
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO. 1, JANUARY 1996 155 

[7] H. Kaufman, I. Bar-Kana, and K. Sobel, Direct Adaptive Control 
Algorithms: Theory and Applications. New York Springer Verlag, 

[8] B. D. 0. Anderson, “A system theory criterion for positive real matri- 

[9] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980. 
[lo] R. W. Newcomb, Linear Multiport Synthesis. New York McGraw- 

r--------_---_--_---’ G(s) 
I I 1994. 

ces,’’ SZAMJ. Contr., vol. 5 ,  pp. 171-182, May 1967. 

I Hill, 1966. 
I 

Example: Consider the rotational motion of a flexible spacecraft 
with three torque actuators (one for each orthogonal axis of rotation) 
and 3 collocated attitude sensors. The 3 x 3 transfer function from 
the torque input to the attitude (position) output, yp, is given by 

(29) G’ (SI G(s )  = - 

where 
P 

s 
s s2 + 2p,w,s + wp 

G’(s) = ?.? + 
2=1 

where G‘(s) is the transfer function from the torque input to the 
attitude rate yr(=yP);  a, = ay 2 0 ( i  = 0,1,2,...,p), and 
a0 is nonsingular; wl(>O) represents the natural frequency, and 
pt 2 0 represlents the inherent damping ratio for the ith elastic mode 
( i  = 1,2, . . ., p )  . It can be verified that G’ (s) is PR and has no zeros 
at the origin ((it may have zeros at other locations on the imaginary 
axis). Therefore from Theorem 1, it can be stabilized by any MSPR 
controller that has no poles on the imaginary axis, except possibly 
at the origin. Let C(s) denote a 3 x 3 stable transfer function which 
has no zeros on the imaginary axis, and suppose H ( s )  = [C(s) /s]  
is MSPR. Then H ( s )  stabilizes G‘(s). Examining the block diagram 
in Fig. 2, C(s) stabilizes G(s) .  In other words, a flexible spacecraft, 
which has zero-frequency rigid-body modes as well as damped or 
undamped elastic modes, is stabilized by the controller C(s) which 
has the above properties. The stability does not depend on the number 
of elastic moldes or the parameter values, and is therefore robust. 
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Properties of the Mixed p Problem and Its Bounds 

Peter M. Young and John C. Doyle 

Abstract-Upper and lower bounds for the mixed p problem have 
recently been developed, and here we examine the relationship of these 
bounds to each other and to p. A number of interesting properties are 
developed, and the implications of these properties for the robustness 
analysis of linear systems and the development of practical computation 
schemes are discussed. In particular we find that current techniques 
can only guarantee easy computation for large problems when p equals 
its upper bound, and computational complexity results prohibit this 
possibility for general problems. In this context we present some special 
cases where computation is easy and make some direct comparisons 
between mixed p and “Kharitonov-type” analysis methods. 

I. INTRODUCTION 
The mixed p problem inherits many of the (appropriately gen- 

eralized) properties of complex p, but in some aspects the mixed p 
problem can be fundamentally different from the complex p problem. 
In this paper we study the relationship between p and its bounds for 
the mixed case and compare these findings with the corresponding 
results for the complex case. A number of interesting properties of 
p and its bounds are developed. As well as providing useful insight 
into the nature of the worst-case solution, these results have important 
implications for the robustness analysis of linear systems with real 
parametric uncertainty and the development of practical computation 
schemes for such problems. 

In Section I11 we examine some of the basic properties of the mixed 
p problem, and upper and lower bounds for mixed p are presented 
in Section IV [l], [2]. These bounds are used in [3] to form the basis 
of practical computational software for the mixed p problem which 
is currently available as part of the p-Tools Toolbox [4]. 

Section V examines the properties of the worst-case solution for 
general mixed p problems, and in Section VI we examine some 
special cases of the mixed p problem for which computation may 
be easier. In particular, we briefly consider the rank-one mixed p 
problem and its relationship to “Kharitonov-type” analysis results. 
It is shown that for this problem we have sufficient structure to 
alleviate the computational complexity of the general problem (which 
is NP hard) and develop an exact solution. The case of real matrices 
is also considered in detail. It is shown that for real matrices and 
nonrepeated parameters, then the mixed and complex p upper bounds 
are identical. This result has implications for the use of frequency 

Manuscript received January 14, 1994; revised January 10, 1995. 
P. M. Young is with the Department of Electrical Engineering, Colorado 

J. C. Doyle is with the Electrical Engineenng Department, California 

Publisher Item Identifier S 0018-9286(96)00387-X. 

State University, Fort Collins, CO 80523 USA. 

Institute of Technology, Pasadena, CA 91125 USA. 

0018-9286/96$05.00 0 1996 IEEE 



~ 

156 EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO. 1, JANUARY 1996 

sweeps versus state-space p tests and time-invariant versus time- 
varying perturbations. 

We introduce one further piece of notation. For any two vectors 
x, y E C", then partition z and y compatibly with the block structure 
as 

11. NOTATION AND DEFINITIONS 
The notation used here is fairly standard. For any square complex 

matrix M we denote the transpose by M T  and the complex conjugate 
transpose by M " .  The largest singular value and the spectral radius 
are denoted by 5 ( M )  and p ( M ) ,  respectively. The real spectral radius 
is defined as ~ R ( M )  = max{lXl: X is a real eigenvalue of M }  with 
~ R ( M )  =; 0 if M has no real eigenvalues. For a Hermitian matrix 
M ,  then X(M) denotes the largest (real) eigenvalue. For any complex 
vector 2,  then zT denotes the transpose, x* the complex conjugate 
transpose, and (21 the Euclidean norm. We denote the k x k identity 
matrix and zero matrix by I k  and ok, respectively (occasiondly we 
will drop the subscripts when the size is clear from context). 

The definition of the structured singular value, f i ,  is dependent upon 
the underlying block structure of the uncertainties which is defined as 
follows. Given a matrix M E Cnx" and three nonnegative integers 
m,, m,, and m c  with m m, +m, +mc 5 n, the block structure 
jC(m,, m,, mc) is an m-tuple of positive integers 

where we require k ,  = n so these dimensions are compatible 
with M .  This now determines the set of allowable perturbations, 
namely define 

Note that Xx C C" " and this block structure is sufficiently general 
to allow for repeated real scalars, repeated complex scalars, and full 
complex blocks. Note also that the full complex blocks need not be 
square, but we restrict them as such for notational convenience. The 
purely complex case corresponds to m, = 0, and the purely real 
case to m, = mc = 0. 

Dejinition I 151: The structured singular value, p x ( M ) ,  of a 
matrix M E C n x n  with respect to a block structure X(m,, m,, mc) 
is defined as 

p x ( M )  = (Ami%K{(.(A): d e t ( I  - AM) = 0) )-I (3) 

with px(M) = 0 if no A E Xx solves de t ( I  - AM) = 0. 
In this paper we will be concerned directly with the properties of 

p and its bounds, rather than how to use p as a robustness analysis 
tool. For the reader unfamiliar with p based techniques, a fairly 
comprehensive review is given in [6].  

To develop upper and lower bounds for p, we need to define some 
sets of block diagonal scaling matrices (which are also dependent on 
the underlying block structure) 

wherex,,,y,* E C k t ,  xc,,yc, E C k m ~ + t ,  X C , , ~ C ,  E C k m r + m c + t .  

These will be referred to as the "block components" of IL' and y. 

m. BASIC PROPERTIES OF MIXED p 

The mixed p problem inherits many of the basic properties of the 
complex p problem (see [5 ] ) .  In some aspects, however, the mixed p 
problem can be fundamentally different from the complex p problem. 
In this section we will present some basic properties of the mixed 
p problem and contrast them with the corresponding results for the 
complex p problem. 

From the definition of mixed p in (3), one may readily derive the 
following properties (the complex p versions of these were originally 
presented in [5 ] ) :  

a) p x ( 7 M )  = l - y (p~: (M)  for all M E CnXn and y E R. 
b) p ~ ( 1 ~ )  = 1 for any block structure. 
c) px (A) = C(A) for all A E X x  . 
d) m, = Q,m, = 0 , m c  = 1 --i p x ( M )  = i?(M). 
e) m, = O,m, = 1 , m c  = 0 p x ( M )  = p ( M ) .  
f) m, = l , m ,  = 0 , m c  = 0 j p x ( M )  = ~ R ( M ) .  
g) For any M E C"'" the following sequence of inequalities 

holds 

p R ( M )  5 P x ( M )  _< c ( M ) .  

h) For all A E Xx,Q E QK then QA E X x , A Q  E Xx with 

i) For all A E Xx,U E UK then UA E X K : , A U  E X x  with 

j) DAD-' = A for all A E XK: and D E D K .  
k) p.x(QM) = p,r(MQ) 5 p x ( M )  for all M E Cnx" and 

1) p x ( U M )  = p x ( M U )  = ~ K : ( M )  for all M E CnX" and 

m) px(DIMD-') = p x ( M )  for all M E CnXn and D E Dx. 
n) For any M E C n x n  the following sequence of inequalities 

(.(&A) 5 (.(A),C(AQ) 5 .(A). 

F ( U A )  = 5(A),iqAU) = .(A). 

Q E Qn. 

U E ux. 

holds 

Note that there are important differences between some of these 
properties and their complex 0 versions. The scaling property a) holds 
for y E C for complex p problems. The function ,OR may be replaced 
by p in any of the above for complex p problems. 

Note that p is invariant to matrices in UK: (which are block unitary) 
[I)] but not to matrices in Qx (which may not be unitary) [k)]. 
The reason that we introduce the set &K: is that it will be seen in 
Section Iv that maxQEQK ~ R ( Q M )  = p ~ :  ( M ) ,  whereas it is easy to 
construct examples where maxucuK ~ R ( U M )  # px(M). Thus we 
find that the real parameters may take worst-case values that are not 
on the boundary of the allowable set. This contrasts with the complex 
p case where &K UK so that one may always assume the worst- 
case perturbation is pinvariant and on the boundary of the allowable 
set (i.e., unitary). Note that for mixed problems one may still assume 
the complex blocks of the worst-case perturbation are unitary. 
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Mixed p is invariant to similarity transformations with matrices 
in V K  [m)] and this leads to the third inequality in n) which is the 
usual complex p upper bound. This upper bound is exact for purely 
complex block structures with 2mc + mc 5 3 (see [7]). In general, 
however, it is not exact for any mixed block structures with m, # 0. 
In fact, a better upper bound for mixed p problems with m, # 0 
will be presenlted in Section IV (see [l]). 

Iv .  UPPER AND LOWER BOUNDS FOR MIXED p 

Note that although Definition 1 gives an exact expression for p, it 
involves an optimization problem which is not, in general, convex. It 
is now known that the problem is NP hard 181, so to yield tractable 
computation schemes, attention has focused on upper and lower 
bounds for mixed p problems. 

The key to obtaining a lower bound lies in the fact that the p 
problem may be reformulated as a real eigenvalue maximization. The 
following theorem is taken from [2]. 

Theorem 1 1'21: For any matrix M E CnXn and any compatible 
block structure IC 

(10) 

The function ~ R ( Q M )  is nonconcave, and so we can only guar- 
antee to compute a local maximum in (10). Thus we only guarantee 
to compute a lower bound to p (which is the global maximum). 

Now consider an upper bound for p. Note that one could, for 
the purposes of the upper bound, cover the real perturbations with 
complex ones (and then use the complex p upper bound) since this 
would cover the admissible perturbation set X K .  This approach, 
however, does not exploit the phase information that is present in the 
real perturbations, and hence the bound is frequently poor. The upper 
bound presented in [ l ]  does exploit this phase information and gives 
a bound which is never worse than the standard upper bound from 
complex p theory [see property n)] and is frequently much better. 
The following is a slightly modified version of results from [l]. 

and any compatible 
block structure IC 

Theorem 2 [l]: For any matrix M E C" 

Since the above minimization involves a linear matrix inequality, 
it is quasi-colnvex (so that all local minima are global), and hence 
this bound is computationally tractable. The practical computation of 
these upper and lower bounds is treated in [3]. 

V. GENERAL PROBLEMS 
Of course, in general, we cannot guarantee to compute p exactly, 

for reasons {discussed earlier. We can still gain some insight into 
the properties of the problem, however, from an examination of the 
conditions at the minimum of the upper bound. 

Suppose that we have /3 > 0 as a candidate solution of the upper 
bound minimization problem (1 1) (if /3 = 0 it trivially equals p), and 
if the infimum is achieved, then take Do,Go as the corresponding 
arguments. If the infimum is not achieved, then DO, GO are defined 
as follows. First choose sequences D k ,  G k ,  D k  with D k  E VK, Gk E 
Gx such that J ( M * D k M  + j ( G k M  - M * G k )  - PEDk) = 0 and 
p k  1 p. Note that we can normalize each element of the sequence 
such that @(block diag ( D k ,  G')) = 1. Then D k ,  Gk are bounded, 
so that by passing to a subsequence we have convergent sequences, 
and we define DO,  GO via the appropriate limits, i.e., Dk + DO and 
G' + GO vvith DO E Cx, Go E BK and DO 2 0. 

Theorem 3: Suppose we have M E CnXn together with DO, GO 
and /3 2 0 as above. Then if the maximum eigenvalue of ( M *  Do M+ 
j(GoM - M*Go) - p2D0) is distinct, p = p x ( M ) .  

Proof: If /3 = 0 the result is trivial, so assume p > 0. Choose z as 
the unit norm eigenvector, corresponding to the maximum eigenvalue. 
Then it is easy to check, via a simple perturbation argument, that we 
must have 

z* (M*DM - p 2 D ) z  _> 0 for all D E DK 
x*(GM - M*G)x 2 0 for all G E G K .  

But now by continuity, and the definition of Vx, &, this implies 
that in fact we have 

x*(M*DM - p 2 D ) z  2 0 for all D E '&, D 2 0 

x*(GM - M*G)x = 0 for all G E GK. (12) 

Now suppose that ( M z ) ,  and xz represent one of the block compo- 
nents of ( M x )  and x, and that D, and G, represent the corresponding 
blocks for D and G. We will choose every other block of D and G 
to be identically zero. 

Suppose first that we have a full complex block. Choose D, = I 
and (12) implies that I ( M Z ) ~ ~  2 pIxtl. Thus there exists a matrix 
A , ,  with @(A,)  5 1, such that A , ( M x ) ,  = pz,. For a repeated 
complex scalar block in addition to the above, one may choose D, as 
a positive semidefinite matrix with a kernel spanned by ( M z ) , .  Then 
we have D,(Mx) ,  = 0, so that applying (12) we find that D z x ,  = 0. 
By construction of D,, this implies there exists a complex scalar S,, 
such that S,(Mx),  = Dz,, and from the above we may take 16,) 5 1. 
Finally for a repeated real scalar block then in addition to the above 
we may choose G, = I and (12) implies that x : (Mx) ,  = (Mz)zx,. 
This implies S ~ I ( M Z ) ~ ~ ~  = 6,1(Mx),I2 and so we may take 6, E R. 

Applying the above relationships to each block component, and 
stacking them up, we obtain A E X x ,  @(A) 5 1 such that A M x  

0 
This theorem is an extension of a result in [l], where it is 

additionally assumed that the infimum in the p upper bound (11) 
is achieved. In fact, this assumption that the infimum is achieved has 
strong implications for the worst-case perturbation. 

and a compatible block 
structure IC. Then if the infimization in the p upper bound (11) is 
achieved and equals p~ ( M ) ,  we have 

=Px. Thus p 5 p x ( M )  and hence p = ~ K ( M ) .  

Theorem 4: Suppose we have M E C" 

Proof: Recall that maxUEulc ~ R ( U M )  5 ~ K ( ( M ) .  Hence the 
result is trivial for p x ( M )  = 0, so assume p x ( M )  > 0. Then 
by a simple scaling argument we may, without loss of generality, 
assume p x ( M )  = 1. Suppose we have the perturbation Q E &x 
achieving (lo), or in other words Q E &K and x E C" such that 
Q M x  = x with x # 0. This implies that the block components of 
the vectors z and M z  satisfy 

qr(Mz).% = zrz for i = l , . . . , m y  

Q ? ( M Z ) ~ ,  = zc, for i = ~ , . ' . , m c .  

Now by assumption we have D E V x ,  G E Bx such that (M*DM+ 
j (GM - M*G)  - D )  5 0, so that in particular 

x * ( M * D M  + j (GM - M*G)  - D ) x  5 0. 

Expanding this expression out and substituting for (14), one can 
derive that 

q:(Mx)c,  = xc,  for i = l , . . . , m c  (14) 
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(note that all the complex blocks gp, QF are unitary). Since we have 
1y:l 5 1 for all z = 1,". , m r ,  this implies that 

1y;l < 1 ID8'(Mx),%I = 0. 

But in this case, since D, > 0, this implies ( M Z ) ~ ,  = 0, and hence 
by (14), zrc = 0. Thus we may take y,' = 1 for all such blocks and 

0 
Note that this theorem says that whenever the upper bound is 

achieved and equals p, then the worst-case perturbation may be 
taken to be on a vertex. Of course for the complex bIocks we can 
always restrict our attention to the boundary of the uncertainty set, 
but for the real uncertainties this is not the case. It is interesting 
to consider whether the worst-case perturbations are typically on a 
vertex or require intemal reals. In fact, it can be shown that, at least 
for rank-one problems, neither case is generic 191, [lo]. 

still satisfy Q M x  = x but now with Q E Ute. 

VI. SPECIAL CASES 
Note that although the general mixed p problem is NP hard [&I, this 

does not mean that every p problem is hard to compute. In particular, 
if we consider restricted special cases of the general problem, by 
imposing additional structure on M ,  then it is possible to find classes 
of mixed p problems which we can compute exactly. 

A. Some Simple Special Cases 
First we briefly consider some elementary special cases for which 

computation of p is easy. These results are simple extensions of 
results for the complex p case, and we include them here for 
completeness. The proofs are left to the reader (or see [9]). First 
note that for Hermitian matrices we can trivially obtain the following 
result. 

Lemma 1: For any Hermtian matrix M E C n x n  and any compat- 
ible block structure IC, then ~ K ( M )  = 3 ( M )  = p ( M )  = ~ R ( M ) .  

Next we consider positive matrices, i.e., matrices whose elements 
are positive real numbers. For these matrices there is a wealth 
of results from Perron-Frobenius theory (see [Ill,  for example) 
regarding eigenvalues and singular values, and these lead to the 
following result for p. 

Lemma 2: For any positive matrix M E RnXn and any compat- 
ible block structure IC with mc = 0 (i.e., only scalar uncertainties), 
then px(M) = minoED,, F(DMD-')  = p ( M )  = ~ R ( M ) .  

These two cases are not of too much interest in themselves, since 
they are rarely encountered in practice. They may be of some interest, 
however, in providing crude bounds for more general problems. One 
example of such an application for the complex p problem is provided 
in [12] where the optimal scalings for the positive matrix case are used 
to approximate the optimal scalings for a more general p problem. 

B. The Rank-One Case and "Kharitonov-Type" Results 
Consider the problem of computing mixed p for a matrix of 

rank one. This situation arises in a number of different settings, 
including perturbed single-input-single-output (SISO) coprime factor 
models and interval plants. One particular case which gives rise 
to a rank-one problem is the so-called "affine parameter variation" 
problem for a polynomial with perturbed coefficients. This problem 
has been examined in detail in the literature, and several celebrated 
"Kharitonov-type" results have been proven for variations of this 
problem (see [13], for example). We refer the reader to [lo], [14], 
and [15] for examples of classes of problems that lead to rank-one 
p problems. 

The rank-one case is studied in detail in [lo], where the following 
result is proven. 

Theorem 5: Suppose we have a rank-one matrix M E C" n ,  then 
~ K ( M )  equals its upper bound from Theorem 2. 

This theorem says that for rank-one problems, p equals its upper 
bomd and is hence equivalent to a convex problem. This reinforces 
the results of [15] and offers some insight into why the problem 
becomes so much more difficult when we move away from the 
"affine parameter variation" case to the "multilinear" or "polynomial" 
cases (see [16]). These correspond to p problems where M is not 
necessarily rank one, and hence may no longer be equal to the upper 
bound, and so may no longer be equivalent to a convex problem 
(note that there exist rank two matrices for which p does not equal 
its upper bound). 

C. Real Matrices 
As we noted earlier, it is always possible to obtain an upper 

bound for a mixed p problem simply by treating the real parameters 
as complex and using the standard complex p upper bound. The 
upper bound from Theorem 2. however, is frequently much better 
than the complex p upper bound because of the extra degrees-of- 
freed~m we have in choosing the G scaling matrix (note that if 
we restrict ourselves to G = On, we recover the complex p upper 
bound). Unfortunately it is not always possible to improve upon the 
complex p upper bound via the G scaling matrix as is illustrated by 
the following results. 

Theorem 6: Given a matrix M E Rnxn and any block shucture 
K, define the following subsets of 'DK and G/c 

DRK: = (D E 'DK:  D E Rnxn)  

GRK: = (G E GK: jG E Rnx"} 
(16) 

and the following optimization problems 

CY* = inf min{a: M*DM + j ( G M  - M*G) 
DEDx,GEGIC II N E R  

- a D  5 O}/ 
J 

inf [ r n i n l u :  M * D M + j ( G M -  C Y =  D E D R ~ , G E G R , ,  N E R  M * G )  

- QD 5 O}] (17) 

then CY, = &. 
Prooj Clearly we have that a* 5 h. Now suppose we have D 

E Dz,G E GK and Q E R such that M * D M + j ( G M  - M * G )  - 
CYD 2 0. Split D and G into their real and imaginary parts as 
D = D R + ~ D I , G = G R + ~ G I  ~ ~ ~ ~ D R , D I , G R . G I  E R n X n .  
Then it is easy to show that DR,  GR are real symmetric, and D j ,  GI 
are real skew symmetric. Now we have that 

M*DM + j(GM - M"G) - a D  5 0 
x * ( M * D M +  j ( G M  - M * G )  - a D ) z  5 0 Vx E C" 

==+- zT(&fTDM + j ( G M  - M T G )  - Q D ) ~  5 0 VX E R". 

Now we note that ( M T D M  + j ( G M  - M T G )  - Q D )  = S + jW 
where 

S = M T D ~ M  + j ( ( jG1)M - M T ( j G I ) )  - ~ D R  
W = MTDIM + GRM - M T G ~  - Q D I .  

It is easy to check that S is real symmetric, and W is real skew 
symmetric, so that xT (S + jW)z  = x T S s  b'x E R". Thus we have 

x T ( M T D ~ M  + j ( ( j G r ) M  - M T ( j G I ) )  - a D ~ ) z  5 0 Vx E R" 
( M * D R M + j ( ( j G j ) M  - M * ( j G I ) )  - QDR) 5 0. 

Similarly we can show that D > 0 a DR > 0 and so DR E 
D R K ,  ( jGI)  E GRK which gives & 5 a* and hence a* = &. 0 
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Basically Theorem 6 says that when computing the upper bound 
for real matrices, we may restrict our attention to purely real D E VK. 
(i.e., D E VK. is real symmetric) and purely imaginary G E GK. (i.e., 
G E GK. is of the form G = jG where G is real skew symmetric). As 
a consequence of this we immediately obtain the following theorem. 

Theorem 7: Suppose we have a real matrix M E Rnxn and a 
block structure K with k ,  = 1 for i = 1,” .  ,m, (i.e., none of the 
real scalars are repeated), then 

where VRK. is defined as in Theorem 6. 
Proof: Apply Theorem 6 to conclude that we may restrict our 

attention in the left-hand side of (18) to D E D R X ,  G E GRK.. 
Now note that for this block structure (none of the real scalars are 
repeated) G is diagonal (and Hermitian) and hence purely real. Thus 

0 
Note that Theorem 7 says that for p problems involving real 

matrices where none of the real scalars are repeated, the choice 
G = 0, in the upper bound is optimal, or in other words the mixed 
p upper bound equals the complex p upper bound. This result has 
important implications for the analysis of linear systems subject to 
real parameter uncertainty. For the remainder of this section we will 
assume that none of the real parameters are repeated, so that Theorem 
7 applies. 

Note first of all that for a (nominally) stable linear system, then the 
transfer matrix approaches a real matrix at high and low frequencies. 
Thus we immediately find that the mixed and complex p upper 
bounds approach each other at the extreme frequency limits. This 
means that if the peak value of the p plot (across frequency) 
is occurring at one of these limits, then we will not be able to 
differentiate between real and complex parameters in the upper 
bounds. For such problems, we may refine the bounds via more 
powerful computational tools, such as Branch-and-Bound [ 171. Note 
however that we will not be able to guarantee reasonable computation 
times on large problems for such schemes, since the problem is NP 
hard. Recall th,at the only large problems we can (currently) guarantee 
to compute in reasonable time are those where p equals its upper 
bound. 

It is possible to avoid using a frequency sweep when computing p ,  
by noting that the state-space representation of a linear system can be 
rewritten as a llinear fractional transformation. This state-space p test 
is fully detailed in [6] (for the complex p case), and the procedure 
essentially amounts to including the frequency parameter, z ,  as one 
of the uncertainties against which robustness is desired. In this way 
one obtains a one-shot test, involving a constant matrix p problem, 
for the worst-case robustness margin across all frequencies. Note, 
however, that this matrix is real (since A,  B ,  C, D are), so that this 
test will not differentiate at all (in the upper bound) between real 
and complex ]parameters. Again one may alleviate the situation, at 
additional computational expense, via Branch-and-Bound techniques. 
Note that in ithis setting the Branch-and-Bound procedure is also 
partitioning the frequency variable z ,  so that this may be thought 
of as doing an intelligent frequency sweep. 

In fact, the complex p upper bound for this state-space p test 
is a robustness margin in its own right. It is shown in [18] and 
[19] that this test is exact, but with respect to linear time-varying 
uncertainties. The implications of Theorem 7 for robustness analysis 

we have BRK := {On}. 

with time-varying parametric and dynamic uncertainties is currently 
under investigation. 

Note that by further restricting this class to purely real p problems, 
we obtain the following well known “vertex result.” 

Lemma 3: Suppose we have a real matrix M E Rnxn and a 
block structure IC with m, = n, m, = mc = 0, and k ,  = 1 
for i = 1,. . . , m, (i.e., none of the real scalars are repeated). Then 
it suffices to consider perturbations at the vertices of the allowed 
perturbation set. 

This result follows immediately from the fact that det(1, - A M )  
for A E X K .  is a real-valued multilinear function of the 6,“s. For 
these problems then we can compute p exactly by checking a finite 
number of points. Note, however, that the required computation grows 
exponentially with problem size, so that this result is only applicable 
to small problems, and in fact, even this restricted class of the mixed 
p problem is NP hard [20]. The extent to which assumptions about 
the structure of M can affect the computational complexity of the 
problem is evident on comparing Lemmas 2 and 3. 
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