
Assessing the Security of a Clean-Slate
Internet Architecture

Gowtham Boddapati‡ John Day‡ Ibrahim Matta† Lou Chitkushev‡

‡Metropolitan College †College of Arts & Science
Computer Science, Boston University
{gowtham, day, matta, ltc}@bu.edu

Paper #26 (6 pages)

Abstract—The TCP/IP architecture was originally designed
without taking security measures into consideration. Over the
years, it has been subjected to many attacks, which has led
to many patches to counter them. Our investigations into the
fundamental principles of networking have shown that carefully
following an abstract model of Interprocess Communication
(IPC) addresses many problems [1]. Guided by this IPC principle,
we designed a clean-slate Recursive INternet Architecture (RINA)
[2]. In this paper, we show how, without the aid of cryptographic
techniques, the bare-bones architecture of RINA can resist most
of the security attacks faced by TCP/IP and of course is only more
secure if cryptographic techniques are employed. Furthermore,
the RINA model indicates specifically where those security
measures reside. We also show how hard it is for an intruder
to compromise RINA . Then, we show how RINA inherently
supports security policies in a more manageable, on-demand
basis, in contrast to the monolithic one-size-fits-all approach of
TCP/IP.

I. INTRODUCTION

The TCP/IP architecture has shown signs of weakness as
the Internet has grown and evolved. These problems are partly
due to changing requirements—including mobility, quality-of-
service, and security—but partly because of the architecture’s
rigid one-size-fits-all structure. In this paper, we focus on the
security properties that are inherent in an internet architecture.

As is often lamented, the TCP/IP architecture was originally
designed without taking security considerations into account.
Over the years, many vulnerabilities have been discovered and
led to many patches to counter them. Given its rigid structure,
security mechanisms have mostly been inserted into TCP/IP
as “shim” sublayers, lacking a comprehensive approach to
security and its reliance on overloading functions.

Most recently, there have been attempts to design clean-
slate internet architectures. Our own investigations into the
fundamental principles of communication led to a rather sim-
ple, elegant model based on a generalization of Inter-Process
Communication (IPC). However, this model, referred to as
RINA (Recursive INternet Architecture) [2], was developed
from IPC considerations alone, without explicitly considering
security. Hence, it seemed wise to investigate its security
properties at the outset.

Space does not allow us to consider all aspects of the
security of RINA in this paper. (We hope to cover other aspects
in subsequent papers.) Here, after a very brief overview of the

pertinent aspects of RINA, we consider four types of vulnera-
bilities that have been found in TCP/IP: port-scanning attacks,
connection-opening attacks and data-transfer attacks. What we
find is that unlike the TCP/IP architecture, without the aid of
cryptographic techniques, the bare-bones architecture of RINA
is more secure and resistant to these attacks, even if we assume
that a RINA network has been fundamentally compromised.
Though further analysis is to be conducted, this might suggest
that good design is as important to good security as explicit
consideration of security.

We also show how RINA’s model organizes cryptographic
techniques as building blocks that can be recursively applied
on-demand, rather than the piecemeal approach of TCP/IP.

The rest of the paper is organized as follows. Section II re-
views elements of TCP/IP and RINA that are most relevant to
the security aspects discussed in this paper, specifically access
control, addressing, and connection management. Section III
compares the resiliency of TCP/IP and RINA to transport
attacks, namely port-scanning, connection-opening and data-
transfer. Section IV compares the two architectures in terms
of their organizational support for diverse security policies.
Section V concludes the paper.

II. BACKGROUND: TCP/IP VS. RINA

Figure 1 illustrates the TCP/IP architecture. In [2], we
identified the shortcomings of this architecture and attributed
them to: (1) exposing addresses to applications, (2) artificially
isolating functions of the same scope1, and (3) artificially
limiting the number of layers (levels).

Figure 2 illustrates our RINA architecture [2], which lever-
ages the inter-process communication (IPC) concept.2 In an
operating system, to allow two processes to communicate,
IPC requires certain functions such as locating processes,
determining permission, passing information, scheduling, and
managing memory. Similarly, two applications on different
endhosts should communicate by utilizing the services of

1Transport and routing/relaying are split into two layers: Data Link and
Physical layers over the same domain/link, and Transport and Network layers
internet-wide.

2We use IPC in its long lost original sense of passing data messages between
processes, rather than the broader current sense used today that encompasses
this as well as all synchronization techniques.

2

Network

Transport

Data Link

Physical

Applications

Network

Transport

Data Link

Physical

Applications

Network

Transport

Data Link

Physical

Applications

Network

Transport

Data Link

Physical

Applications

NetworkNetwork

DL DL

PHY PHY

Web, email, ftp, …

www.cs.bu.edu
128.197.15.10

128.197.15.112
8.
10
.1
27
.2
5

128.10.0.0 128.197.0.0

Fig. 1. TCP/IP Architecture

a distributed IPC facility (DIF). A DIF is an organizing
structure—what we generally refer to as a layer. What func-
tions constitute this layer, however, is fundamentally different.
A DIF is a collection of IPC processes (nodes). Each IPC
process executes routing, transport and management functions.
IPC processes communicate and share state information. How
a DIF is managed, including addressing, is hidden from the
applications.To understand why we organize layers this way,
see [1].

The goal of a DIF is to provide a distributed service that
allows application processes to communicate, one use might
be as a private network or overlay.Two novel aspects of a
DIF is that it repeats and is relative. Each repetition addresses
a different range of operation and/or scope. As shown in
Figure 2, two IPC processes A and B in an N-level DIF
communicate by utilizing the services of an (N-1)-level DIF.
Thus, while the specific function of IPC processes is to do
IPC, they are also application processes requesting IPC from a
lower layer. Our IPC-based architecture can be found in [2]. In
this section, we only highlight key aspects of this architecture
that have a fundamental impact on security.

BA C N-level DIF

(N-1)-level DIFs

shared state

application
processes

IPC process
(sender/receiver)

IPC process
(sender/receiver)

IPC process
(sender/receiver/relay)

Fig. 2. RINA Architecture

A. Access Control

Unlike TCP/IP, RINA requires explicit enrollment for an
IPC process within a system to either join an existing DIF, or
create a new DIF.

a) Adding a New Member to an (N)-DIF: Suppose that
DIF A consists of a number of IPC processes on a set of
systems. Suppose that DIF B wants to join DIF A, and that
DIF B represents a single IPC process. The IPC process, b, in
B knows the application (service) name of an IPC process, a,
in A, not its address — B has no way of knowing the address of

any process in A. A and B are connected by an underlying (N-
1)-DIF3. Using the underlying (N-1)-DIF, b requests that the
(N-1)-DIF establish an IPC channel (connection) with a using
the application name of a. In RINA, application processes
incorporate a common protocol for establishing application
connections that includes a plug-in module for authentication.

The (N-1)-DIF determines whether a exists and whether b
has access to a. After the connection has been established, a
authenticates b and determines whether it can be a member of
A. This authentication can be as strong or as weak as required
by the DIF. If the result is positive, a assigns an (N)-address
to b. Note that the address is taken from the name space for
DIF A, i.e., DIFs have their own name (address) space. b uses
the (N)-address to identify itself to other members of DIF
A. Other initialization parameters associated with DIF A are
exchanged with b. The IPC process, b, is now a member of
DIF A.

b) Creating a New DIF: Creating a new DIF is a
simple matter. A management or similar application with the
appropriate permissions causes an IPC process to be created
and initialized, including pointing it to one or more (N-1)-
DIFs. As part of its initialization, the IPC process is given the
means to recognize allowable members of the DIF (e.g., a list
of application process names, a digital signature, and so on). It
might be directed to initiate enrollment with them or to simply
wait for them to find this initial IPC process. When this has
been achieved, adding more members to the DIF proceeds as
described earlier.

B. Addresses and their Binding

The TCP/IP architecture has a global addressing space,
which allows any system to freely connect to any other system.
On the contrary, in RINA, the addresses are internal to a DIF.
For two application processes to communicate, they have to
have access to a DIF in common. If there is no common DIF,
then one must be created either by joining an existing DIF or
creating a new one. This provides the opportunity to restrict
access based on the security policy of the DIF.

In the TCP/IP protocol suite, TCP overloads the port-id to be
both port-id and connection-endpoint-id. And by overloading
it again by giving it application semantics as a well-known
port forces the receiver to rely on the sender’s id information
rather than ids it generated,which makes it easier the intruders
to guess the port and thwarts any consistency checking by the
receiver. Unlike TCP/IP, in RINA, applications do not listen
to a well-known port. Rather an application process requests
service using the destination application-name.4 The local IPC
process returns a port-id with only local significance to the user
to use as an opaque handle. The request is translated into a
set of policies for an EFCP (Error and Flow Control Protocol)
flow and instantiates this end of the flow by creating an EFCP-
instance, identified by a different local identifier, referred to
as a connection-endpoint-id (CEP-id). The local IPC process

3Ultimately the lowest level DIF is the physical medium.
4Application (service) names are global, but node (process) addresses are

internal to the DIF.

3

then issues a create-request to find the destination application
and allocate the flow.

When the IPC process at the destination gets the create-
request, it determines if it can accept the request. The degree
of access control is a matter of policy — it could be quite
elaborate, or weak like the current Internet. If the request is
accepted, the destination IPC process instantiates an EFCP-
instance with its own local CEP-id, and the result is returned
to the requesting application. The source and destination CEP-
ids are concatenated for use as a connection or flow id.
If the create-request returns with a negative response, it is
determined whether the cause is fatal or not. If not fatal, the
source IPC process may modify the request and try again.
If the create-request returns with a positive response, the
CEP-id is bound to the port-id. Figure 3 illustrates RINA’s
management of data-transfer connections.

port-id

CEP-id

DIF

application

processes

Fig. 3. RINA connections

C. Data Transfer
RINA uses a soft-state data transfer protocol, built around

Watson’s Delta-t protocol [3]. This is in contrast to the
hybrid hard-state/soft-state approach of TCP. In Delta-t, unless
refreshed by data/ACK packet arrivals, a flow state is deleted
after 2 ×MPL (Maximum Packet Lifetime) at the receiver
(Figure 4), and 3 ×MPL at the sender (Figure 5). TCP, on
the other hand, requires explicit control messages to establish
and close connections. This makes TCP more vulnerable to
attacks that fabricate its connection-management messages, or
cause them to be dropped [4].

Deallocation

pending
INIT

Allocation

pendingData transfer

after 2 x MPL

receive-

request
request

denied

request

accepted

done

Fig. 4. RINA Receiver

III. TRANSPORT ATTACKS ON TCP/IP VS. RINA
A. Port-Scanning Attacks

Port scanning is often viewed as a first step for an attack,
wherein the attacker explores “open” ports to which processes

Deallocation

pending
INIT

Allocation

pendingData transfer

after 3 x MPL

create-

request
request

denied

request

accepted

done

Fig. 5. RINA Sender

on a system are listening. In RINA, a service is accessed
by its application-name—the requesting applications never see
addresses nor CEP-ids. In fact they are not privy to any data
transfer identifiers. This is in contrast to TCP/IP in which
a destination application process is assumed to listen to a
well-known port. RINA also supports local access control
domains that restrict which applications are visible to the
DIF that the requestor belongs to. As described earlier, source
and destination port-ids then get assigned locally on-demand.
Ports are also dynamically mapped to separate data-transfer
(connection) endpoints, and contrary to TCP/IP, ports are not
part of the flow/connection id. This makes traditional port-
scanning attacks not possible in RINA.

In RINA, however, the attacker might try to guess appli-
cation names. But this is more difficult because application
names are of variable length String , a far larger name
space. Furthermore, the malicious user has to be a member
of the same DIF to be able to address other members in
the DIF. Joining a DIF requires that the new IPC process be
authenticated, providing further barriers to compromise RINA.

B. Connection-Opening Attacks

In this type of attack [5], the intruder attempts to establish
a connection with the server, impersonating a trusted user A.

In TCP/IP, this attack exploits the explicit three-way hand-
shake of TCP in which the client and server exchange
(synchronize) their Initial Sequence Numbers (ISN) prior to
data transfer. A malicious handshake sequence with server S,
intruder X, and spoofed client A, may look like:

X −→ S : SYN(ISNx), SRC= A
S −→ A : SYN(ISNs), ACK(ISNx)
X −→ S : ACK(ISNs), SRC = A
X −→ S : ACK(ISNs), SRC = A , malicious-data

In this attack, we assume that the attacker X already knows
the destination port and IP address, as well as the source
IP address. The destination port and IP address are easy to
obtain, as they are generally published, as well-known ports.
The source IP address is also generally easy, as this is simply
the client that is being spoofed. As this is a connection
establishment phase, the intruder can use any one of the ports
available as source port-id. This attack also assumes that the
acknowledgment (ACK) sent by the server and destined to the
spoofed system A, is lost or delayed, either because A itself

4

was down or slow (possibly through a separate attack) or the
ACK is intercepted and dropped by the intruder X.

The difficult part of launching this attack is determining the
ISN of the server. This could be more easily obtained if the
intruder is in the middle and observes the (unencrypted) traffic
between A and S. Otherwise, the intruder has to guess ISNs,
which given 32-bit sequence numbers and random selection
of ISNs, involves 232 possibilities.

In TCP/IP the packet following the three way handshake
can be any arbitrary packet. Which can lead to attacks
such as connection opening attack. On the other hand, in
RINA the IPC process involved in communication uses the
ACSE protocol for establishing and releasing application
connections. By using this protocol the reciever expects the
authentication packets to be followed after the connection
establishment phase but not some aribitarary packtes which
greatly reduces the risk of connection opening attacks. In
RINA, the intruder also has to predict the server’s CEP-id,
which gets dynamically allocated by a resource-allocation
protocol.

X −→ S : create-request(service-name, A, S,
source CEP-id, QoS, · · ·)

S −→ A : creat-response(OK, destination CEP-id, · · ·)
X −→ S : destination CEP-id, ISNc ,· · ·
S −→ A : Challenge (ACSE) , · · ·
X −→ S : response , · · ·
X −→ S : data

If we assume that the intruder X has somehow thwarted
the enrollment authentication described earlier as well as the
authentication after connection establishment and is a member
of the DIF as are A and S, but note that these are the hurdles
that a TCP intruder does not need to overcome. In this case, X
is able to know the addresses of A and S, i.e., X is launching
an insider attack. As this is a connection establishment phase,
the intruder can use any source CEP-id. Also, in RINA, since
there is no need for synchronizing sequence numbers [3], the
sender can use any initial sequence number. Assuming X does
not observe the reply with the destination CEP-id, it has to
guess this CEP-id. Furthermore, since RINA uses a soft-state
approach, CEP-ids are only allocated for 2 × MPL. Thus,
intruder X has to successfully guess the destination CEP-id
within a limited time window of 2×MPL. Given 16-bit CEP-
ids, this involves 216 possibilities. This makes this type of
attack equivalent to port-scanning attacks, in which an intruder
may be attempting an unallocated destination CEP-id. Such
attacks raise more suspicion (and hence, are easier to detect)
than TCP attacks that guess ISN.

Should the intruder be successful in guessing an accept-
able CEP-id, the application expects the common application
protocol to be the data, followed by the application’s authen-
tication procedure. The intruder will have difficulty inserting
its malicious data.

C. Data-Transfer Attacks
Data-transfer attacks, known as blind in-window attacks

[6], are those where the attacker does not have access to
the data packets of the victim connection but still attempts
to inject packets that seem legitimate. Forming a legitimate
packet requires guessing various fields in the packet’s header.

In TCP/IP, the goal of this type of attack might be to abort an
ongoing connection by injecting a “reset” TCP control packet
[6]. The damage depends on the application running above
the TCP connection. One such application is BGP, where a
connection abort would result in entries of the routing table
being flushed. In this attack, we assume that the attacker knows
the destination port and IP address, as well as the source IP
address. The destination port and IP address are easy to obtain,
as they are published. The source IP address is also generally
easy, as this is simply the spoofed client. The intruder has to
guess the source port as well as the sequence number that has
to lie within the window of the receiver.

To guess the source port-id, given 16-bit port numbers,
we have at most 216 possibilities. Furthermore, for each
possible source port-id, given 32-bit sequence numbers and
say 64KB window size5, we have 232

219 = 213 possibilities
for selecting a sequence number that lies within the current
receiver’s window. Thus, there is a total of 216+13 = 229

possibilities. Note that for larger window sizes6, typical of
higher bandwidth-delay-product networks, the attack will be
easier to launch.

In the case of RINA, the intruder can launch an attack
during two different phases of a connection: (1) after the
resource-allocation request is complete and before the data
transfer phase starts, or (2) during the data transfer phase.
Again here we assume that the intruder is in the same DIF, so
the attacker knows the addresses of the source and destination
IPC processes. In RINA Model even though the attacker is
successful in exploiting the Data transfer phase, he would be
getting hold of the pipe which runs through the connection
endpoints of the two IPC process but not the pipe which runs
from application to application as in the case of TCP. In TCP
the connection runs from application to application. Figure 6
and Figure 7 illustrates RINA and TCP management of data-
transfer connections.

Fig. 6. RINA Connection

564KB is the default TCP maximum window size, without window scaling
options.

6Larger window sizes are possible using window scaling options.

5

Fig. 7. TCP Connection

In the first case, the attacker has to guess the source CEP-
id and the destination CEP-id. The attacker also has to guess
other agreed-upon parameters of the connection, such as the
QoS-id, though as a member of the DIF, he/she knows the legal
range of QoS-ids. Since the data transfer phase has not started,
the attacker can use any ISN. Given 16-bit port numbers and
8-bit QoS-id, the attacker has 216+16+8 = 240 possibilities for
guessing the CEP-ids and QoS-id for the victim connection.

In the second case, in addition to the CEP-ids and QoS-
id, the attacker has to guess the sequence number which falls
within the window of the server. This guessing involves 240+13

= 253 possibilities, assuming 64KB window size. This type
of attack is made even harder because of RINA’s use of a
Data-Run-Flag (DRF) during data transfer [3]. If the DRF
bit is set, this implies that the sender has no data left to be
acknowledged or it is starting a new data run. Thus, the DRF
bit periodically synchronizes the sender and receiver, and so
setting it incorrectly in the attack packet would raise suspicion.

For example, if the DRF bit is not set and the receiver’s
connection state had timed out (because it has not be refreshed
by new data from the sender), the packet is simply dropped by
the receiver. Let’s then assume that the attacker always sets the
DRF bit, along with an arbitrary sequence number, in its attack
packet. This attack packet is accepted only if the receiver had
no state for this connection. Otherwise, the receiver can verify
whether the setting of the DRF bit makes sense, which is the
case only if the receiver has indeed acknowledged all prior
packets.

Finally, this type of attack is not possible or harder to
launch in RINA for two reasons: (1) RINA uses a soft-state
approach in managing connections, thus it does not use explicit
connection “reset” messages, which precludes “reset” attacks,7

and (2) RINA supports the dynamic assignment of CEP-ids
during the lifetime of a connection, binding them to the same
port-ids that are only locally-visible. This would make it very
hard for an attacker to guess the source and destination CEP-
ids.

D. Blind TCP data injection through fragmented IP traffic

Zalewski described a possible attack that can be performed
on TCP/IP that doesn’t require the attacker to guess or know

7In a soft-state approach, the connection’s state at the receiver is automat-
ically reset after 2 ×MPL if not refreshed by the sender [3], thus there is
no need for an explicit “reset” message.

the aforementioned TCP connection parameter and could
therefore be successfully exploited in some scenarios with less
effort than that required to exploit the more traditional data-
injection attacks.

The attack is performed when one system is transferring
information to a remote peer by means of TCP, and the
resulting packet get fragmented. In that case, the first IP
fragment will usually contain the entire TCP header, including
port numbers, sequence number, and other information that
may be relatively difficult for a third party (the attacker) to
guess otherwise. The other fragments carry the remaining
section of the TCP/IP payload, and would be put back together
with the headers and previous sections of the packet once
received at the receiving side. The attacker may spoof the
second IP fragment, instead of attempting to determine the
sequence number, and insert data into the TCP payload.

In order to successfully exploit this attack, the attacker
would be facing with two problems, the first part is figuring out
the IP identification values. Usually a minor inconvenience,
since a majority of systems use sequential numbers, and so
it is possible to guess the next value with no effort and
the other problem is sending a fragment that would, after
reassembly, still validate against TCP/IP checksum in the
headers. If the attacker knew the data being transferred over the
target connection, then the only real unknown is the sequence
number in there - the remainder can be usually either predicted
to a degree, or simply overwritten with overlapping fragments.

This problem arises because in the TCP/IP architecture
fragmentation/reassembly is done by both IP and TCP, In
RINA, because the Relaying/Multiplexing function and Error
and Flow Control functions are in the same layer fragmenta-
tion/reassembly occurs only once.

Table I summarizes our comparison of RINA against
TCP/IP under transport-level attacks. We assume 32-bit se-
quence numbers, 16-bit port-ids/CEP-ids, 64KB window size,
and 3-bit QoS-id. To be able to make a direct comparison, we
had to assume that a RINA network had been compromised
and a rogue member had been allowed to join—a hurdle that
is not present in TCP/IP networks.

IV. SECURITY POLICIES IN TCP/IP VS. RINA

RINA decouples the various security functions of authenti-
cation and confidentiality/integrity. The former is done at the
top of the DIF where applications of the DIF authenticate
each other. The latter is done at the bottom of the DIF where
the IPC processes encrypt their traffic if they do not trust the
lower DIFs. These security functions are applied recursively,
so IPC processes themselves would authenticate each other
when communicating through lower-level DIFs. Policies of
the DIF determine the levels of authentication and encryption.
Figure 8 illustrates this functional organization.

In contrast, TCP/IP implements security functions piece-
meal, for example, using SSL under the application layer
and IPSec below the network layer. The TCP/IP organizing
structure is rigid and can only accommodate security functions

6

TABLE I
COMPARISON OF TCP/IP AND RINA UNDER TRANSPORT ATTACKS. TO BE ABLE TO MAKE A DIRECT COMPARISON, WE HAD TO ASSUME THAT A RINA
NETWORK HAD BEEN COMPROMISED AND A ROGUE MEMBER HAD BEEN ALLOWED TO JOIN—A HURDLE THAT IS NOT PRESENT IN TCP/IP NETWORKS.

Vulnerability TCP/IP RINA
Port-scanning possible due to well-known ports not possible with unknown CEP-ids
Connection-opening 232 possibilities to guess ISN 216 possibilities to guess

destination CEP-id within 2×MPL
Data-transfer 229 possibilities to guess 240 possibilities to guess source and destination
(right after conn. open) source port-id and valid SN CEP-ids and agreed-upon QoS-id
Data-transfer 229 possibilities to guess 253 possibilities to guess source and destination
(after transfer started) source port-id and valid SN CEP-ids, agreed-upon QoS-id, and valid SN
DoS possible due to well-known ports and thwarted with access control and

no access control dynamic construction of new DIFs

as “shim” sublayers, rather RINA accommodates them as an
integral part of (recursive) inter-process communication.

DIF

Authentication Module

Integrity & Confidentiality

Module

application process

IPC process

Fig. 8. Security policies applied recursively

Figure 9 illustrates a “middlebox” solution to enable the
support of “private” domains in TCP/IP. Such a middlebox
is known as Network Address Translator (NAT) since it
aggregates private addresses of systems inside the private
domain (such as system “B” in the figure) into the NAT
public address. Communication across the private domain and
the public (Internet) domain, say between systems “B” and
“A”, is done through the NAT, which translates between its
public NAT address and port number, which identifies “B”
externally, and B’s actual private address and port number.
Furthermore, the NAT acts as a firewall, preventing attacks
on private addresses and ports. However, it is clear that this
kind of hand-crafted arrangement makes it hard to coordinate
communication across domains when we want to.

can’t initiate connection
NAT, idA�� B, idB

B

A

NAT

To: NAT, idA
To: B, idB

Mapping Table

message
message

Fig. 9. Security through NATs in TCP/IP

Figure 10 illustrates the procedure in RINA, where com-
munication is established between application processes to

join the same DIF. First, process “B” joins DIF z, which ini-
tially only contains process “C” (Figure 10(a)). As mentioned
earlier, this explicit enrollment procedure happens using a
common underlying DIF (DIF y, in this example), and involves
authenticating that B is a valid member of DIF z, initializing
it with current DIF information, and assigning B an internal
address for use in coordinating communication within DIF
z. Then, similarly, process “A” joins DIF z (Figure 10(b)).
Thus, in RINA, there are no “middleboxes” per se, but rather
systems join and leave DIFs as determined by management
(security) policies. Furthermore, such enrollment procedures
can be repeated horizontally to create concurrent DIFs, or
vertically to create stacked DIFs.

BA

DIF x
DIF y

C
DIF z

(a)

BA
C

DIF x DIF y

DIF z

(b)

Fig. 10. (a) Process “A” is about to join DIF z, (b) Process “A” after joining
DIF z.

V. CONCLUSION

In this paper, we compare a clean-slate internet architecture,
RINA, that is based on fundamental IPC principles, to TCP/IP
in terms of architectural support for security. We specifically
compare the resiliency of RINA to security vulnerabilities
found in the TCP/IP architecture. In some cases, to make a

7

fair comparison, we had to assume that a RINA network had
been compromised and a rogue member had been allowed to
join. (A hurdle that is not present in TCP/IP networks.) Even
so, we found RINA to be more secure and resistant to these
attacks.

We focused on access control, addresses and their binding,
and data transfer. We contrast the open access of TCP/IP
to the controlled access of RINA, which requires an explicit
enrollment phase to join a network of IPC processes (DIF).
Unlike TCP/IP, in RINA, node addresses (of IPC processes)
are internally assigned by a DIF, and are not exposed to
application processes. Furthermore, data connections are dy-
namically assigned connection endpoint ids (CEP-id), which
are bound to dynamically assigned ports. This late (dynamic)
binding of addresses / ids provides levels of indirection that
make RINA inherently more secure than TCP/IP, which ex-
poses static addresses and port numbers to applications.

We compare the resiliency of RINA and TCP/IP to
transport-level attacks. We show how the static assignment
of addresses and ports, as well as the hard-state approach
of TCP/IP to managing connections, makes TCP/IP quite
vulnerable to port-scanning, connection-opening, and data-
transfer attacks. On the other hand, the dynamic assignment
of addresses and ports, the decoupling of port numbers from
CEP-ids, and the soft-state approach to managing connections,
makes RINA quite resilient to such attacks. We believe that
this is an interesting result, given that no more consideration
of security was present in the development of RINA than in
the development of the TCP/IP architecture. One might be led
to conclude that strong design is as important to good security
as explicit consideration of security.In other words, TCP does
not suffer as much from a lack of foresight as a weak design.

We also show that RINA’s support for dynamic construc-
tion of DIFs, with their own security and resource-allocation
policies, enables RINA to effectively thwart DoS attacks.
Furthermore, Distributed DoS (DDoS) attacks are even harder
to mount, since a large-scale DDoS would require the intruder
to join (and be authenticated by) many DIFs—many more
hurdles to overcome!

Finally, we argue that the recursive nature of RINA or-
ganizes the security policies in a clean way, decoupling
authentication from integrity and confidentiality.

REFERENCES

[1] J. Day, Patterns in Network Architecture: A Return to Fundamentals.
Prentice Hall, 2008.

[2] J. Day, I. Matta, and K. Mattar, ““Networking is IPC”: A Guiding Prin-
ciple to a Better Internet,” in Proceedings of ReArch’08 - Re-Architecting
the Internet. Madrid, SPAIN: Co-located with ACM CoNEXT 2008,
December 2008.

[3] R. Watson, “Timer-Based Mechanisms in Reliable Transport Protocol
Connection Management,” Computer Networks, vol. 5, pp. 47–56, 1981.

[4] G. Gursun, I. Matta, and K. Mattar, “On the Performance and Robustness
of Managing Reliable Transport Connections,” CS Department, Boston
University, Tech. Rep. BUCS-TR-2009-014, April 17 2009. [Online].
Available: http://www.cs.bu.edu/techreports/pdf/2009-014-reliable-conn-
mgmt.pdf

[5] S. M. Bellovin, “Security Problems in the TCP/IP Protocol Suite,”
Computer Communication Review, vol. 19, no. 2, pp. 32–48, 1989.

[6] P. Watson, “Slipping in the Window: TCP Reset attacks,” Presentation at
2004 CanSecWest, 2004, http://cansecwest.com/csw04archive.html.

