what our approach has to say about re-
cent discussions concerning network traffic being Poisson or self-
similar and router-level or AS-level connectivity graphs of the In-
ternet being scale-free or not.
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1. INTRODUCTION
Informally, high variability is a phenomenon by which a set of

observations takes values that vary over orders of magnitude, with
most observations taking small values, with a few observations at-
taining extremely large values with non-negligible probabilities,
and with intermediate-sized observations occurring with apprecia-
ble frequencies. A trademark of high variability data is that their
sample standard deviation is in general enormous, implying a largely
uninformative sample mean as the latter fails to adequately de-
scribe the location of the bulk of the observed values. For more
than a decade, the Internet has been a rich source for such high
variability phenomena, ranging from traffic-related quantities such
as, for example, IP flow size [8, 30], TCP connection duration
[16], or packet interarrival times ofTELNET connections [33], to
connectivity-related aspects of the physical infrastructure of the
Internet (e.g., number of connections per router [15]) or of vir-
tual networks (e.g., the node degree of inferred Autonomous Sys-
tem, or AS-level maps [15]) or overlay networks constructed at the
upper layers of the protocol stack (e.g., the in- or out-degree of
the nodes in the Web graph [4]). While the ubiquitous nature of
high variability in the Internet is well documented and generally
accepted, there is an ongoing debate about how best to capture,
model, and ultimately explain observed high variability phenom-
ena. Representative for this debate are the re-occurring discus-
sions about the virtues of using Lognormal versus Pareto-type dis-
tributions or, more generally, finite variance versus infinite variance
distributions for describing highly variable observations. Many of
the arguments made in the existing networking literature (e.g., see
[11]) parallel earlier ones encountered in areas such as finance, eco-
nomics, or biology and detailed by Mandelbrot in [28].

The purpose of this paper is to demonstrate that an appropriate
treatment of network-related measurements is capable of adding a
new component to this debate that has been largely missing in the
past, but helps in advancing network modeling. To this end, we
propose a concrete framework that attempts to exploit the qualita-
tive and quantitative properties typically encountered when dealing
with network-related measurements more fully than commonly-
used methods and requires the resulting models to beinternally
self-consistentand resilient to ambiguities. Here, by resilient to
ambiguities, we mean that the resulting models are required to be
as robust as possible to the deficiencies and ideosyncracies asso-
ciated with actual network measurements. By insisting on inter-
nally self-consistent models, we require that the modeling process
yield consistent models when modifying the given data set to re-
flect shorter (or longer) periods over which the measurements were
collected. The main reason for aiming for self-consistent models
or model classes is their statistically appealing feature of being by
and large insensitive to aspects of the data that are concerned with
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measuring one and the same quantity over varying time periods, at
different points in time, at different points in the network, or under
different networking conditions.

We illustrate the proposed framework in the context of IP flow
and Internet connectivity measurements and demonstrate how con-
ventional model fitting is used as a stepping stone and not as an
end in itself when deciding whether or not a given model satisfies
our desired requirements. In particular, we re-assess previously
reported findings in, for example, [11, 12] and [15] concerning
Lognormal Internet traffic characteristics and Pareto-type node de-
grees in router-level graphs, respectively. In the process, we rely on
known statistical techniques for Lognormal distributions, exploit
somewhat less-known techniques for inferring Pareto-type distri-
butions, and elaborate on largely unknown data-analytic methods
and principles advocated a long time ago by Mandelbrot [27] and
Tukey [41] for dealing with finite/infinite variance distributions and
large data sets, respectively. Specifically, we will focus on and il-
lustrate Tukey’s principles of “borrowing strength (from large data
sets)” and “broadening the basis” as well as Mandelbrot’s simple
but powerful method of “sequential (moment) plots.” We also show
how the resulting Internet modeling approach differs from current
practice, we discuss why anybody interested in network simula-
tion, modeling, and analysis should care about the implications of
this proposed approach, and we elaborate in detail on what our ap-
proach has say about re-occurring claims about network traffic be-
ing Poisson rather than self-similar (see for example [5, 23]) and
about the recently reported findings that inferred router-level and
AS-level connectivity graphs of the Internet are scale-free (e.g., see
[1, 45]).

The remainder of the paper is structured as follows. In Sec-
tion 2, we introduce subexponential distributions and appropriate
refinements as efficient and parsimonious models for describing
high-variability phenomena and elaborate on their mathematical,
statistical, and practical properties. The requirement of internally
self-consistent models is the focus of Section 3, while Section 4
deals with our second requirement, namely that the resulting mod-
els should be resilient to ambiguities in the underlying measure-
ments. After illustrating these requirements in the context of mea-
sured IP traffic and inferred Internet connectivity data, we conclude
in Section 5 by discussing a number of implications of the proposed
framework for Internet modeling.

2. A MATHEMATICAL FRAMEWORK FOR
MODELING HIGH VARIABILITY

We introduce in this section the class of subexponential distri-
butions which provides a rigorous and convenient mathematical
framework for dealing with high variability phenomena. To fur-
ther distinguish between finite versus infinite variance distributions,
we consider a subclass of the subexponential distributions, called
heavy-tailed or scaling distributions, and elaborate on some key
mathematical properties of the latter. For a more comprehensive
treatment of these topics, we refer to a survey on subexponential
distributions by Goldie and Klüppelberg in [20] and to early works
by Mandelbrot on scaling distributions reproduced in [28].

2.1 Heavy-tailed or scaling distributions
Focusing throughout this paper on non-negative random vari-

ablesX, let F (x) = P [X ≤ x], x ≥ 0, denote thecumulative
distribution function (CDF) ofX andF̄ (x) = 1 − F (x) thecom-
plementary CDF (CCDF). A typical feature of commonly-used dis-
tribution functions is that their (right) tails decrease exponentially
fast, implying that all moments, including exponential moments,

exist and are finite. In practice, this property ensures thatX ex-
hibits low variability and thus concentrates tightly around its mean.
To describe in a mathematically convenient way high variability
phenomena, we introduce next the class of subexponential distribu-
tion functions.1 Following [20], we callF (or X) subexponential
if

lim
x→∞

P [X + Y > x]

P [X > x]
= 2,

whereY is an independent copy ofX. This definition can be shown
to be equivalent to

lim
x→∞

P [X1 + · · ·+ Xn > x]

P [max(X1, . . . , Xn) > x]
= 1 for some (all)n ≥ 2,

whereX1, X2, . . . are iid non-negative random variables with dis-
tribution functionF . This shows that in contrast to low variability
distributions, the sum ofn iid subexponential random variables is
likely to be large if and only if their maximum is likely to be large,
and accounts for the non-negligible probability that there will be
extremely large values in a subexponential sample. This definition
also implies that for subexponential distributions, we have

F̄ (x)/e−εx →∞ for all ε > 0;

that is, the (right) tail of a subexponential distribution decays more
slowly than any exponential, implying that all exponential moments
of a subexponential are infinite. Well-known examples of subexpo-
nential distributions include the Lognormal, Weibull, Pareto, and
certain stable laws, while the Gaussian, exponential, and Gamma
are examples that are not in the class of subexponentials.

To distinguish between subexponential distributions whose reg-
ular moments can also be infinite, we next consider the subclass
of subexponentials consisting of the heavy-tailed or scaling distri-
butions. To this end, a subexponential distribution functionF (x)
or random variableX is calledheavy-tailedor scalingif for some
0 < α < 2

P [X > x] ≈ cx−α as x →∞ (1)

where0 < c < ∞.2 The parameterα is called thetail index. For
1 ≤ α < 2, F has infinite variance but finite mean; for0 < α < 1,
F has not only infinite variance, but also infinite mean. In general,
all moments ofF of orderβ ≥ α are infinite. For example, while
both the Lognormal and Pareto have infinite exponential moments,
all regular moments of the former are finite, while the regular mo-
ments of orderβ of the latter are infinite for allβ ≥ α. Heavy-
tailed distributions are called scaling distributions because the sole
response to conditioning is a change in scale; that is, ifX is heavy-
tailed with indexα andx > w, the conditional distribution ofX
given thatX > w satisfies

P [X > x|X > w] =
P [X > x]

P [X > w]
≈ c1x

−α,

which—at least for large values ofx—is identical to the (uncondi-
tional) distributionP [X > x], except for a change in scale. Scaling
distributions are also calledpower law distributions, and we will
use below the notions of scaling, heavy-tailed, and power law dis-
tributions interchangeably and only insist that the right tail of the

1It is sometimes convenient to consider the slightly more general
class oflong-tailed distribution functions[20], but for the purpose
of this paper, this generalization is not needed.
2A more general definition involving regularly varying tails is pos-
sible [20], but such a generalization makes applying and inferring
scaling behavior cumbersome.
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distribution satisfies property (1). One of the most publicized fea-
tures of scaling distributions which follows trivially from (1) is that
their CCDF, when plotted on a log-log scale, appears as a straight
line, at least asymptotically.

2.2 Invariance properties of scaling
distributions

Scaling distributions enjoy a number of invariance properties that
(sometimes uniquely) characterize them. We follow here the pre-
sentations in [28], show that scaling distributions are essentially
invariant under transformations such as aggregation, mixture, max-
imization, and marginalization, and discuss some practical impli-
cations of this invariance property.

2.2.1 Aggregation
The classical central limit theorem (CLT) is often cited as the

reason for the ubiquity with which Gaussian (normal) distributions
occur in nature. In its standard form, the classical CLT states that
if X1, X2, . . . are iid random variables with distribution function
F (whereF has finite meanµ and variance1), and if S(n) =
X1 + X2 + · · ·+ Xn denotes thenth partial sum, then in the limit
asn →∞,

S(n)− nµ√
n

→ N(0, 1),

whereN(0, 1) is the standard Gaussian (normal) distribution hav-
ing mean0 and variance1. More general versions of this statement
are available and can be found, for example, in [17].

A somewhat less well-known version of the CLT goes as follows.
Let X1, X2, . . . be iid random variables with scaling distribution
function F with 1 < α < 2 (implying finite mean butinfinite
variance). Again, defineS(n) to be thenth partial sum. Then in
the limit asn →∞,

S(n)− nµ
α
√

n
→ Sα,

whereSα is astable distributionwith indexα. Again, more general
versions of this non-classical CLT are available. Here, a random
variableU is said to have a stable distribution with indexα ∈ (0, 2]
if for any n ≥ 2, there is a real numberdn such that

U1 + U2 + · · ·+ Un = n1/αU + dn,

whereU1, U2, . . . , Un are independent copies ofU . For 0 <
α < 2, α-stable laws are scaling distributions with indexα in the
sense of definition (1); for the extreme caseα = 2, we recover the
Gaussian as a special case of the stable distributions. For a detailed
treatment of stable distributions, we refer to [37].

Together, these results show that the Gaussian and scaling distri-
butions are both invariant under aggregation. More precisely, the
classical and non-classical CLTs state that the stable distributions
are the only fixed points of the renormalization group transforma-
tion (i.e., aggregation) and that Gaussian distributions are, in fact,
a very special case (i.e.,α = 2).

2.2.2 Maximizing Choices
Consider the case ofn independent random variables denoted

X1, X2, . . . , Xn and assume that their distribution functions are
scaling distributions with the same tail index parameterα, but pos-
sibly with different scale coefficientsci > 0; that is,

P (Xi > x) ≈ cix
−α for (1 ≤ i ≤ n).

For 1 ≤ k ≤ n, define the random variablesMk to be the k-th

successive maxima given by

Mk = max(X1, X2, . . . , Xk).

Using thatP (Mk ≤ x)
Q

1≤k P (Xi ≤ x), it is easy to show that
for largex,

P [Mk > x] ≈ cMkx−α,

wherecMk =
P

1≤i≤k ci. Thus, the k-th successive maxima of
scaling distributions are also scaling, with the same tail indexα,
but different scale coefficients than the individualXi’s.

As for the converse (i.e.,Mk is scaling only if theXi’s are
scaling), for the invariance-up-to-scale to hold formally, the dis-
tributions of theXi’s need not follow the scaling distribution ex-
actly. In fact, a result from extreme value theory identifies the in-
variant distributions as the Frechet distributions and characterizes
the distributions of theXi’s that are in the domain of attraction
of the Frechet distribution. The Frechet distribution is defined by
P [M > x] = 1 − exp(−x−α), x > 0 and is clearly scaling for
largex. As a consequence, the individualXi’ s must be so close
to being scaling distributions as to be scaling for all practical pur-
poses. In this sense, scaling distributions are the only distributions
that are invariant under the transformation of maximization. In par-
ticular, Gaussian distributions lack this invariance property.

2.2.3 Weighted Mixtures
As before, assume thatX1, X2, . . . , Xn aren independent ran-

dom variables with scaling distribution functionsFi, all with the
same tail index parameterα, but possibly with different scale co-
efficientsci > 0. Consider theweighted mixtureWn of theXi’s,
and denote bypi the probability thatWn = Xi. It is easy to show
that

P [Wn > x] =
X

piP [Xi > x] ≈ cWnx−α,

wherecWn =
P

pici is theweighted averageof the separate scale
coefficientsci. Thus, the distribution of the weighted mixture of
scaling distributions is also scaling, with the same tail indexα, but
a different scale coefficient than the individualXn’s.

Mathematically, the converse (i.e.,Wn is scaling only if theXi’s
are scaling) holds only to a first approximation. In fact, in the limit
asn → ∞, the invariant “distributions” forW are of the form
P [W > x] = cx−α, x ≥ 0, which are improper distribution func-
tions because they yield an infinite total probability. However, for
all practical purposes, theXi’s are typically restricted by some rela-
tion of the form0 < a ≤ x which results in perfectly well-defined
(conditional) distribution functions of the scaling type. With these
qualifications, scaling distributions are the only distributions that
are invariant under the transformation of weighted mixture.

2.2.4 Marginalization
Recall that stable distributions are trivially scaling. For the sake

of completeness, we note that the stable distributions, like the Gaus-
sian, have natural extensions to the multivariate case. Indeed, the
multivariate stable distributions can be characterized as being those
for which every linear combination of the coordinates has a (scalar)
stable distribution. We call this transformation marginalization and
refer to [37] for an in-depth treatment of stable distributions and
their properties.

2.3 Scaling distributions:
More normal then Normal

Aggregation, mixture, maximization, and marginalization are trans-
formations that occur frequently in natural and engineered systems
and are inherently part of many measured observations that are
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collected about these systems. For example, aggregate incomes
are more widely collected and reported than each type of income
separately; the flow or file/document sizes transmitted across the
Internet and observed at a particular link within the network are
naturally a mixture of distributions of the different file/document
sizes residing on the various file/Web servers; for historical data
such as natural or technological disasters (i.e., droughts, floods,
earthquakes, hurricanes, blackouts, nuclear accidents), the fully
recorded and commonly available observations reflect a maximiz-
ing choice and correspond to the exceptional (i.e., largest, or most
catastrophic) events; and the marginalization transformation is rele-
vant for dealing with a variety of multidimensional economic quan-
tities. The ubiquity with which scaling distributions are observed
in such data suggests that scaling is widespread among the con-
stituents underlying these frequently encountered transformations.
In this sense, scaling distributions should be considered the norm
rather than the exception and should not require “special” explana-
tions.

However, there is an implicit tradeoff between Gaussians being
the norm for low variability data and scaling distributions being the
norm for high variability data. In the former case, the (traditional)
CLT imposes only minimal conditions on the distribution of the in-
dividual constituent (i.e., finite variance), but as a result, invariance
properties can only be obtained for aggregation and marginaliza-
tion. In contrast, for high variability data, the relevant CLT requires
the (right) tail of the distribution of the individual constituents to
decay at a certain rate, and as a result of this more restrictive as-
sumption, the individual constituents are not only invariant under
aggregation and marginalization, but also under maximization and
weighted mixtures. The pragmatic approach to dealing with high
variability data advocated in this paper then consists of viewing
Gaussians as the natural null hypothesis for low variability data,
where variance estimates exist, are finite, and converge robustly
to their theoretical value as the number of observations increases.
Similarly, it views scaling distributions as the natural and parsi-
monious null hypothesis for high variability data, where variance
estimates tend to be ill-behaved and converge either very slowly or
fail to converge altogether as the size of the data set increases. In
addition, it fully exploits the different invariance properties exhib-
ited by low versus high variability data. After illustrating its two
main ingredients in Sections 3 and 4 below, a “recipe” for our pro-
posed pragmatic approach to dealing with high-variability data is
given in Section 5.

3. REQUIREMENT 1:
MODEL CONSISTENCY

Increasingly, conventional model fitting is experiencing the dilemma
that when faced with large data sets or with data having non-traditional
characteristics (e.g., high variability), standard goodness-of-fit tests
to select among alternate models are in general inadequate and fail
to choose the “best” model. In this section, we suggest an alter-
native approach to distinguishing between competing models that
uses conventional model fitting not as an end in itself, but applies it
iteratively to increasingly larger subsets of the data set at hand and
checks for self-consistency among the resulting models.

3.1 Conventional model fitting:
An end in itself

In simplified terms, conventional model fitting as described in
the standard statistics or time series analysis literature proceeds in
four steps. It starts by considering a given data set “as is”, that is, all
the available observations are taken at once and at face value. This
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Figure 1: Model fitting by example: CCDF plots of fitted Log-
normal, fitted Pareto, and original data; (top) for HTTP data
set and (bottom) IP flow data set.

is followed by selecting parameterized models or model classes that
are deemed appropriate for the data at hand. In a third step, the full
data set is used to estimate the necessary model parameters, and
the last step consists of selecting the model that fits the data “best”
according to some goodness-of-fit criterion.

Figure 1 illustrates steps 1–3 of this approach with two different
data sets and two different models. The first data set is from [44]
and consists of some 240,000 HTTP connection sizes (in bytes)
collected at LBL’s WAN (in- and outbound) for a 24-hour period in
June of 1996. The second data set consists of some 800,000 IP flow
sizes (in bytes) derived from theAUCKLAND IV trace [32] and
collected over a 4-day period, June 9–12, 2001. For both data sets,
we consider the 2-parameter Lognormal(µ, σ) distribution and the
2-parameter Pareto(β, α) distribution of the second kind (e.g., see
[22]). Fitting of the Lognormal was done by conventional moment-
matching techniques, and fitting of the Pareto involved the “naive”
tail index estimate (i.e., slope of fitted straight line through the tail
of the CCDF, where the CCDF is plotted on a log-log scale). While
more sophisticated parameter estimation techniques could be used,
the outcome of this standard model fitting exercise is highly pre-
dictable. Reasonable models will provide a reasonable fit, with
more highly parameterized models typically yielding a better fit
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than more parsimonious ones. Moreover, because of the volumi-
nous data sets and some “unusual” features in the data (e.g., ex-
treme values that are genuine and cannot be dismissed as outliers;
possible dependencies), commonly-used goodness-of-fit measures
to choose among comparable candidate models generally fail to
identify the “best” model. For example, models that are excellent
approximations tend to be rejected in large samples, no matter how
closely they seem to fit the data, resulting in similar discussions as,
for example, in [11] about whether Lognormal or Pareto is a better
model for a range of Internet traffic-related quantities.
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Figure 2: Samples from fitting distributions for the HTTP data
set: (top) CCDF plots of 20 samples from fitted Pareto and (bot-
tom) CCDF plots of 20 samples from fitted Lognormal.

A plausible conclusion that could be drawn from Figure 1 is that
there seems little difference in using either a Lognormal or Pareto
model to describe the two data sets and that given the available data,
there is not much else to say. This view seems to be confirmed by
Figure 2, where we consider the HTTP data set (the same results
hold for the IP flow data set) and the two fitted distributions from
Figure 1 (top), and show the CCDFs of 20 independent samples
generated from the fitted Pareto (top) and from the fitted Lognormal
(bottom). Together, Figures 1 and 2 show that the variability in
the tail of the CCDF of the data is consistent with that of samples
drawn from either of the two distributions, yet another indication
that the two models seem to describe the data set about equally
well. In view of G. P. E. Box’s comment that “all model are wrong,
but some models are useful”, conventional model fitting applied
to network measurements offers increasingly less guidance as to

which models are indeed useful and has left Internet modeling in
a rather precarious state, where the same set of measurements are
fitted with very different, but apparently equally “good” models,
which in turn can give rise to completely opposite explanations and
theories for the same observed phenomenon (see Section 5).

3.2 Beyond conventional model fitting:
Borrowing strength

To find a way out of the above dilemma, we first note that taking
a data set “as is” in step one of the described model fitting process
is somewhat arbitrary. For example, in the case of the HTTP data
set, we may just as well have ended up with only 1 hour, or half
a day, or maybe even with two days worth of measurements, de-
pending on the circumstances under which this measurement effort
took place. Thus instead of viewing a given data set as “static”, we
propose taking a more “dynamic” view of the data at hand and ap-
ply Tukey’s principle of“borrowing strength from large data sets”
[41] in practice. To this end, letD denote the original data set of
sizeN , start with an initial subsetD0 of D of sizeN0, and con-
sider successively larger nested subsetsD1 ⊂ D2 ⊂ . . . ⊂ Dn

of length N0 < N1 < · · · < Nn, with Nn ≈ N . The main
motivation for taking this dynamic view of the data setD is that it
allows for a careful exploration of the consistency of an assumed
model (e.g., a Lognormal or Pareto distribution) as the number of
observations increases. In particular, making the commonly-used
assumption that one and the same (unknown) underlying process
generated the data at hand in the first place, increasing the number
of observations as we examine the setsD0 throughDn should have
only the following two main effects. First, the parameter estimates
of the fitted modelMi should stabilize, and second, their accuracy
expressed in terms of the widths of their corresponding 95% con-
fidence intervalsCIi should improve in such a way that ultimately
(i.e., asi tends ton), the confidence intervalsCIi should become
roughly nested, withCIi ⊇ CIi+1.

To examine whether the fitted modelsMi are indeed self-consistent,
we combine Tukey’s borrowing strength principle with Mandel-
brot’s “sequential (moment) estimate plots”[28]. The latter is sim-
ply a method that plots the “running (moment) estimates”; that is,
the value of a model parameter estimate or a moment estimate of
the data is plotted as a function of the number of observations used
in the estimation of the parameter/moment. For example, Figure 3
shows the sequential standard deviation plot for the HTTP and IP
flow data sets, respectively. Clearly, while for any fixedn, the sam-
ple standard deviations(n) always exists and is finite,s(n) does
not seem to converge asn increases, suggesting that it is conceiv-
able to assume that the second moment does not exist, i.e, the data
set is a sample from an underlying infinite variance distribution.
To compare and become more familiar with interpreting sequential
moment plots, Figures 3(top) and (bottom) also show sequential
standard deviation plots for (i) a random permutation of the ob-
servations in the two data sets, (ii) same-sized samples generated
from the fitted Lognormal in Section 3.1, (iii) same-sized samples
generated from the fitted Pareto in Section 3.1, and (iv) same-sized
samples generated from fitted exponential distributions. The se-
quential standard deviation plots for the randomized samples (i)
are not inconsistent with the non-existence of a second moment,
and there are noteworthy differences between (ii)-(iv). In particu-
lar, standard deviation estimates of typical samples generated from
a Lognormal with a given standard deviation tend to be far off the
true value; while this is fully expected for Pareto samples where
second moment estimates are known to diverge, it is troublesome
in the Lognormal case because moments estimates are known to
converge to their true values.
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Figure 3: Sequential standard deviation plot for (top) HTTP
data set and (bottom) IP flow data set: original data, random
permutation of original data, fitted Lognormal, fitted Pareto,
and fitted Exponential.

The observed lack of convergence of the sequential standard de-
viation plot for the data in Figure 3 translates directly into incon-
sistencies of models that assume finite moments upfront, either im-
plicitly or explicitly. To illustrate, for the HTTP data set, Figure
4(top) shows the sequential estimatesσ̂(i) of the parameterσ(i) of
fitted Lognormal modelsMi, together with their 95% confidence
intervalsCIi (here we usedni = 1000 ∗ i). We observe that
the parameter estimatesσ̂(i) don’t seem to converge and that suc-
cessive 95% confidence intervals are so small so as to have little
chance to overlap. In short, while for any fixedi, the fitted Log-
normal modelMi appears to provide an adequate fit for the data
setDi, when viewed together, the disadvantage of using Lognor-
mal distributions to fit our data sets becomes evident; the resulting
modelsMi are clearly inconsistent with one another, and while in-
creasing the number of observations produces more accurate pa-
rameter estimates, an apparent lack of convergence of the latter
renders the more precise estimates useless. As a reminder that the
apparent minor differences in̂σ(i) translate into very substantial
differences for the standard deviation estimatesŝ(i) of the Lognor-
mal variableMi itself, Figure 4(bottom) shows the sequential esti-
mateŝs(i) and their approximate 95% confidence intervals, where
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Figure 4: Sequential estimate plots for HTTP data set: (top)
Sequentialσ̂ plot with 95% CIs, and (bottom) sequential ŝ plot
with approximate 95% CIs.

ŝ(i) =
p

e2µ̂(i)+σ̂2(i)(eσ̂2(i) − 1), with (µ̂(i), σ̂(i)) the MLE es-
timates of the parameters(µ(i), σ(i)) of the Lognormal modelMi

[22]. Figure 5 shows the same plots for the IP flow data set, with
very similar conclusions. To quote Mandelbrot [28, p. 21], “when
exactitude is elusive, it is better to be approximately right than cer-
tifiably wrong.” For the data sets at hand, using the proposed frame-
work shows that fitting Lognormals is a case of being “certifiable
wrong.”

We next apply our approach to show that fitting Pareto models
to our data is indeed a case of being “approximately right.” To
this end, Figure 6 shows the sequential estimatesα̂(i) of the tail
index parameterα of fitted Pareto modelsMi, together with their
95% confidence intervalsCIi, where we used againni = 1000∗ i.
More precisely, we use here the well-knownHill estimator to esti-
mate the tail indexα of a Pareto distribution and exploit the fact that
Hill’s estimator is asymptotically normal to compute approximate
95% confidence intervals for̂α(i). For details about Hill’s esti-
mator, conditions under which it is asymptotically normal, and an
expression for the 95% confidence intervals, see for example [34].
The contrast between Figures 4 and 5 and Figure 6 is telling. Not
only is there evidence that the tail index estimatesα̂(i) converge as
i increases to the full size of the data sets, but their corresponding
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Figure 5: Sequential estimate plots for IP flow data set: (top)
Sequentialσ̂ plot with 95% CIs, and (bottom) sequential ŝ plot
with approximate 95% CIs.

CIi’s are such that the fitted Pareto modelsMi are by and large
fully consistent with one another. We take this as strong evidence
that in the case of our data, Pareto models are not only “useful” but
in fact “better” than Lognormal models. In this sense, model con-
sistency is a powerful requirement and represents an effective cri-
terion for selecting among otherwise comparable alternate models.
It also benefits tremendously from the availability of voluminous
data sets.

3.3 Beyond borrowing strength
While we have illustrated our approach with two examples where

a Pareto model is picked over a Lognormal model, the same method
succeeds just as well in selecting a Lognormal over a Pareto when
the underlying data is not consistent with a scaling distribution. For
example, Figure 7 shows the results of trying to fit a Pareto model to
a large sample generated from a Lognormal distribution. We note
that in contrast to Figure 6, the tail index estimatesα̂(i) steadily
increase and don’t seem to converge, with obvious implications for
the corresponding 95% confidence intervals. Also note that our
framework does not only apply to choosing among otherwise com-
parable distributions, but works just as well for selecting among
alternate stochastic process models that are deemed reasonable for
having generated the time series at hand in the first place. In fact,
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Figure 6: Sequentialα̂ estimate plot, with corresponding 95%
confidence intervals: (top) HTTP data set and (bottom) IP flow
data set.

insisting on model consistency turns out to provide an especially
powerful and elegant tool for determining whether the time series
in question is consistent with long-range dependence or whether a
short-range dependent process is a “better” model for the data (for
a concrete example, see [18]). Of course, there will always be sit-
uations where our approach will fail to identify the “best” model
among competing candidates, but in this case, it almost certainly
will be able to reveal whether the fitted candidate models are all
uniformly “good” or “bad” with respect to the model consistency
requirement.

While we advocate here that future Internet modeling efforts
should adhere more faithfully to Tukey’s “borrowing strength” prin-
ciple and thus to making model consistency a general requirement,
the networking community already practices another data analysis
principle that is also attributed to Tukey and is called“broadening
the basis”. While related to “borrowing strength”, “broadening the
basis” refers more explicitly to attempts on generalizing a finding
by drawing on a wider variety of data [13], collected under sim-
ilar or even dissimilar conditions, at different points in space and
time. Thus, in the networking context, broadening the basis is an
approach that attempts to find law-like relationships that describe
not a single set of measurements, but apply to many data sets col-
lected from the same (or a similar) network or perhaps from very
different networks, at different places within the network, over dif-
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Figure 7: Sequentialα̂ estimate plot with 95% CIs for a large
sample of Lognormal observations.

ferent period of time, and under varying networking conditions. IP
flows are a perfect example where applying this principle has pro-
duced overwhelming evidence in favor of the scaling property of
the size distribution of these basic constituents of aggregate net-
work traffic.

4. REQUIREMENT 2: RESILIENCE TO
AMBIGUITY IN THE DATA

While measured Internet traffic traces are generally free of major
ambiguities3, there are other network-related quantities of interest
which cannot be measured directly and where errors or other am-
biguities in the available measurements can lead to premature or
erroneous conclusions. In this section, we show how the invariance
properties of scaling distributions discussed in Section 2 can be ex-
ploited to ensure that fitted models are to some degree resilient to
ambiguities in the data. We illustrate our technique with examples
of router-level and AS-level Internet connectivity measurements.

4.1 Scaling properties to the rescue
The invariance properties of the scaling distributions discussed in

Section 2 have a number of very practical implications for scientific
modeling in general. For example, they make scaling distributions
insensitive to a wide range of ambiguities that occur when mea-
suring various quantities (see for example [3]). Ambiguities com-
monly exist in levels of aggregation (e.g., grouping into classes,
choice of time segment), changing environments (e.g., entries or
exits from a population, varying growth rates, different time seg-
ments), differences in accounting (e.g., treatment of multiple au-
thorship) or measuring (e.g., off sets in clock times), etc. As a
result of such robustness properties, the power of empirical stud-
ies can be vastly expanded by demonstrating, for example, that a
fitted model is not only self-consistent in the sense discussed in
section 3 but is in addition insensitive to the ambiguities that are
often inherent in the process of obtaining the raw measurements in
the first place. Moreover, the inherent robustness properties of the
scaling distributions greatly facilitate scientific discovery, because
they essentially ensure that detecting and identifying scaling laws

3For example, current sampling techniques applied to flow-level
measurements are one source of inaccuracies when analyzing flow
data, but it is known [14] that the scaling property of flow size
distributions is insensitive to this type of ambiguity in the data.
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Figure 8: Degree distribution for Rout-95 data [31]. This data
set was comprised of 266703 traceroute-based hop records,
which translated to 3888 nodes and 5012 edges, spanning
dozens of ISPs.

in real data is not only feasible, but can be fully expected to succeed
despite imperfect measurements as well as a wide range of ambigu-
ities associated with the actual processes of measuring, accounting,
and reporting the data. Properties of a system that require perfect
measurements and tolerate no such ambiguities are highly unlikely
to be useful, let alone be discovered.

4.2 Ambiguities in measurements of Internet
connectivity

For a number of technological, organizational, and economic
reasons, the physical connectivity of the Internet as well as of some
of its virtual connectivity does not lend itself to direct measure-
ments. Thus it needs to be inferred from other types of measure-
ments, and therein lies the potential source for more or less ambigu-
ity associated with network topology data. Although the elaborate
nature of the network protocol suite means that there are a multi-
tude of possible measurements that can be made at different layers,
each type of measurement has its own strengths, weaknesses, and
idiosyncrasies, and results in possibly distinct, yet fundamentally
incomplete, views of the network topology. Even for data within a
particular layer, there is no single place from which one can obtain
a complete picture of network topology, owing in large part to the
thousands of smaller networks that comprise the Internet and are
under their own administrative control. This challenge is further ex-
acerbated by a reluctance on the part of commercial network own-
ers and operators to share topology information, particularly when
it reveals information about the relationship with their customers
or competitors. Nonetheless, the two network topologies that have
received significant attention from experimentalists are therouter-
level topology(representing a type of machine-level connectivity)
and theAS topology(representing organizational interconnectivity
between subnetworks) of the Internet.

4.2.1 Router-level connectivity
Because most ISPs consider their router-level connectivity to be

proprietary, quantities such as a router’s node degree cannot be
measured directly and need to be inferred by other means. To this
end, the measurements-of-choice are traceroute samples, and coax-
ing from them the quantities of interest typically requires signif-
icant effort and involves more or less sophisticated heuristics for
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Figure 9: (left) Node degree distribution for AS 1239 from Rocketfuel data, comprised of 700 “radius 0” nodes, 7337 “radius 1”
nodes, and 10333 nodes at all levels. (right) Node degree distribution for AS 7018 from Rocketfuel data, 656 “radius 0” nodes, 9429
“radius 1” nodes, and 11799 nodes at all levels.
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Figure 10: Router-level degree distribution by core router type: (left) Rocketfuel data for AS 1239. (right) Rocketfuel data for AS
7018.

interpreting the data and transforming them into approximate node
degree values. It is well-known among networking researchers that
the inferred node degrees are extremely ambiguous, and fitted mod-
els (e.g., Pareto node degree distribution) that are not resilient to
some of the most serious ambiguities are likely to be of little scien-
tific value.

The router-level graph reflects one-hop connectivity between routers
running the IP. Information about the connectivity between routers
can be inferred fromtracerouteexperiments which record succes-
sive IP-hops along paths between selected network host comput-
ers (see for example, the Mercator [21], Skitter [9], and Rocket-
fuel [36] projects). Ongoing research continues to reveal more and
more idiosyncrasies of traceroute data and shows that their inter-
pretation requires great care and diligent mining of other available
data sources. On the one hand, a recent study [25] pointed out a
problem inherent to traceroute experiments that can give rise to a
potential bias when inferring node degrees. On the other hand, the
dependence between the layer-2 and layer-3 issues associated with

router-level connectivity can be another potential source of confu-
sion and/or ambiguity.

When modeling and explaining the router-level connectivity of
the Internet, much of the recent emphasis has been on establishing
that the router level node degree distribution is a scaling distribu-
tion; see for example Faloutsos et al. [15], who based their em-
pirical findings on traceroute data that had been collected earlier
by Pansiot and Grad [31] (denoted “Rout-95” in [15] and shown
in Figure 8). In contrast, in a more recent study reported in [36],
traceroute experiments are used to obtain detailed and sophisticated
mappings of a number of router-level ISP topologies, and the re-
sulting data represents the current state-of-the-art in router-level
connectivity. In particular, by leveraging additional information
available from BGP they are able to conduct more focused tracer-
oute experiments that result in better coverage of the ISP topology
under study, and by using knowledge about the way in which IP
addresses are commonly assigned within an ISP point of presence
(PoP), they are able to perform more accurate alias resolution be-
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tween IP addresses and routers. The results based on these more
carefully collected Rocketfuel data suggest that while router-level
ISP topologies have node degrees that exhibit high variability, they
are not consistent with scaling distributions as previously claimed
(see Figures 9(left) and (right)).

Before exploiting some of the mathematical properties of scaling
distributions to resolve the confusion caused by these observations,
we illustrate that the ambiguity of the Rocketfuel data has become
manageable in the sense that while still imperfect, fitted models
based on these data can be expected to be by and large resilient
to the remaining imperfections. The fact that the Rocketfuel data
are not perfect either should come as no surprise. For example,
since traceroute measurements capture connectivity only at the IP
layer, the presence of different technologies at layer-2 (e.g. ATM or
Ethernet) can greatly obscure the real connectivity of the physical
routing devices (see [40] for additional examples). However, the
question of interest is whether or not the remaining imperfections
or ambiguities can have a major impact on the model fitting pro-
cess. Here, we take the Rocketfuel data as is4, and we ask what
a more networking-based understanding has to say about the rea-
sons behind the plots in Figures 9(left) and (right). We observe first
that ISP routers are categorized in Rocketfuel by their “radius” to
the network core (i.e. core nodes have radius 0, nodes one hop out
from the core have radius 1, and so on). Since some of the traces
collected may penetrate deeply into a customer’s network, there is
a practical question of how much of the data should be included
in the picture of the ISP. The analysis of node degree distribution
in [36] was based on data in the “r1” data set (containing nodes
of radius 0 and 1), which at the time was believed to provide the
most representative sample. However, plots 9(left) and (right) show
the vast difference in overall degree distribution between the core
nodes and the broader network. The core nodes exhibit much lower
variability in their node degree distribution while including nodes
further toward the edge has the effect of making the distribution
more variable. Thus, knowledge about the underlying techniques
used to collect the data, when coupled with engineering knowledge
of the network, provide a viewpoint that is significantly more robust
than a view that takes the basic data at face value.

Our understanding of the observed structure of the router-level
connectivity of these ISPs is further strengthened if we consider
therole of the router within a given ISP. For example, some routers
serve asbackbonerouters (providing connectivity within or be-
tween POPs) while others serve asaccess routers(providing con-
nectivity from the ISP to its customers). Inferring this role is pos-
sible from theDNS information associated with a particular router,
since routers are typically named according to their function5. A
simple separation of core nodes for each network into these two cat-
egories provides insight into the design of the topology, namely that
access routers are greater in number and tend to have more connec-
tions than backbone routers (see Figure 10(left) and (right)). Again,
since this data reflect connectivity at the IP-layer where there may
be many virtual connections sharing the same link, we might ex-
pect the variability in physical connectivity to be much less. On
the one hand, this suggests that the actual “by-router-type” degree
distributions exhibit even less variability than shown in Figure 10.

4Another level of self-consistency would be to bring in additional
resources to scrutinize and validate the Rocketfuel data itself. For
example, is the connectivity data consistent with the technological
and economic factors that have been recently suggested to shape
the way that an ISP thinks about building its topology [26]?
5For example, Sprintlink (AS 1239) publishes its router nam-
ing convention. Seehttp://www.sprintlink.net/faq/
namingconvention.html for additional details.

On the other hand, this observation also implies that if there is in
fact high variability in observed physical connectivity, it is caused
by high variability in connectivity at the edge of an ISPs network
and not within its core.

This type of insight into the engineering details of the network
shows that the qualitative features of Rocketfuel-based node degree
distributions of router-level ISP topologies are consistent with net-
working reality and can be explained in terms of underlying net-
working design principles, technology, and economic considera-
tions. In turn, they can be expected to be resilient to any poten-
tially remaining ambiguities in the data. Thus since the router-level
topology of the Internet’s core can be roughly viewed as the aggre-
gation and/or some weighed mixture of individual ISP router-level
topologies, and since the latter are not scaling, the former cannot
be scaling either. In short, the Rocketfuel study implicitly suggests
that the original claims of scaling distributions for router-level node
degreesin the core of the networkare either due to ambiguities in
the original data or due to the influence of additional data not cap-
tured by Rocketfuel (i.e. corporate and residential edge networks).
In either case, claims of scaling in the router-level core of the In-
ternet collapse under scrutiny with more diligently collected and
interpreted data.

4.2.2 AS-level connectivity
In models of the AS topology, each node represents an autonomous

system (AS) while a link between two nodes indicates the presence
of a “peering relationship” between the two ASs, reflecting a mu-
tual willingness to carry or exchange traffic. In this representation,
a single “node” (e.g., AT&T) represents potentially hundreds or
thousands of routers as well as their interconnections. Although
most large ASes have several peering points with other networks,
the use of BGP data to infer connectivity means that one is collaps-
ing possibly hundreds of router-level connections all into a single
link between two ASes. In this sense, the AS graph is a “virtual”
graph representing peering (i.e., business) relationships among ASs
(i.e., businesses) and is expressively not a representation of any
physical aspect of the Internet structure. Directly measuring AS
connectivity is infeasible. The measurements that form the basis
for inferring this connectivity consist of BGP routing table snap-
shots collected, for example, by the University of Oregon Route
Views Project [35].

Significant attention has been directed toward discovering the
structural features of the AS “graph” and speculating on what these
features imply about the large-scale properties of the Internet. Scal-
ing distributions entered by way of empirical studies, first reported
by Faloutsos et al. [15]. The findings presented in [15] consist of
observed power law relationships between the node outdegree (i.e.,
number of outgoing connections) and node rank; between number
of nodes and outdegree; between the number of node pairs within
a neighborhood (in hops) and neighborhood size; and between the
eigenvalues of the adjacency matrix of the inferred AS graph and
the rank of the AS.

However, AS connectivity data as inferred from BGP is subject
to considerable ambiguity. For example, due to the way BGP rout-
ing works, snapshots of BGP routing tables taken at a few vantage
points on the Internet over time are unlikely to uncover and cap-
ture all existing connections between ASs. Other ambiguities that
are of concern in this context have to do with the dynamic nature
of AS level connectivity, whereby new ASs can enter and existing
ASs can leave, merge, or split at any time. To illustrate the degree
of this ambiguity, we compare the inferred AS degree distribution
for the week of 5 May 2001 as reported by Route Views with the
perspective afforded by two additional data sets reported in [6] that
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Figure 11: Degree distribution for the Internet at the AS-level:
original Oregon Route Views data and enhanced data incorpo-
rating additional information sources.

augment Route Views information with independent information6

(see Figure 11). Both data sets start with the Route Views data and
then add (1) full BGP table dumps from a dozen additional BGP
sources, (2) BGP summary information from a large number of In-
ternet Looking Glass sites, and (3) routing policy information from
Internet Routing Registry databases. While bringing in these ad-
ditional sources of data creates in general additional ambiguities,
diligent mining of this new information can minimize their impact
(see [6]). The first data set denoted here by “AS+” augments the
Route Views data with (1) and (2), while the second data set com-
bines “AS+” and (3) and is denoted by “AS++”.

The results from [6] suggest that AS graphs inferred from the
Route Views data typically miss between 20-50% or even more of
the existing AS connections. Furthermore, in view of our present
understanding of scaling distributions, the conjectured/observed power
law relationships reported in [15] are intriguing, but should not
come as a surprise; after all, the heterogeneity of the Internet is
also reflected at the AS level and corresponds to a high variabil-
ity/infinite variance property of companies (i.e., ASs) that is well-
documented in the literature. That the qualitative nature of the orig-
inal findings of scaling distributions for the node degrees in inferred
AS graphs can be expected to hold despite the known deficiencies
and ambiguities in the original data is testimony of the degree of ro-
bustness to messy and incomplete data exhibited by scaling distri-
butions. However, strict power law relationships for inferred node
degrees and related quantities are clearly too brittle and cannot be
expected to be robust to missing data on the order of more than
50%. The empirical findings of [6] show that the qualitative nature
of the original claims about the node degree distribution of inferred
AS graphs is correct, while the quantitative description requires a
change, with scaling distributions replacing the originally proposed
strict power law distributions.

6The findings in [6] are based on data for nine consecutive weeks
starting in March 2001, while the data set for 5 May 2001 is repre-
sentative of all nine weeks.

5. DISCUSSION
We have proposed a framework for Internet modeling that is

tailor-made for Internet-related measurements, where high variabil-
ity, voluminous data sets and varying degrees of ambiguity in the
data are the rule rather than the exception. To account for these
features, we advocate an approach that results in models that show
strong self-consistency properties and are resilient to a range of
known or unknown ambiguities in the data. We achieved this by
relying on known invariance properties that distinguish scaling dis-
tributions from non-scaling distributions in theory and practice and
by combining Tukey’s “borrowing strength” principle with Man-
delbrot’s “sequential (moment) estimate plot” technique.

In terms of a concrete “recipe”, our proposed approach consists
of applying at least one of the following two main procedures.Pro-
cedure 1(“Exploit the size of the data set”) aims at checking the
stability/accuracy of model parameter estimates as a function of the
number of observations, consists of computing sequential parame-
ter estimate and confidence interval plots, and provides insight into
the (in)consistency properties of a proposed model or model class.
Procedure 2(“Exploit the semantic content of the measurements”)
is intended to check whether observed high variability in a given
data set is (in)consistent with an underlying scaling distribution,
consists of slicing and dicing the given data into different compo-
nents, and sheds light on the nature of the observed high variability
by appealing to invariance properties of scaling distributions under
a number of commonly-used transformation involving the obtained
components. Note that while Procedure 1 is in general easy to ex-
ecute, the applicability of Procedure 2 depends on whether or not
the available measurements contain sufficient semantics to perform
a sensible “decomposition.”

When applied to Web and IP flow measurements, our results
provide a number of technical and practical reasons for preferring
scaling distributions over their Lognormal counterparts. In view of
these reasons and the fact that aggregate traffic on a link is made up
of a superposition of IP flows, mathematics tells us that measured
link traffic has to exhibit long-range dependence and is perforce
(asymptotically) self-similar (e.g., see [24, 39]), in agreement with
a wide range of traffic studies reported in the literature over the
last 10 years. In particular, the ubiquitous scaling property of IP
flow size distributions reveals a fundamental inconsistency in re-
ported findings of aggregate traffic being Poisson [5, 23], because
mathematical arguments that respect the networking-specific rela-
tionship between packets and flows preclude a Poisson packet-level
dynamics in the presence of scaling distributions for IP flows sizes.
In fact, self-similar traffic models—while clearly imperfect, espe-
cially at fine time scales—are presently the only traffic models that,
over moderate–large time scales, are self-consistent in the statisti-
cal sense discussed above, and also self-consistent in the sense of
the packet-flow relationship dictated by the network architecture.

Also note that measured Internet traffic can be sliced and diced
in many different ways (e.g., by source- and/or destination IP ad-
dress or prefix, source- and/or destination port numbers, proto-
cols, application-specific attributes), resulting in a number of dif-
ferent traffic constituents. When viewing the traffic on a link as an
aggregate, or a weighted mixture, or a combination of aggregate
and weighted mixture of many different or a few major such con-
stituents, the scaling property of IP flow size distributions together
with the invariance properties of scaling distributions (see Section
2) predict that scaling distributions are widespread among the indi-
vidual constituents, including the size of the files or documents that
reside at the different servers. A popular interpretation of this find-
ing is the “mice/elephant” view of network traffic—while most files
(“mice”) have few packets, most packets are in large files (“ele-
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phants”). From a general networking perspective, but especially for
designing future network congestion protocols, an important ques-
tion is whether this mice/elephant view is likely to be an invariant
of much of the future network traffic, and the work in [46] sug-
gests a positive answer. It does so by considering a number of ab-
stract models of Web layout design with varying levels of analytic
tractability and realism with respect to modeling of structure, hy-
perlinks, and user behavior. Scaling distributions for Web file sizes
arise then consistently as solutions to a formulation of Web layout
as an optimal design problem, consistent with measured data and
irrespective of the different modeling assumptions. In this sense,
[46] not only completes the original explanation of self-similar In-
ternet traffic through the connection with Web files and Web layout,
but in doing so, it also supports a view of Internet traffic where the
observed features at the IP, TCP, and application layers are fully
consistent with one another. The work also suggests that the sepa-
ration of Internet traffic into mice and elephants is likely to be an
intrinsic aspect (an “invariant” in the sense of [19]) of future traf-
fic scenarios. To compare, there have been parallel efforts to [46]
that have emphasized the use of Lognormal distributions for mod-
eling IP flow sizes [12, 29]. While these efforts have been able
to explain Lognormals through generative models based on multi-
plicative processes, the interpretation of the latter remains unclear
and the efforts have resulted in inconsistent views of Internet traffic
at the application and IP or TCP layers.

When applied to Internet connectivity data, our proposed ap-
proach provides evidence that, in agreement with previous claims,
AS-level node degrees appear to be consistent with scaling distri-
butions. However, the evidence also suggests that router-level node
degrees in the core of the Internet are not consistent with previous
claims of scaling distributions. This finding directly contradicts
the recently popular “scale-free” network models that suggest the
presence of high degree hub-like connections in the central network
core. Nonetheless, claims of scaling in the router-level Internet as
a whole may be possible if one includes edge networks. For the
Rocketfuel data considered, the highest degree routers were at the
edge of the ISP, a finding that is consistent with other recent work
which suggests that practical constraints and tradeoffs in construct-
ing router-level networks creates the need for traffic aggregation at
all levels of hierarchy and that “good” designs are ones where high
variability in connectivity is restricted to the network edge [26].
That the technologies in use at the network edge in turn support
high variability in connectivity of end users whose variability in
population density is approximately scaling [2] also contributes to
this thesis. Thus, the availability of more diligently collected and
interpreted data is shifting the current research efforts from trying
to explain scaling router-level degree distributions to instead un-
derstanding the high variability in measurements of IP-level con-
nectivity, with the ultimate objective of developing a modeling ap-
proach to router-level Internet connectivity that is trulyexplanatory
in the sense of [43]. To this end, important questions to resolve are
(1) To what extent does the use of different technologies below and
above IP contribute to the appearance of high connectivity in the
router-level graph?and (2)To what extent is the high connectivity
fundamental to the Internet’s router-level topology?
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