

NetME and the Internet

- Internet architecture is mix of
 - accident,
 - history, and
 - necessity,
- Sorting these out, extracting lessons learned, is subtle, challenging, ...
- Spectacular success has blinded us...
- TCP/IP architecture has become "gravity," an unchangeable feature of reality

Theory and the Internet

- Tremendous progress last decade in laying theoretical foundations, and...
- Continued incremental progress (patching) but...
- Many robustness issues acute and unaddressed (secure, verify, manage, maintain, ...)
- Continued patching may never get us there, but...
- How do we change "gravity"?
- Question our assumptions about
 - The existing Internet architecture
 - The limits of our theory

"back to basics"

- Our strategy: Think of Internet as NetOS
- Back to original starting point: operating systems
- Leverage much recent "rethinking"
 - Appears fragmented and incoherent, but...
 - There may be an opportunity for more unification
 - (Just like the theory side)
- Start with Day's PNA
- Later add ISI/USC Touch et al and others

Internet as NetOS

- Decomposition of "NetOS" into an OS kernel, around which we nucleate the "Net" dimension
- Leverage others on the "OS" part right
- We focus on "policy" for ctrl and mgmt
- Keep chasing "architecture"
- Special cases handled naturally: virtualization, data centers, clouds etc.

"return to fundamentals"

- Negative rings don't mean the same thing
- They would correspond to abstraction layers in hardware design
- We will temporarily defer HW, but..
- PBD is very compatible
- Often a key design issue in PBD is where to put the HW/SW boundary
- The PNA view of layering can be viewed as a special case of PBD

Platform Based Design (PBD)

Design heuristics (KISS or E2E)

My first mistake...

I'm not going to do a very good job of drawing the HW
Actually I won't do a good job of drawing anything but I think the hardware will be really bad.

• No rings of hardware.

Within a single processor

The kernel functions are

- Data transfer (fastest time scale)
 - Within memory (and memory hierarchies)
 - Between devices and memory
 - Between memory and computing elements
- Control (middle time scales)
 - Scheduling/Multiplexing resources
 - In time and space
- Management (slowest time scale)
 - *What* resources are available?
 - Where are they?

Universal functions?

- Transfer or transform (fastest)
 - Domain specific (data, power, goods, etc)
 - Depends on demand and supply of resources
- Control (middle)
 - Schedule/MUX resources in time and space
 - Flow and error control
- Management (slowest)
 - *What* resources are available?
 - Where are they?
 - Cost? Risk? etc

- Ctrl and Mgmt just aspects of a single problem on different time scales
- The distinction may be somewhat artificial and domain specific
- Ctrl/Mgmt in NetME:
 - More complex as the "Net" part grows
 - Will be our focus/goal of a unified theory
 - From physics to information to computation to control

Network, universal?

Layers have sublayers

Want them all to behave similarly.

Layers have sublayers

... but it's not clear how to draw them.

What happens in a computer *system*?

Any layer's functions are

- Data transfer (fastest time scale)
 - Within/between memory, computing, devices
 - Between processors
 - Between virtualized resources (in higher layers)
- Control (middle time scales)
 - Scheduling/Multiplexing resources in time/space
 - Real and virtualized
- Management (slowest time scale)
 - *What* resources are available?
 - Where are they?
 - Real and virtualized

Might be all in the same "box".

The only "real" signals are not shown

Expand dimensions

Computational hardware substrates

Existing hard limits have restrictive assumptions and few dimensions

- Thermodynamics (Carnot)
- Communications (Shannon)
- Control (Bode)

Fundamental limit ental • Computation (Turing)

New, promising unifications but need much more

- Thermodynamics (Carnot)
- Communications (Shannon)
- Control (Bode)

indamental

- Computation (Turing)
- Each focuses on few dimensions
- Important tradeoffs are across these areas
- Speed vs efficiency vs robustness vs ...

Collapse dimensions

Collapse dimensions

Fast, Efficient

[a system] can be *robust* for a given [**property**] and a set of [**perturbations**] Yet be *fragile for* a different [**property**] or [**perturbation**]

Log(robustness)

Question: Human complexity

Robust

- ③ Efficient, flexible metabolism
- © Regeneration & renewal
- ③ Rich microbial symbionts
- Immune systems
- Complex societies
- Advanced technologies

Yet Fragile

- $\ensuremath{\mathfrak{S}}$ Obesity and diabetes
- \otimes Cancer
- $\ensuremath{\mathfrak{S}}$ Parasites, infection
- ⊗ Inflammation, Auto-Im.
- Epidemics, war, ...
- ▲ Catastrophic failures

Mechanism?

Robust

- ③ Efficient, flexible metabolism
- © Regeneration & renewal
 - Sat accumulation
 - ③ Insulin resistance
 - Inflammation

Fluctuating energy

Yet Fragile

- Obesity and diabetes
- $\ensuremath{\mathfrak{S}}$ Cancer
 - ℬ Fat accumulation
 - Insulin resistance
 - $\ensuremath{\mathfrak{S}}$ Inflammation

Static energy

Robust

Implications/ Generalizations

- © Efficient, flexible metabolism
- © Rich microbial symbionts
- Immune systems
- © Regeneration & renewal
- Complex societies
- Advanced technologies

Yet Fragile

- Obesity and diabetes
- ② Parasites, infection
- ☺ Inflammation, Auto-Im.
- 😕 Cancer
- Epidemics, war, ...
- Catastrophic failures
- Fragility = Hijacking, side effects, unintended... of mechanisms evolved for robustness
- Complexity is driven by control, robust/fragile tradeoffs
- Math: New robust/fragile conservation laws
- Resilience/safety/security Engineering/Economics: "Human error" and "human nature" is often a symptom of bad system architecture

Other dimensions

Robust

- Secure
- Scalable
- Verifiable
- Evolvable
- Maintainable
- Designable

Fragile

- Insecure
- Not scalable
- Unverifiable
- Frozen

•..

Collapse other dimensions

Log(fragility)

≯

Higher layer

Robust

- Scalable
- Verifiable
- Evolvable
- Maintainable
- Designable

Lower layer

Fragile

- Not scalable
- Unverifiable
- Frozen

. . .

Separate logical names and physical addresses

Naming and addressing are important topics in OS

Needs to be an even richer topic in networking

So, finally, let's look at a minimal network

- Thermo (Carnot)
- Comms (Shannon)
- Control (Bode)
- Computation (Turing)
- Each focuses on few dimensions
- Important tradeoffs are across these areas
- Speed vs efficiency vs robustness vs ...

Might be all in the same "box".

A network with another "box"...

A minimal network without a NIC.

Mgmt and Cntrl become even more complex

What is a NIC?

A minimal network with a NIC

Different scopes

DIF= Distributed IPC Facility

How many layers?

As many as you need to map distribute applications

Onto distributed resources

Log(fragility)

Naming and addressing

- need to match their layer
- translate/resolve between layers
- not be exposed outside layer
- familiar tradeoffs here

Tradeoffs

- Addressing complexity
- Table sizes
- Forwarding
- Optimal routes
- Table updates

fragile

Naming and addressing

- need to match their layer
- translate/resolve between layers
- not be exposed outside layer

Architecture issues

- DNS
- NATS
- Firewalls
- Multihoming
- Mobility
- Routing table size
- Overlays

Trivial toy example

Consider a 1 dimensional geography

- Assume some link connectivity
- Optimal route might be indirect
- Consider route between red nodes

Other insecurities in TCP/IP

- port-scanning attacks
- connection-opening attacks
- data-transfer attacks
- Etc etc

These are hard to fix in existing architecture

Log(waste)

Log(fragility)

Next steps? Or near term branch points

- More deeply into OS and PNA
- Rethink a TCP/IP equivalent assuming the OS/ PNA is done by someone else
 - Do TCP/IP as integrated DIF layer
 - Rethink fundamentals of flow/error control and routing
 - Role of information theory methods?
- Rethink a more wireless end system replacement for IP (G4 wireless)...
- What blend of PNA plus control theory would be the right IT infrastructure for smartgrid?

More deeply into OS and PNA

Start with this picture from PNA

More deeply into OS and PNA

Start with this picture from PNA

And categorize these

- Delimiting
- Initial State Synch
- Policy Selection
- Addressing
- Flow/Connection Identifier
- Relaying
- Multiplexing
- Ordering
- Frag./Reassembly
- Combining/Separation
- Data Corruption

- Lost /Duplicate
 Detection
- Flow Control
- Forward Error Cor.
- Ack/Retran Control
- Compression
- Authentication
- Access Control
- Integrity
- Confidentiality
- Nonrepudiation
- Activity

IPC Mgmt

Routing Policy Selection Flow/Connection Identifier Access Control

Flow Control Ack/Retran Control

Data Corruption TTL Forward Error Cor.

More deeply into OS and PNA

- Lots more in Day's book
- Many details have been started
- ISI/USC (Touch) has a similar approach, get them to tell us about it
- Collaborate so we can focus on ctrl/mgmt

Rethink a TCP/IP equivalent

- "Clean slate" but with basic physical and app layers
- Assuming the OS/PNA parts are done by someone else but allow better control
- Do TCP/IP as integrated DIF layer
 - Split it the "other way" or "right way"
 - What are the alternatives
 - Rethink flow/error control and routing
 - Rethink naming and addressing
- Role of information theory methods?

Rethink a more wireless end system replacement for IP (G4 wireless)...

- There is a proposal out there using IP for G4
- What alternatives does PNA offer?
- Focus on ctrl and mgmt

IT infrastructure for smartgrid

- What blend of PNA plus control theory would be the right IT infrastructure for smartgrid?
- Need real time, guarantees of QOS
- Need better security throughout
- Other issues?
- Coordinate with Steven's class

In the real (vs virtual) world

What matters:

• Action

What doesn't:

- Data
- Information
- Computation
- Learning
- Decision
Embedded

Networked embedded

Meta-layering of cyber-phys control

Micro-layering of D-IPC-F

Smartgrid and cyberphys

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamics
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, selforganized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution

Focus on bacterial biosphere

Control of the Internet **Packets** receiver source control packets

Autocatalytic feedback

What theory is relevant to these more complex feedback systems?

