
Error/flow control

Relay/MUX

Global

Physical

Application

Cmplx Net Arch:
Networking OS

Diverse hardware

Operating
systems

Diverse applications

Local
E/F control

Relay/MUX

E/F control

Relay/MUX

NetME and the Internet

•  Internet architecture is mix of
–  accident,
–  history, and
–  necessity,

•  Sorting these out, extracting lessons learned, is
subtle, challenging, …

•  Spectacular success has blinded us…
•  TCP/IP architecture has become “gravity,” an

unchangeable feature of reality

Theory and the Internet

•  Tremendous progress last decade in laying
theoretical foundations, and…

•  Continued incremental progress (patching) but…
•  Many robustness issues acute and unaddressed

(secure, verify, manage, maintain, …)
•  Continued patching may never get us there, but…
•  How do we change “gravity”?
•  Question our assumptions about

–  The existing Internet architecture
–  The limits of our theory

“back to basics”

•  Our strategy: Think of Internet as NetOS
•  Back to original starting point: operating systems
•  Leverage much recent “rethinking”

–  Appears fragmented and incoherent, but…
–  There may be an opportunity for more unification
–  (Just like the theory side)

•  Start with Day’s PNA
•  Later add ISI/USC Touch et al and others

Internet as NetOS

•  Decomposition of “NetOS” into an OS kernel,
around which we nucleate the “Net” dimension

•  Leverage others onthe “OS” part right
•  We focus on “policy” for ctrl and mgmt
•  Keep chasing “architecture”
•  Special cases handled naturally: virtualization,

data centers, clouds etc.

PNA

“return to fundamentals”

Ring 0

“Rings” are HW defined
levels of “protection”

“Ring -1”

“Ring -2”

Ring 1

Ring 2

Etc…

Etc…

Start at
SW/HW

interface
within a

single
processor

Platform
Based
Design
(PBD)

•  Negative rings don’t mean the same thing
•  They would correspond to abstraction layers
in hardware design
•  We will temporarily defer HW, but..
•  PBD is very compatible
•  Often a key design issue in PBD is where to
put the HW/SW boundary
•  The PNA view of layering can be viewed as
a special case of PBD

Functional “Ring -1”

“Ring -2”

Etc…

Register

Logic

Circuit

Physical

Ring 0

Design heuristics (KISS or E2E)

Ring -1

Ring -2

Ring 1

Ring 2

•  Keep what goes in lower rings as simple as
possible (but not simpler) and
•  Reuse verified lower ring components…
•  This helps robustness (more flexible, verifiable,
secure, evolvable, etc…)
•  There is a price to pay in efficiency
•  Good design balances the tradeoff

• These are nearly universal heuristics
•  It would be nice to make these heuristics more
rigorous

Etc…

Etc…

Ring 0

My first mistake…

Ring 1

Ring 2

•  I’m not going to do a very good job of drawing the HW
•  Actually I won’t do a good job of drawing anything but I
think the hardware will be really bad.
•  No rings of hardware.

I’m only going to draw 3 rings of software and
I’m not going to put things in the right rings, but
I’m going to try to get in the ballpark…

Lib Lib

Router

App

DIF

Lib

App
IPC

DIF

DIF DIF

Lib Lib
DIF

Leading to a
picture like this

Want to explore the
fundamentals of layering

kernel

Hardware

App1 App2

local

lib

IPC= InterProcess
Communication

A function
call can be

•  Local
•  Library (system)
•  IPC

user
IPC

Within a single processor

kernel

HW

Xfer Ctrl Mgmt

The kernel functions are
•  Data transfer (fastest)
•  Control (middle)
•  Management (slowest) App1

lib

user

The kernel functions are
•  Data transfer (fastest time scale)

–  Within memory (and memory hierarchies)
–  Between devices and memory
–  Between memory and computing elements

•  Control (middle time scales)
–  Scheduling/Multiplexing resources
–  In time and space

•  Management (slowest time scale)
–  What resources are available?
–  Where are they? kernel

HW

Xfer Ctrl Mgmt

kernel

HW

App1

lib
Xfer Ctrl Mgmt

Layers have sublayers

… but it’s not
clear how to
draw them.

Xfer Ctrl Mgmt

•  Transfer or transform (fastest)
–  Domain specific (data, power, goods, etc)
–  Depends on demand and supply of resources

•  Control (middle)
–  Schedule/MUX resources in time and space
–  Flow and error control

•  Management (slowest)
–  What resources are available?
–  Where are they?
–  Cost? Risk? etc

Universal functions?

Xfer Ctrl Mgmt

Domain specific, local

Network,
universal?

•  Ctrl and Mgmt just aspects of a single
problem on different time scales

•  The distinction may be somewhat
artificial and domain specific

•  Ctrl/Mgmt in NetME:
–  More complex as the “Net” part grows
–  Will be our focus/goal of a unified theory
–  From physics to information to

computation to control

kernel

HW

lib2

system

App

lib1

“user”

The process
is naturally
recursive

(“hypervisor”)

lib3

App
or lib

kernel

HW

system

App1

“user”

The process
is naturally
recursive

Xfer Ctrl Mgmt

Xfer Ctrl Mgmt

Layers are
naturally
recursive

Xfer Ctrl Mgmt

Xfer Ctrl Mgmt

Layers have sublayers

App1 App2
IPC

InterProcess Communications

•  Local call
•  Library

(system) call
•  IPC

local

system

Want them all to behave similarly.

IPC facility kernel

HW

App1 App2

IPC

? ?

IPC facility kernel

HW

App1 App2

IPC

X
fe

r

Ctrl

Mgmt

X
fe

r

IPC facility kernel

X
fe

r

Ctrl

Mgmt

X
fe

r

Layers have sublayers

… but it’s not clear how to draw them.

kernel

HW

Lib1 Lib2
IPC

? ?

Mgmt, Control, DataX

system

App1 App2
IPC

“user”

IPC is
naturally
recursive

IPC facility

HW

App1 App2
IPC

X
fe

r Mgmt/Ctrl

X
fe

r

IPC facility X
fe

r Mgmt/Ctrl

X
fe

r

kernel

system

“user”
IP

C
 is

na

tu
ra

lly

re
cu

rs
iv

e

kernel

HW

Driver2

lib

Driver2

system

App1
App3

lib

“user”

Driver1

Driver1

Design
choices
effect

performance/
robustness

kernel

HW

Lib1 Lib2

Driver3

lib

IPC

? ?

Mgmt, Control, DataX
Driver3

Driver2

system

App1 App2

App3 IPC

lib

“user”

layers are
naturally
recursive

Mgmt, Ctrl,
DataX, IPC

dr
iv

er
1

buses

Main processor
I/O

processor

App1 App2

IPC

What happens in a computer system?

Mgmt
Control
DataX

Mgmt
Control
DataX

DIPC
facility

Distributed
IPC.

I/O
processor

Mgmt/Cntrl
DataX

Mgmt
Control
DataX

DIPC
facility

•  Data transfer (fastest time scale)
•  Between “processors”

•  Control (middle time scales)
•  Scheduling/Multiplexing in time

•  Management (slowest time scale)
•  What? Where?

Mgmt and Ctrl
become more

complex

Any layer’s functions are
•  Data transfer (fastest time scale)

–  Within/between memory, computing, devices
–  Between processors
–  Between virtualized resources (in higher layers)

•  Control (middle time scales)
–  Scheduling/Multiplexing resources in time/space
–  Real and virtualized

•  Management (slowest time scale)
–  What resources are available?
–  Where are they?
–  Real and virtualized

App
Might be
all in the

same
“box”.

I/O
processor

Mgmt
Control
DataX

Main
processor

IPC facility

HW

App1 App2
IPC

X
fe

r Mgmt/Ctrl

X
fe

r

IPC facility X
fe

r Mgmt/Ctrl

X
fe

r

kernel

system

“user”

Black box,
virtualization

IPC facility

HW

App1 App2
IPC

IPC facility

kernel

system

“user”

Black box,
virtualization

All these
signals are

“virtual”

The only “real” signals are not shown

kernel

HW

Lib1 Lib2

Driver3

lib

IPC

? ?

Mgmt, Control, DataX
Driver3

Driver2

system

App1 App2

App3 IPC

lib

“user”

Essential
tradeoffs
appear

even here

Higher
layer

D
esign choice

Lower
layer

Slow, Wasteful

Fast, Efficient

Lo
g(

w
as

te
)

Higher
layer

Lower
layer

Slow, Wasteful

Fast, Efficient

Expand dimensions

Slow Fast

Wasteful

Efficient

lo
g

log

Slow Fast

Wasteful

Efficient

lo
g

log

Design
tradeoffs

Slow Fast

Wasteful

Efficient

lo
g

log

SW

HW

DNA

RNA

protein

Tradeoffs are universal,
but the details are not.

Slow Fast

Wasteful

Efficient

lo
g

log

DNA

Neurons

CMOS

Computational hardware substrates

HARD HARD HARD
E S Y
for computers

for us

Slow Fast

Wasteful

Efficient

lo
g

log

DNA

Neurons

CMOS

Brains

Some tasks:

Slow Fast

Wasteful

Efficient

lo
g

log

DNA

Neurons

CMOS

Brains

What makes this possible?

Network
architecture

Cells

Slow Fast

Wasteful

Efficient

lo
g

log

DNA

RNA

Protein Network
architecture

Cells

Slow Fast

Wasteful

Efficient

lo
g

log

gap

Slow Fast

Wasteful

Efficient

lo
g

log

Slow Fast

Wasteful

Efficient

lo
g

log

bad 

Existing hard limits have restrictive
assumptions and few dimensions

•  Thermodynamics (Carnot)
•  Communications (Shannon)
•  Control (Bode)
•  Computation (Turing)

New, promising unifications but
need much more

•  Thermodynamics (Carnot)
•  Communications (Shannon)
•  Control (Bode)
•  Computation (Turing)

•  Each focuses on few dimensions
•  Important tradeoffs are across these areas
•  Speed vs efficiency vs robustness vs …

Slow Fast

Wasteful

Efficient

lo
g

log

bad 

Slow Fast

Wasteful

Efficient

lo
g

log

bad 

•  Many existing systems may be far
from fundamental limits.
•  And we don’t know what they are..
•  We plan to work on both ends

?

?
?

Slow,
Wasteful

Collapse
dimensions

Fast,
Efficient

Fast, Efficient Fundamental

Lo
g(

de
la

y)

Collapse
dimensions

Te
ch

no
lo

gy

tr
ad

eo
ffs

Slow, Wasteful

Slow, Wasteful

Fast, Efficient

Lo
g(

w
as

te
)

Waste
•  time
•  energy
•  materials
•  …

Lo
g(

w
as

te
)

Log(fragility)

Higher
layer

Lower
layer

[a system]
can be robust
for a given
[property]
and a set of
[perturbations]

Yet
be fragile for
a different
[property]
or
[perturbation]

Log(fragility) Log(robustness)

Robust Yet Fragile

Question: Human complexity

  Efficient, flexible metabolism
  Regeneration & renewal
  Rich microbial symbionts and
  Immune systems
  Complex societies
  Advanced technologies

  Obesity and diabetes
  Cancer
  Parasites, infection
  Inflammation, Auto-Im.
  Epidemics, war, …
  Catastrophic failures

Robust Yet Fragile

Mechanism?

  Efficient, flexible metabolism
  Regeneration & renewal

  Fat accumulation
  Insulin resistance
  Inflammation

  Obesity and diabetes
  Cancer

  Fat accumulation
  Insulin resistance
  Inflammation

Fluctuating
energy

Static
energy

Robust Yet Fragile
Implications/

Generalizations
  Efficient, flexible metabolism
  Rich microbial symbionts and
  Immune systems
  Regeneration & renewal
  Complex societies
  Advanced technologies

  Obesity and diabetes
  Parasites, infection
  Inflammation, Auto-Im.
  Cancer
  Epidemics, war, …
  Catastrophic failures

•  Fragility = Hijacking, side effects, unintended…
of mechanisms evolved for robustness
•  Complexity is driven by control, robust/fragile
tradeoffs
•  Math: New robust/fragile conservation laws

•  Resilience/safety/security Engineering/Economics:
“Human error” and “human nature” is often a
symptom of bad system architecture

Log(fragility)

Robust
•  Secure
•  Scalable
•  Verifiable
•  Evolvable
•  Maintainable
•  Designable
•  …

Fragile
•  Insecure
•  Not scalable
•  Unverifiable
•  Frozen
• …

Other dimensions

Log(fragility)

Robust
•  Secure
•  Scalable
•  Verifiable
•  Evolvable
•  Maintainable
•  Designable
•  …

Fragile
•  Not …
•  Unverifiable
•  Frozen
• …

Collapse other dimensions

Log(fragility)

Lo
g(

w
as

te
)

Log(fragility)

HW only
(fragile, fast)

SW/HW mix
(robust, slow)

bad 

Log(fragility)

Robust
•  Scalable
•  Verifiable
•  Evolvable
•  Maintainable
•  Designable
•  …

Fragile
•  Not scalable
•  Unverifiable
•  Frozen
• …

Higher
layer

Lower
layer

Lo
g(

w
as

te
)

Log(fragility)

Higher
layer

Lower
layer

Mix

Lo
g(

w
as

te
)

Log(fragility)

Higher
layer

Lower
layer

Good
Mix

bad 

Lo
g(

w
as

te
)

Log(fragility)

Higher
layer

Lower
layer

??? 

Example?

kernel

HW

lib

App1 user

Don’t cross layers

Direct
access to

physical
memory

Robust
•  Secure
•  Scalable
•  Verifiable
•  Evolvable
•  Maintainable
•  Designable
•  …

??? 

kernel

HW

lib

App1 user

Direct
access to

physical
memory

Robust
•  Secure
•  Scalable
•  Verifiable
•  Evolvable
•  Maintainable
•  Designable
•  …

??? 
Separate logical names
and physical addresses

Separate logical names
and physical addresses

Naming and addressing are
important topics in OS

Needs to be an even richer
topic in networking

So, finally, let’s look at a
minimal network

w
as

te
fu

l

fragile

slow

Hard limits?

•  Thermo (Carnot)
•  Comms (Shannon)
•  Control (Bode)
•  Computation (Turing)

•  Each focuses on few
dimensions

•  Important tradeoffs are
across these areas

•  Speed vs efficiency vs
robustness vs …

Don’t forget

App
Might be
all in the

same
“box”.

I/O
processor

Mgmt
Control
DataX

Main
processor

Network
cable

App App

IPC

D-IPC-F

A network with another “box”…

I/O
processor

Mgmt
Control
DataX

Main
processor

Network
cable

App App IPC

A minimal network without a NIC.

DIF= D-IPC-F
=Distributed

IPC
Facility

Xfer

Network
cable

Xfer

App App IPC

D-IPC-F
Ctrl

Mgmt

Ctrl

Mgmt

Mgmt and Cntrl become
even more complex

And layers
have sublayers

… but it’s not clear
how to draw them.

What is a NIC?

Mgmt, Ctrl,
DataX, IPC

driver1

buses

Main processor
Network
Interface

Card
(NIC)

App1

Mgmt
Control
DataX

Mgmt
Control
DataX

DIPC
facility

Network
cable

NIC

Lib

Network
cable

Lib DIF

App App IPC

DIF

A minimal network with a NIC

Lib Lib DIF

App App IPC

DIF

More layers

Different scopes

DIF

DIF= Distributed IPC Facility

Lib Lib

Router

App

DIF

Lib

App
IPC

DIF

DIF DIF

Host Host

Lib Lib

Router

App

DIF

Lib

App
IPC

DIF

DIF DIF

Lib Lib
DIF

Lib Lib

DIF

Lib

DIF

DIF DIF

Lib Lib
DIF

How many layers?

App App
IPC

How many layers?

As many as you need to map distribute applications

Onto distributed resources

Lib Lib

Router

App

DIF

Lib

App
IPC

DIF

DIF DIF

Lib Lib
DIF

Mgmt and
Cntrl become
increasingly

complex
Tradeoffs
become

increasingly
complex

It gets harder
to draw the

right pictures

Lib Lib

Router

App

DIF

Lib

App
IPC

DIF

DIF DIF

Lib Lib
DIF

Mgmt and
Cntrl become
increasingly

complex

Tradeoffs
become

increasingly
complex

It gets harder
to draw the

right pictures

And matches our
“layering as

optimal control”
much better.

This PNA
framework clarifies

flaws in existing
architecture.

Lo
g(

w
as

te
)

Log(fragility)

Higher
layer

Lower
layer

??? 

This PNA framework
clarifies flaws in
existing TCP/IP

architecture.

IP and MAC
address

both name
interfaces

App App
IPC

Global
and direct
access to

physical
address!

Robust?
•  Secure
•  Scalable
•  Verifiable
•  Evolvable
•  Maintainable
•  Designable
•  …

Nodes have
no addresses

in TCP/IP
(too bad)

Lib Lib

Router

App

DIF

Lib

App
IPC

DIF

DIF DIF

Lib Lib
DIF

Naming and addressing
•  need to match their layer
•  translate/resolve between layers
•  not be exposed outside layer

wasteful

fragile

slow

Tradeoffs
•  Addressing complexity
•  Table sizes
•  Forwarding
•  Optimal routes
•  Table updates

Naming and addressing
•  need to match their layer
•  translate/resolve between layers
•  not be exposed outside layer
•  familiar tradeoffs here

Physical

IP

TCP

Application

Naming and addressing
•  need to match their layer
•  translate/resolve between layers
•  not be exposed outside layer

Architecture issues
•  DNS
•  NATS
•  Firewalls
•  Multihoming
•  Mobility
•  Routing table size
•  Overlays
•  …

A graph in “1d”

Consider a 1 dimensional geography
•  Assume some link connectivity
•  Optimal route might be indirect
•  Consider route between red nodes

Optimal
route

Trivial toy example

Add a virtual
dimension

•  Local, greedy routing using
simple norms and “virtual
coordinates” is globally optimal
•  Large and growing literature on
how to do this systematically

Other insecurities in TCP/IP

•  port-scanning attacks
•  connection-opening attacks
•  data-transfer attacks
•  Etc etc

These are hard to fix in existing architecture

Architecture issues
•  DNS
•  NATS
•  Firewalls
•  Multihoming
•  Mobility
•  Routing table size
•  … Lo

g(
w

as
te

)

Log(fragility)

??? 

Lo
g(

w
as

te
)

Log(fragility)

Fundamentals:
•  Rethink this picture
•  Integrate fragmented theories
•  Implications for architecture
•  Role of late binding and ctrl

Next steps?
Or near term branch points

•  More deeply into OS and PNA
•  Rethink a TCP/IP equivalent assuming the OS/

PNA is done by someone else
–  Do TCP/IP as integrated DIF layer
–  Rethink fundamentals of flow/error control and routing
–  Role of information theory methods?

•  Rethink a more wireless end system
replacement for IP (G4 wireless)…

•  What blend of PNA plus control theory would be
the right IT infrastructure for smartgrid?

IPC
Transfer

IPC
Control IPC Management

Delimiting
Transfer

Relaying/ Muxing
PDU Protection Common Application

Protocol

Applications, e.g., routing,
resource allocation,
access control, etc.

Start with this picture from PNA

• More deeply into OS and PNA

IPC
Transfer

IPC
Control IPC Management

Delimiting
Transfer

Relaying/ Muxing
PDU Protection Common Application

Protocol

Applications, e.g., routing,
resource allocation,
access control, etc.

Start with this picture from PNA

• More deeply into OS and PNA

And categorize these
•  Delimiting
•  Initial State Synch
•  Policy Selection
•  Addressing
•  Flow/Connection

Identifier
•  Relaying
•  Multiplexing
•  Ordering
•  Frag./Reassembly
•  Combining/Separation
•  Data Corruption

•  Lost /Duplicate
Detection

•  Flow Control
•  Forward Error Cor.
•  Ack/Retran Control
•  Compression
•  Authentication
•  Access Control
•  Integrity
•  Confidentiality
•  Nonrepudiation
•  Activity

IPC
Xfer Transfer

SDU Protection

Delimiting

Addressing
Ordering
Frag./Reassembly
Combining/Separation
Lost /Duplicate Detection

Data Corruption
Integrity
Confidentiality
Compression

Relaying
Multiplexing

IPC
Mgmt

Common Application
Protocol

Applications, e.g., routing,
resource allocation,
access control, etc.

Routing
Policy Selection
Flow/Connection Identifier
Access Control

IPC
Cntrl

Flow Control
Ack/Retran Control

IPC
Cntrl

Flow Control
Ack/Retran Control

Data Corruption
TTL
Forward Error Cor.

IPC
Xfer

SDU Protection

Delimiting

Addressing
Ordering
Frag./Reassembly
Combining/Separation
Lost /Duplicate Detection

Data Corruption?
Integrity
Confidentiality
Compression

Relaying
Multiplexing

IPC
Mgmt

Policy Selection
Flow/Connection Identifier
Access Control

summary

IPC
Transfer

IPC
Control IPC Management

Delimiting
Transfer

Relaying/ Muxing
PDU Protection Common Application

Protocol

Applications, e.g., routing,
resource allocation,
access control, etc.

•  Lots more in Day’s book
•  Many details have been started
•  ISI/USC (Touch) has a similar approach, get
them to tell us about it
•  Collaborate so we can focus on ctrl/mgmt

• More deeply into OS and PNA

Rethink a TCP/IP equivalent

•  “Clean slate” but with basic physical and app
layers

•  Assuming the OS/PNA parts are done by
someone else but allow better control

•  Do TCP/IP as integrated DIF layer
–  Split it the “other way” or “right way”
–  What are the alternatives
–  Rethink flow/error control and routing
–  Rethink naming and addressing

•  Role of information theory methods?

Rethink a more wireless end system
replacement for IP (G4 wireless)…

•  There is a proposal out there using IP for G4
•  What alternatives does PNA offer?
•  Focus on ctrl and mgmt

IT infrastructure for smartgrid

•  What blend of PNA plus control theory would be
the right IT infrastructure for smartgrid?

•  Need real time, guarantees of QOS
•  Need better security throughout
•  Other issues?
•  Coordinate with Steven’s class

In the real (vs virtual) world

What matters:
•  Action

What doesn’t:
•  Data
•  Information
•  Computation
•  Learning
•  Decision
•  …

Embedded

Physical
plant Embedded

Embedded
virtual

actuator/
sensor

Network
cable

Controller

Lib

App

DIF

Networked embedded

Lib

Physical
plant

Embedded
virtual

actuator/
sensor

Network
cable

Controller

DIF

Physical
plant

Meta-layering of cyber-phys control

Xfer Xfer
D-IPC-F

Ctrl

Mgmt

Ctrl

Mgmt

Micro-layering of D-IPC-F

Network
cable

Physical
plant Physical

plant Physical
plant Physical

plant Physical
plant Physical

plant Embedded Controller

Smartgrid and cyberphys

Controller Controller Controller
Embedded Embedded Embedded

•  Everything is networked.
•  Flows of data and power.
•  All that matters is action.
•  What’s the right architecture?

Biology versus the Internet

Similarities
•  Evolvable architecture
•  Robust yet fragile
•  Constraints/deconstrain
•  Layering, modularity
•  Hourglass with bowties
•  Feedback
•  Dynamics
•  Distributed/decentralized
•  Not scale-free, edge-of-chaos, self-

organized criticality, etc

Differences
•  Metabolism
•  Materials and energy
•  Autocatalytic feedback
•  Feedback complexity
•  Development and

regeneration
•  >4B years of evolution

Focus on
bacterial biosphere

Control of the Internet

source receiver

Packets

control
packets

source receiver

signaling
gene expression

metabolism
lineage

Biological
pathways

source receiver

control

energy

materials

signaling
gene expression

metabolism
lineage

More
complex

feedback

source receiver

control

energy
materials

Autocatalytic feedback

source receiver

control

energy

materials

signaling
gene expression

metabolism
lineage

More
complex

feedback

What theory is relevant to
these more complex
feedback systems?

source receiver

control

energy
materials

More
complex

feedback

What theory is relevant to
these more complex
feedback systems?

signaling
gene expression

metabolism
lineage

