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Abstract—In this paper, we take a control-theoretic approach
to answering some standard questions in statistical mechanics,
and use the results to derive limitations of classical measurements.
A central problem is the relation between systems which appear
macroscopically dissipative but are microscopically lossless. We
show that a linear system is dissipative if, and only if, it can
be approximated by a linear lossless system over arbitrarily
long time intervals. Hence lossless systems are in this sense
dense in dissipative systems. A linear active system can be
approximated by a nonlinear lossless system that is charged
with initial energy. As a by-product, we obtain mechanisms
explaining the Onsager relations from time-reversible lossless
approximations, and the fluctuation-dissipation theorem from
uncertainty in the initial state of the lossless system. The results
are applied to measurement devices and are used to quantify
limits on the so-called observer effect, also called back action,
which is the impact the measurement device has on the observed
system. In particular, it is shown that deterministic back action
can be compensated by using active elements, whereas stochastic
back action is unavoidable and depends on the temperature of
the measurement device.

I. INTRODUCTION

Analysis and derivation of limitations on what is achiev-
able are at the core of many branches of engineering, and
thus of tremendous importance. Examples can be found in
estimation, information, and control theories. In estimation
theory, the Cramér-Rao inequality gives a lower bound on
the covariance of the estimation error, in information theory
Shannon showed that the channel capacity gives an upper
limit on the communication rate, and in control theory Bode’s
sensitivity integral bounds achievable control performance. For
an overview of limitations in control and estimation, see the
book [1]. Technology from all of these branches of engineering
is used in parallel in modern networked control systems [2].
Much research effort is currently spent on understanding how
the limitations from these fields interact. In particular, much
effort has been spent on merging limitations from control and
information theory, see for example [3]–[5]. This has yielded
insight about how future control systems should be designed
to maximize their performance and robustness.
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Derivation of limitations is also at the core of physics. Well-
known examples are the laws of thermodynamics in classical
physics and the uncertainty principle in quantum mechanics
[6]–[8]. The exact implications of these physical limitations
on the performance of control systems have received little at-
tention, even though all components of a control system, such
as actuators, sensors, and computers, are built from physical
components which are constrained by physical laws. Control
engineers discuss limitations in terms of location of unstable
plant poles and zeros, saturation limits of actuators, and more
recently channel capacity in feedback loops. But how does the
amount of available energy limit the possible bandwidth of a
control system? How does the ambient temperature affect the
estimation error of an observer? How well can you implement
a desired ideal behavior using physical components? The main
goal of this paper is to develop a theoretical framework where
questions such as these can be answered, and initially to derive
limitations on measurements using basic laws from classical
physics. Quantum mechanics is not used in this paper.

The derivation of physical limitations broaden our un-
derstanding of control engineering, but these limitations are
also potentially useful outside of the traditional control-
engineering community. In the physics community, the rig-
orous error analysis we provide could help in the analysis
of far-from-equilibrium systems when time, energy, and de-
grees of freedom are limited. For Micro-Electro-Mechanical
Systems (MEMS), the limitation we derive on measurements
can be of significant importance since the physical scale of
micro machines is so small. In systems biology, limits on
control performance due to molecular implementation have
been studied [9]. It is hoped that this paper will be a first step
in a unified theoretical foundation for such problems.

A. Related work

The derivation of thermodynamics as a theory of large sys-
tems which are microscopically governed by lossless and time-
reversible fundamental laws of physics (classical or quantum
mechanics) has a large literature and tremendous progress for
over a century within the field of statistical physics. See for
instance [10]–[13] for physicists’ account of how dissipation
can appear from time-reversible dynamics, and the books [6]–
[8] on traditional statistical physics. In non-equilibrium statis-
tical mechanics, the focus has traditionally been on dynamical
systems close to equilibrium. A result of major importance is
the fluctuation-dissipation theorem, which plays an important
role in this paper. The origin of this theorem goes back to
Nyquist’s and Johnson’s work [14], [15] on thermal noise in
electrical circuits. In its full generality, the theorem was first
stated in [16]; see also [17]. The theorem shows that thermal
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fluctuations of systems close to equilibrium determines how
the system dissipates energy when perturbed. The result can
be used in two different ways: By observing the fluctuation of
a system you can determine its dynamic response to pertur-
bations; or by making small perturbations to the system you
can determine its noise properties. The result has found wide-
spread use in many areas such as fluid mechanics, but also
in the circuit community, see for example [18], [19]. A recent
survey article about the fluctuation-dissipation theorem is [20].
Obtaining general results for dynamical systems far away from
equilibrium (far-from-equilibrium statistical mechanics) has
proved much more difficult. In recent years, the so-called
fluctuation theorem [21], [22], has received a great deal of
interest. The fluctuation theorem quantifies the probability that
a system far away from equilibrium violates the second law of
thermodynamics. Not surprisingly, for longer time intervals,
this probability is exceedingly small. A surprising fact is
that the fluctuation theorem implies the fluctuation-dissipation
theorem when applied to systems close to equilibrium [22].
The fluctuation theorem is not treated in this paper, but is an
interesting topic for future work.

From a control theorist’s perspective, it remains to un-
derstand what these results imply in a control-theoretical
setting. One contribution of this paper is to highlight the
importance of the fluctuation-dissipation theorem in control
engineering. Furthermore, additional theory is needed that is
both mathematically more rigorous and applies to systems not
merely far-from-equilibrium, but maintained there using active
control. More quantitative convergence and error analysis is
also needed for systems not asymptotically large, such as arise
in biology, microelectronics, and micromechanical systems.

Substantial work has already been done in the control
community in formulating various results of classical thermo-
dynamics in a more mathematical framework. In [23], [24],
the second law of thermodynamics is derived and a control-
theoretic heat engine is obtained (in [25] these results are
generalized). In [26], a rigorous dynamical systems approach
is taken to derive the laws of thermodynamics using the
framework of dissipative systems [27], [28]. In [29], it is
shown how the entropy flows in Kalman-Bucy filters, and
in [30] Linear-Quadratic-Gaussian control theory is used to
construct heat engines. In [31]–[33], the problem of how
lossless systems can appear dissipative (compare with [10]–
[12] above) is discussed using various perspectives. In [34],
how the direction of time affects the difficulty of controlling
a process is discussed.

B. Contribution of the paper

The first contribution of the paper is that we characterize
systems that can be approximated using linear or nonlinear
lossless systems. We develop a simple, clear control-theoretic
model framework in which the only assumptions on the
nature of the physical systems are conservation of energy
and causality, and all systems are of finite dimension and
act on finite time horizons. We construct high-order lossless
systems that approximate dissipative systems in a systematic
manner, and prove that a linear model is dissipative if, and

only if, it is arbitrarily well approximated by lossless causal
linear systems over an arbitrary long time horizon. We show
how the error between the systems depend on the number of
states in the approximation and the length of the time horizon
(Theorems 1 and 2). Since human experience and technology
is limited in time, space, and resolution, there are limits to
directly distinguishing between a low-order macroscopic dis-
sipative system and a high-order lossless approximation. This
result is important since it shows exactly what macroscopic
behaviors we can implement with linear lossless systems,
and how many states are needed. In order to approximate
an active system, even a linear one, with a lossless system,
we show that the approximation must be nonlinear. Note
that active components are at the heart of biology and all
modern technology, in amplification, digital electronics, signal
transduction, etc. In the paper, we construct one class of low-
order lossless nonlinear approximations and show how the
approximation error depends on the initial available energy
(Theorems 4 and 5). Thus in this control-theoretic context,
nonlinearity is not a source of complexity, but rather an
essential and valuable resource for engineering design. These
result are all of theoretical interest, but should also be of
practical interest. In particular, the results give constructive
methods for implementing desired dynamical systems using
finite number of lossless components when resources such as
time and energy are limited.

As a by-product of this contribution, the fluctuation-
dissipation theorem (Propositions 2 and 3) and the Onsager
reciprocal relations (Theorem 3) easily follows. The lossless
systems studied here are consistent with classical physics
since they conserve energy. If time reversibility (see [28])
of the linear lossless approximation is assumed, the Onsager
relations follow. Uncertainty in the initial state of linear
lossless approximations give a simple explanation for noise
that can be observed at a macroscopic level, as quantified by
the fluctuation-dissipation theorem. The fluctuation-dissipation
theorem and the Onsager relations are well know and have
been shown in many different settings. Our contribution here
is to give alternative explanations that use the language and
tools familiar to control theorists.

The second contribution of the paper is that we highlight the
importance of the fluctuation-dissipation theorem for deriving
limitations in control theory. As an application of control-
theoretic relevance, we apply it on models of measurement
devices. With idealized measurement devices that are not
lossless, we show that measurements can be done without
perturbing the measured system. We say these measurement
devices have no back action, or alternatively, no observer
effect. However, if these ideal measurement devices are im-
plemented using lossless approximations, simple limitations on
the back action that depends on the surrounding temperature
and available energy emerge. We argue that these lossless
measurement devices and the resulting limitations are better
models of what we can actually implement physically.

We hope this paper is a step towards building a frame-
work for understanding fundamental limitations in control
and estimation that arise due to the physical implementation
of measurement devices and, eventually, actuation. We defer
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many important and difficult issues here such as how to
actually model such devices realistically. It is also clear that
this framework would benefit from a behavioral setting [35].
However, for the points we make with this paper, a conven-
tional input-output setting with only regular interconnections
is sufficient. Aficionados will easily see the generalizations,
the details of which might be an obstacle to readability for
others. Perhaps the most glaring unresolved issue is how to
best motivate the introduction of stochastics. In conventional
statistical mechanics, a stochastic framework is taken for
granted, whereas we ultimately aim to explain if, where, and
why stochastics arise naturally. We hope to address this in
future papers. The paper [33] is an early version of this paper.

C. Organization

The organization of the paper is as follows: In Section II, we
derive lossless approximations of various classes of systems.
First we look at memoryless dissipative systems, then at
dissipative systems with memory, and finally at active systems.
In Section III, we look at the influence of the initial state of the
lossless approximations, and derive the fluctuation-dissipation
theorem. In Section IV, we apply the results to measurement
devices, and obtain limits on their performance.

D. Notation

Most notation used in the paper is standard. Let f(t) ∈
R

n×n and fij(t) be the (i, j)-th element. Then f(t)T de-
notes the transpose of f(t), and f(t)∗ the complex conjugate
transpose of f(t). We define ‖f(t)‖1 :=

∑n
i,j=1 |fij(t)|,

‖f(t)‖2 :=
√∑n

i,j=1 |fij(t)|2, and σ̄(f(t)) is the largest sin-

gular value of f(t). Furthermore, ‖f‖L1[0,t] :=
∫ t

0
‖f(s)‖1ds,

and ‖f‖L2[0,t] :=
√∫ t

0
‖f(s)‖2

2ds. In is the n-dimensional
identity matrix.

II. LOSSLESS APPROXIMATIONS

A. Lossless systems

In this paper, linear systems in the form

ẋ(t) = Jx(t) + Bu(t), x(t) ∈ R
n,

y(t) = BT x(t) + Du(t), u(t), y(t) ∈ R
p,

(1)

where J and D are anti symmetric (J = −JT , D = −DT )
and (J,B) is controllable are of special interest. The system
(1) is a linear lossless system. We define the total energy E(x)
of (1) as

E(x) :=
1
2
xT x. (2)

Lossless [27], [28] means that the total energy of (1) satisfies

dE(x(t))
dt

= x(t)T ẋ(t) = y(t)T u(t) =: w(t), (3)

where w(t) is the work rate on the system. If there is no work
done on the system, w(t) = 0, then the total energy E(x(t))
is constant. If there is work done on the system, w(t) > 0, the
total energy increases. The work, however, can be extracted
again, w(t) < 0, since the energy is conserved and the system

i v1, C1 v2, C2

i1, L1

+ +

− −

Fig. 1. The inductor-capacitor circuit in Example 1.

is controllable. In fact, all finite-dimensional linear minimal
lossless systems with supply rate w(t) = y(t)T u(t) can be
written in the form (1), see [28, Theorem 5]. Nonlinear lossless
systems will also be of interest later in the paper. They will
also satisfy (2)–(3), but their dynamics are nonlinear. Con-
servation of energy is a common assumption on microscopic
models in statistical mechanics and in physics in general [6].
The systems (1) are also time reversible if, and only if, they are
also reciprocal, see [28, Theorem 8] and Section II-C. Hence,
we argue the systems (1) have desirable “physical” properties.

Remark 1: The system (1) is a linear port-Hamiltonian
system, see for example [36], with no dissipation. Note that the
Hamiltonian of a linear port-Hamiltonian system is identical
to the total energy E.

There are well-known necessary and sufficient conditions
for when a transfer function can be exactly realized using
linear lossless systems: All the poles of the transfer function
must be simple, located on the imaginary axis, and with
positive semidefinite residues, see [28]. In this paper, we
show that linear dissipative systems can be arbitrarily well
approximated by linear lossless systems (1) over arbitrarily
large time intervals. Indeed, if we believe that energy is
conserved, then all macroscopic models should realizable
using lossless systems of possibly large dimension. The linear
lossless systems are rather abstract but have properties that
we argue are reasonable from a physical point of view, as
illustrated by the following example.

Example 1: It is a simple exercise to show that the circuit
in Fig. 1 with the current i(t) through the current source as
input u(t), and the voltage v1(t) across the current source as
output y(t) is a lossless linear system. We have

ẋ(t) =

⎛
⎝ 0 −1/

√
L1C1 0

1/
√

L1C1 0 −1/
√

L1C2

0 1/
√

L1C2 0

⎞
⎠ x(t)

+

⎛
⎝1/

√
C1

0
0

⎞
⎠ u(t),

y(t) =
(
1/

√
C1 0 0

)
x(t),

x(t)T =
(√

C1v1(t)
√

L1i1(t)
√

C2v2(t)
)
,

E(x(t)) =
1

2
x(t)T x(t) =

1

2
(C1v1(t)

2 + L1i1(t)
2 + C2v2(t)

2),

w(t) = y(t)u(t) = v1(t)i(t).

Note that E(x(t)) coincides with the energy stored in the
circuit, and that w(t) is the power into the circuit. Electrical
circuits with only lossless components (capacitors and induc-
tors) can be realized in the form (1), see [37]. Circuits with
resistors can always be approximated by systems in the form
(1), as is shown in this paper.
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B. Lossless approximation of dissipative memoryless systems

Many times macroscopic systems, such as resistors, are
modeled by simple static (or memoryless) input-output rela-
tions

y(t) = ku(t), (4)

where k ∈ R
p×p. If k is positive semidefinite, this system is

dissipative since work can never be extracted and the work rate
is always nonnegative, w(t) = y(t)T u(t) = u(t)T ku(t) ≥ 0,
for all t and u(t). Hence, (4) is not lossless. Next, we show
how we can approximate (4) arbitrarily well with a lossless
linear system (1) over finite, but arbitrarily long, time horizons
[0, τ ]. First of all, note that k can be decomposed into k = ks+
ka where ks is symmetric positive semidefinite, and ka is anti
symmetric. We can use D = ka in the lossless approximation
(1) and need only to consider the symmetric matrix ks next.

First, choose the time interval of interest, [0, τ ], and rewrite
y(t) = ksu(t) as the convolution

y(t) =
∫ ∞

−∞
κ(t − s)u(s)ds, κ(t) := ksδ(t), (5)

where u(t) is at least continuous and has support in the interval
[0, τ ],

u(t) = 0, t ∈ (−∞, 0] ∪ [τ,∞),

and δ(t) is the Dirac distribution. The time interval [0, τ ]
should contain all the time instants where we perform input-
output experiments on the system (4)–(5). The impulse re-
sponse κ(t) can be formally expanded in a Fourier series over
the interval [−τ, τ ],

κ(t) ∼ ks

2τ
+

∞∑
l=1

ks

τ
cos lω0t, ω0 := π/τ. (6)

To be precise, the Fourier series (6) converges to ksδ(t) in
the sense of distributions. Define the truncated Fourier series
by κN (t) := ks/(2τ)+

∑N−1
l=1 (ks/τ) cos lω0t and split κN (t)

into a causal and an anti-causal part:

κN (t) =: κc
N (t) + κac

N (t)
κc

N (t) = 0 (t < 0), κac
N (t) = 0 (t ≥ 0).

The causal part κc
N (t) can be realized as the impulse response

of a lossless linear system (1) of order (2N − 1)r using the
matrices

J = JN :=

⎡
⎣0 0 0

0 0 ΩN

0 −ΩN 0

⎤
⎦ ,

ΩN := diag{ω0Ir, 2ω0Ir, . . . , (N − 1)ω0Ir},

B = BN :=

√
1
τ

(
kT

f√
2

kT
f . . . kT

f 0 . . . 0
)T

,

(7)
where r = rank ks and kf ∈ R

r×p satisfies ks = kT
f kf . That

the series (6) converges in the sense of distributions means
that for all smooth u(t) of support in [0, τ ] we have that

ksu(t) = lim
N→∞

∫ ∞

−∞
(κac

N (t − s) + κc
N (t − s)) u(s)ds.

A closer study of the two terms under the integral reveals that

lim
N→∞

∫ ∞

−∞
κac

N (t − s)u(s)ds =
1
2
ksu(t+),

lim
N→∞

∫ ∞

−∞
κc

N (t − s)u(s)ds =
1
2
ksu(t−),

because of the anti-causal/causal decomposition and κc
N (t) =

κac
N (−t), t > 0. Thus since u(t) is smooth, we can also model

y(t) = ksu(t) using only the causal part κc
n(t) if it is scaled by

a factor of two. This leads to a linear lossless approximation
of y(t) = ksu(t) that we denote by the linear operator KN :
C2(0, τ) → C2(0, τ) defined by

yN (t) = (KNu)(t) =
∫ ∞

−∞
2κc

N (t − s)u(s)ds

=
∫ t

0

2κc
N (t − s)u(s)ds.

(8)

Here C2(0, τ) denotes the space of twice continuously differ-
entiable functions on the interval [0, τ ]. The linear operator
KN is realized by the triple (JN ,

√
2BN ,

√
2BT

N ). We can
bound the approximation error as seen in the following theo-
rem.

Theorem 1: Assume that u ∈ C2(0, τ) and u(0) = 0.
Let y(t) = ku(t) = ksu(t) + kau(t) with ks symmetric
positive semidefinite and ka anti symmetric. Define a loss-
less approximation with realization (JN ,

√
2BN ,

√
2BT

N , ka),
yN (t) = KNu(t) + kau(t). Then the approximation error is
bounded as

‖y(t)−yN (t)‖2 ≤ 2σ̄(ks)τ
π2(N − 1)

(‖u̇(t)‖2 + ‖u̇(0)‖2 + ‖ü‖L1[0,t]

)
,

for t in [0, τ ].
Proof: We have that y(t) − yN (t) =∑∞

l=N (2ks/τ)
∫ t

0
cos lω0(t − s)u(s)ds, t ∈ [0, τ ]. We

have changed the order of summation and integration
because this is how the value of the series is defined
in distribution sense. We proceed by using repeated
integration by parts on each term in the series. We have∫ t

0
cos lω0(t − s)u(s)ds = [

∫ t

0
sin lω0(t − s)u̇(s)ds]/(lω0) =

[u̇(t) − u̇(0) cos lω0t − ∫ t

0
cos lω0(t − s)ü(s)ds]/(l2ω2

0).
Hence, we have the bound

‖y(t) − yN (t)‖2 ≤ 2σ̄(ks)
τ

∞∑
l=N

1
l2ω2

0

(‖u̇(t)‖2

+ ‖u̇(0)‖2 +
∫ t

0

‖ü(s)‖1ds).

Since
∑∞

l=N 1/l2 ≤ 1/(N − 1), we can establish the bound
in the theorem.

The theorem shows that by choosing the truncation order
N sufficiently large, the memoryless model (4) can be ap-
proximated as well as we like with a lossless linear system, if
inputs are smooth. Hence we cannot then distinguish between
the systems y = ku and yN = KNu + kau using finite-
time input-output experiments. On physical grounds one may
prefer the model KN + ka even though it is more complex,
since it assumes the form (1) of a lossless system (and is
time reversible if k is reciprocal, see Theorem 3). Additional
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support for this idea is given in Section III. Note that the
lossless approximation KN is far from unique: The time
interval [0, τ ] is arbitrary, and other Fourier expansions of (6)
are possible. The point is, however, that it is always possible
to approximate the dissipative behavior using a lossless model.

It is often a reasonable assumption that inputs u(t), for
example voltages, are smooth if we look at a sufficiently fine
time scale. This is because we usually cannot change inputs
arbitrarily fast due to physical limitations. Physically, we can
think of the approximation order (2N − 1)r as the number
of degrees of freedom in a physical system, usually of the
order of Avogadro’s number, N ≈ 1023. It is then clear that
the interval length τ can be very large without making the
approximation error bound in Theorem 1 large. This explains
how the dissipative system (4) is consistent with a physics
based on energy conserving systems.

Remark 2: Note that it is well known that a dissipative
memoryless system can be modeled by an infinite-dimensional
lossless system. We can model an electrical resistor by a semi-
infinite lossless transmission line using the telegraphists’s
equation (the wave equation), see [38], for example. If the
inductance and capacitance per unit length of the line are L
and C, respectively, then the characteristic impedance of the
line,

√
L/C, is purely resistive. One possible interpretation

of KN is as a finite-length lossless transmission line where
only the N lowest modes of the telegraphists’s equation are
retained. Also in the physics literature lossless (or Hamilto-
nian) approximations of dissipative memoryless systems can
be found. In [10]–[12], a so-called Ohmic bath is used, for
example. Note that it is not shown in these papers when,
and how fast, the approximation converges to the dissipative
system. This is in contrast to the analysis presented herein,
and the error bound in Theorem 1.

C. Lossless approximation of dissipative systems with memory

In this section, we generalize the procedure from Sec-
tion II-B to dissipative systems that have memory. We consider
asymptotically stable time-invariant linear causal systems G
with impulse response g(t) ∈ R

p×p. Their input-output rela-
tion is given by

y(t) = (Gu)(t) =
∫ t

0

g(t − s)u(s)ds. (9)

Possible direct terms in G can be approximated separately
as shown in Section II-B. The system (9) is dissipative with
respect to the work rate w(t) = y(t)T u(t) if and only if∫ τ

0
y(t)T u(t)dt ≥ 0, for all τ ≥ 0 and admissible u(t). An

equivalent condition, see [28], is that the transfer function
satisfies

ĝ(jω) + ĝ(−jω)T ≥ 0 for all ω. (10)

Here ĝ(jω) is the Fourier transform of g(t).
We will next consider the problem of how well, and when, a

system (9) can be approximated using a linear lossless system
(1) (call it GN ) with fixed initial state x0,

yN (t) = BT eJtx0 +
∫ t

0

BT eJ(t−s)Bu(s)ds, (11)

for a set of input signals. Let us formalize the problem.
Problem 1: For any fixed time horizon [0, τ ] and arbitrarily

small ε > 0, when is it possible to find a lossless system with
fixed initial state x0 and output yN such that

‖y(t) − yN (t)‖2 ≤ ε‖u‖L2[0,t], (12)

for all input signals u ∈ L2[0, t] and 0 ≤ t ≤ τ?
Note that we require x0 to be fixed in Problem 1, so that

it is independent of the applied input u(t). This means the
approximation should work even if the applied input is not
known beforehand. Let us next state a necessary condition for
linear lossless approximations.

Proposition 1: Assume there is a linear lossless system GN

that solves Problem 1. Then it holds that

(i) If x0 �= 0, then x0 is an unobservable state;
(ii) If x0 �= 0, then x0 is an uncontrollable state; and
(iii) If the realization of GN is minimal, then x0 = 0.

Proof: (i): The inequality (12) holds for u = 0 when
y = 0. Then (12) reduces to ‖yN (t)‖2 ≤ 0, for t ∈ [0, τ ],
which implies yN (t) = BT eJtx0 = 0. Thus a nonzero
x0 must be unobservable. (ii): For the lossless realizations
it holds that N (O) = R(OT )⊥ = R(C)⊥, where O and
C are the observability and controllability matrices for the
realization (J,B,BT ). Thus if x0 is unobservable, it is also
uncontrollable. (iii): Both (i) and (ii) imply (iii).

Proposition 1 significantly restricts the classes of systems
G we can approximate using linear lossless approximations.
Intuitively, to approximate active systems there must be energy
stored in the initial state of GN . But Proposition 1 says that
such initial energy is not available for the inputs and outputs
of GN . The next theorem shows that we can approximate G
using GN if, and only if, G is dissipative.

Theorem 2: Suppose G is a linear time-invariant causal
system (9), where ‖g(t)‖2 is uniformly bounded, g(t) ∈
L1 ∩ L2(0,∞), and ġ(t) ∈ L1(0,∞). Then Problem 1 is
solvable using a linear lossless GN if, and only if, G is
dissipative.

Proof: See Appendix A.
The proof of Theorem 2 shows that the number of states

needed in GN is proportional to τ/ε2, and again the required
state space is large. The result shows that for finite-time
input-output experiments with finite-energy inputs it is not
possible to distinguish between the dissipative system and
its lossless approximations. Theorem 2 illustrates that a very
large class of dissipative systems (macroscopic systems) can
be approximated by the lossless linear systems we introduced
in (1). The lossless systems are dense in the dissipative
systems, in the introduced topology. Again this shows how
dissipative systems are consistent with a physics based on
energy-conserving systems.

In [28, Theorem 8], necessary and sufficient conditions for
time reversible systems are given. We can now use this result
together with Theorem 2 to prove a result reminiscent to the
Onsager reciprocal relations which say physical systems tend
to be reciprocal, see for example [6].

Theorem 3: Suppose G satisfies the assumptions in Theo-
rem 2. Then G is dissipative and reciprocal if, and only if, there
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exists an arbitrarily good linear lossless and time reversible
approximation GN .

Proof: See Appendix B.
Hence, one can understand that macroscopic physical systems
close to equilibrium usually are reciprocal because their un-
derlying dynamics are lossless and time reversible.

Remark 3: There is a long-standing debate in physics about
how macroscopic time-irreversible dynamics can result from
microscopic time-reversible dynamics. The debate goes back
to Loschmidt’s paradox and the Poincaré recurrence the-
orem. The Poincaré recurrence theorem says that bounded
trajectories of volume-preserving systems (such as lossless
systems) will return arbitrarily close to their initial condi-
tions if we wait long enough (the Poincaré recurrence time).
This seems counter-intuitive for real physical systems. One
common argument is that the Poincaré recurrence time for
macroscopic physical systems is so long that we will never
experience a recurrence. But this argument is not universally
accepted and other explanations exist. The debate still goes
on, see for example [13]. In this paper we construct lossless
and time-reversible systems with arbitrarily large Poincaré
recurrence times, that are consistent with observations of all
linear dissipative (time-irreversible) systems, as long as those
observations take place before the recurrence time. For a
control-oriented related discussion about the arrow of time,
see [34].

D. Nonlinear lossless approximations

In Section II-B, it was shown that a dissipative memoryless
system can be approximated using a lossless linear system.
Later in Section II-C it was also shown that the approximation
procedure can be applied to any dissipative (linear) system.
Because of Proposition 1 and Theorem 2, it is clear that it
is not possible to approximate a linear active system using a
linear lossless system with fixed initial state. Next we will
show that it is possible to solve Problem 1 for active systems
if we use nonlinear lossless approximations.

Consider the simplest possible active system,

y(t) = ku(t), (13)

where k ∈ R
p×p is negative definite. This can be a model of a

negative resistor, for example. More general active systems are
considered below. The reason a linear lossless approximation
of (13) cannot exist is that the active device has an internal
infinite energy supply, but we cannot store any energy in the
initial state of a linear lossless system and simultaneously track
a set of outputs, see Proposition 1. However, if we allow for
lossless nonlinear approximations, (13) can be arbitrarily well
approximated. This is shown next by means of an example.

Consider the nonlinear system

ẋE(t) =
1√
2E0

u(t)T ku(t), xE(0) =
√

2E0, E0 > 0,

yE(t) =
xE(t)√

2E0

ku(t),

(14)
with a scalar energy-supply state xE(t), and total energy
E(xE) = 1

2x2
E . The system (14) has initial total energy

1
2xE(0)2 =: E0, and is a lossless system with respect to the
work rate w(t) = yE(t)u(t), since

d

dt
E(xE(t)) = xE(t)ẋE(t) = yE(t)T u(t).

The input-output relation of (14) is given by

xE(t) =
√

2E0 +
1√
2E0

∫ t

0

u(s)T ku(s)ds,

yE(t) = ku(t) +
1

2E0
ku(t)

∫ t

0

u(s)T ku(s)ds.

(15)

We have the following approximation result.
Theorem 4: For uniformly bounded inputs, ‖u(t)‖2 ≤ ū,

t ∈ [0, τ ], the error between the active system (13) and the
nonlinear lossless approximation (14) can be bounded as

‖yE(t) − y(t)‖2 ≤ ε‖u‖L2[0,t],

for t ∈ [0, τ ], where ε = σ̄(k)2ū2
√

τ/(2E0).
Proof: A simple bound on yE(t) − ku(t) from (15)

gives ‖yE(t)−y(t)‖2 ≤ σ̄(k)2‖u(t)‖2
2E0

∫ t

0
‖u(s)‖2

2ds. Then using
‖u(t)‖2 ≤ ū, t ∈ [0, τ ], gives the result.

The error bound in Theorem 4 can be made arbitrarily small
for finite time intervals if the initial total energy E0 is large
enough. This example shows that active systems can also be
approximated by lossless systems, if the lossless systems are
allowed to be nonlinear and are charged with initial energy.

The above approximation method can in fact be applied to
much more general systems. Consider the ordinary differential
equation

ẋ(t) = f(x(t), u(t)), x(0) = x0,

y(t) = g(x(t), u(t)),
(16)

where x(t) ∈ R
n, and u(t), y(t) ∈ R

p. In general, this is
not a lossless system with respect to the supply rate w(t) =
y(t)T u(t). A nonlinear lossless approximation of (16) is given
by

˙̂x(t) =
xE(t)√

2E0

f(x̂(t), u(t)), x̂(0) = x0,

ẋE(t) =
1√
2E0

g(x̂(t), u(t))T u(t) − 1√
2E0

x̂(t)T f(x̂(t), u(t)),

yE(t) =
xE(t)√

2E0

g(x̂(t), u(t)), xE(0) =
√

2E0,

(17)
where again xE(t) is a scalar energy-supply state, and x̂(t) ∈
R

n can be interpreted as an approximation of x(t) in (16).
That (17) is lossless can be verified using the storage function

E =
1
2
x̂(t)T x̂(t) +

1
2
xE(t)2,

since

Ė = (xE/
√

2E0)(x̂T f(x̂, u) + g(x̂, u)T u − x̂T f(x̂, u))

= (xE/
√

2E0)g(x̂, u)T u = yT
Eu = w.

Since xE(t)/
√

2E0 ≈ 1 for small t, it is intuitively clear that
x̂(t) in (17) will be close to x(t) in (16), at least for small t
and large initial energy E0. We have the following theorem.
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Theorem 5: Assume that ∂f/∂x is continuous with respect
to x and t, and that (16) has a unique solution x(t) for 0 ≤
t ≤ τ . Then there exist positive constants C1 and E1 such
that for all E0 ≥ E1 (17) has a unique solution x̂(t) which
satisfies ‖x(t) − x̂(t)‖2 ≤ C1/

√
2E0 for all 0 ≤ t ≤ τ .

Proof: Introduce the new coordinate ΔxE = xE −√
2E0

and define ε0 := 1/
√

2E0. The system (17) then takes the
form

˙̂x = (1 + ε0ΔxE)f(x̂, u), x̂(0) = x0,

ΔẋE = ε0g(x̂, u)T u − ε0x̂
T f(x̂, u), ΔxE(0) = 0.

Perturbation analysis [39, Section 10.1] in the parameter ε0
as ε0 → 0 yields that there are positive constants ε1 and C1

such that ‖x− x̂‖2 ≤ C1|ε0| for all |ε0| ≤ ε1. The result then
follows with E1 = 1/(2ε21).
Just as in Section II-C, the introduced lossless approximations
are not unique. The one introduced here, (17), is very simple
since only one extra state xE is added. Its accuracy (C1, E0)
of course depends on the particular system (f , g) and the time
horizon τ . An interesting topic for future work is to develop
a theory for “optimal” lossless approximations using a fixed
amount of energy and a fixed number of states.

E. Summary

In Section II, we have seen that a large range of systems,
both dissipative and active, can be approximated by lossless
systems. Lossless systems account for the total energy, and
we claim these models are more physical. It was shown that
linear lossless systems are dense in the set of linear dissipative
systems. It was also shown that time reversibility of the
lossless approximation is equivalent to a reciprocal dissipative
system. To approximate active systems nonlinearity is needed.
The introduced nonlinear lossless approximation has to be
initialized at a precise state with a large total energy (E0). The
nonlinear approximation achieves better accuracy (smaller ε)
by increasing initial energy (increasing E0). This is in sharp
contrast to the linear lossless approximations of dissipative
systems that are initialized with zero energy (E0 = 0). These
achieve better accuracy (smaller ε) by increasing the number of
states (increasing N ). The next section deals with uncertainties
in the initial state of the lossless approximations.

III. THE FLUCTUATION-DISSIPATION THEOREM

As discussed in the introduction, the fluctuation-dissipation
theorem plays a major role in close-to-equilibrium statistical
mechanics. The theorem has been stated in many different
settings and for different models. See for example [17], [20],
where it is stated for Hamiltonian systems and Langevin
equations. In [18], [19], it is stated for electrical circuits. A
fairly general form of the fluctuation-dissipation theorem is
given in [6, p. 500]. We re-state this version of the theorem
here.

Suppose that yi and ui, i = 1, . . . , p, are conjugate external
variables (inputs and outputs) for a dissipative system in
thermal equilibrium of temperature T [Kelvin] (as defined in
Section III-A). We can interpret yi as a generalized velocity
and ui as the corresponding generalized force, such that yiui is

a work rate [Watt]. Although the system is generally nonlinear,
we only consider small variations of the state around a fixpoint
of the dynamics, which allows us to assume the system to be
linear. Assume first that the system has no direct term (no
memoryless element). If we make a perturbation in the forces
u, the velocities y respond according to

y(t) =
∫ t

0

g(t − s)u(s)ds,

where g(t) ∈ R
p×p is the impulse response matrix by

definition. The following fluctuation-dissipation theorem now
says that the velocities y actually also fluctuates around the
equilibrium.

Proposition 2: The total response of a linear dissipative
system G with no memoryless element and in thermal equi-
librium of temperature T is given by

y(t) = w(t) +
∫ t

0

g(t − s)u(s)ds, (18)

for perturbations u. The fluctuations w(t) ∈ R
p is a stationary

Gaussian stochastic process, where

Ew(t) = 0,

Rw(t, s) := Ew(t)w(s)T

=

{
kBTg(t − s), t − s ≥ 0

kBTg(s − t)T , t − s < 0,

(19)

where kB is Boltzmann’s constant.
Proof: See Section III-A.

The covariance function of the noise w is determined by
the impulse response g, and vice versa. The result has found
wide-spread use in for example fluid mechanics: By empirical
estimation of the covariance function we can estimate how
the system responds to external forces. In circuit theory, the
result is often used in the other direction: The forced response
determines the color of the inherent thermal noise. One way of
understanding the fluctuation-dissipation theorem is by using
linear lossless approximations of dissipative models, as seen
in the next subsection.

We may also express (18) in state space form in the
following way. A dissipative system with no direct term can
always be written as [28, Theorem 3]:

ẋ(t) = (J − K)x(t) + Bu(t),

y(t) = BT x(t),
(20)

where K = KT is positive semidefinite and J anti symmetric.
To account for (18)–(19), it suffices to introduce a white noise
term v(t) in (20) in the following way,

ẋ(t) = (J − K)x(t) + Bu(t) +
√

2kBTLv(t),

y(t) = BT x(t),
(21)

where the matrix L is chosen such that LLT = K. Equation
(21) is the called the Langevin equation of the dissipative
system.

Dissipative systems with memoryless elements are of great
practical significance. Proposition 2 needs to be slightly mod-
ified for such systems.
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Proposition 3: The total response of a linear dissipative
memoryless system in thermal equilibrium of temperature T
and for perturbations u is given by

y(t) = w(t) + ku(t) = w(t) + ksu(t) + kau(t), (22)

where ks ≥ 0 is symmetric positive semidefinite, and ka anti
symmetric. The fluctuations w(t) ∈ R

p is a white Gaussian
stochastic process, where

Ew(t) = 0,

Rw(t, s) := Ew(t)w(s)T = 2kBTksδ(t − s).

Proposition 3 follows from Proposition 2 if one extracts the
dissipative term ksu(t) from the memoryless model ku(t) and
puts g(t) = ksδ(t). However, the integral in (18) runs up to
s = t and cuts the impulse δ(t) in half. The re-normalized
impulse response of the dissipative term is therefore given
by g(t) = 2ksδ(t) (see also Section II-B). The result then
follows using this g(t) by application of Proposition 2. One
explanation for why the anti symmetric term ka can be
removed from g(t) is that it can be realized exactly using
the direct term D in linear lossless approximation (1). An
application of Proposition 3 gives the Johnson-Nyquist noise
of a resistor.

Example 2: As first shown theoretically in [15] and exper-
imentally in [14], a resistor R of temperature T generates
white noise. The total voltage over the resistor, v(t), satisfies
v(t) = Ri(t) + w(t), Ew(t)w(s) = 2kBTRδ(t − s), where
i(t) is the current.

A. Derivation using linear lossless approximations

Let us first consider systems without memoryless elements.
The general solution to the linear lossless system (1) is then

y(t) = BT eJtx0 +
∫ t

0

BT eJ(t−s)Bu(s)ds, (23)

where x0 is the initial state. It is the second term, the
convolution, that approximates the dissipative (Gu)(t) in the
previous section. In Proposition 1, we showed that the first
transient term is not desired in the approximation. Theorems 1
and 2 suggest that we will need a system of extremely
high order to approximate a linear dissipative system on a
reasonably long time horizon. When dealing with systems of
such high dimensions, it is reasonable to assume that the exact
initial state x0 is not known, and it can be hard to enforce
x0 = 0. Therefore, let us take a statistical approach to study
its influence. We have that

Ey(t) = BT eJtEx0 +
∫ t

0

BT eJ(t−s)Bu(s)ds, t ≥ 0,

if the input u(t) is deterministic and E is the expectation
operator. The autocovariance function Ry for y(t) is then

Ry(t, s) := E[y(t) − Ey(t)][y(s) − Ey(s)]T

= BT eJtX0e
−JsB,

(24)

where X0 is the covariance of the initial state,

X0 := EΔx0ΔxT
0 , (25)

where Δx0 := x0−Ex0 is the stochastic uncertain component
of the initial state, which evolves as Δx(t) = eJtΔx0.
The positive semidefinite matrix X0 can be interpreted as a
measure of how well the initial state is known. For a lossless
system with total energy E(x) = 1

2xT x we define the internal
energy as

U(x) :=
1
2
ΔxT Δx, Δx := x − Ex. (26)

The expected total energy of the system equals EE(x) =
1
2 (Ex)T Ex + EU(x). Hence the internal energy captures the
stochastic part of the total energy, see also [25], [30]. In
statistical mechanics, see [6]–[8], the temperature of a system
is defined using the internal energy.

Definition 1 (Temperature): A system with internal energy
U(x) [Joule] has temperature T [Kelvin] if, and only if, its
state x belongs to Gibbs’s distribution with probability density
function

p(x) =
1
Z

exp[−U(x)/kBT ], (27)

where kB is Boltzmann’s constant and Z is the normalizing
constant called the partition function. A system with temper-
ature is said to be at thermal equilibrium.

When the internal energy function is quadratic and the
system is at thermal equilibrium, it is well known that the
uncertain energy is equipartitioned between the states, see [6,
Sec. 4-5].

Proposition 4: Suppose a lossless system with internal
energy function U(x) = 1

2ΔxT Δx has temperature T at
time t = 0. Then the initial state x0 belongs to a Gaus-
sian distribution with covariance matrix X0 = kBTIn, and
EU(x0) = n

2 kBT .
Hence, the temperature T is proportional to how much

uncertain equipartitioned energy there is per degree of freedom
in the lossless system. There are many arguments in the
physics and information theory literature for adopting the
above definition of temperature. For example, Gibbs’s distri-
bution maximizes the Shannon continuous entropy (principle
of maximum entropy [40], [41]). In this paper, we will simply
accept this common definition of temperature, although it is
interesting to investigate more general definitions of tempera-
ture of dynamical systems.

Remark 4: Note that lossless systems may have a temper-
ature at any time instant, not only at t = 0. For instance,
a lossless linear system (23) of temperature T at t = 0
that is driven by a deterministic input remains at the same
temperature and has constant internal energy at all times, since
Δx(t) is independent of u(t). To change the internal energy
using deterministic inputs, nonlinear systems are needed as
explained in [23], [24]. For the related issue of entropy for
dynamical systems, see [23], [25].

If a lossless linear system (23) has temperature T at
t = 0 as defined in Definition 1 and Proposition 4, then the
autocovariance function (24) takes the form

Ry(t, s) = kBT · BT eJ(t−s)B = kBT · [BT eJ(s−t)B]T ,

since JT = −J . It is seen that linear lossless systems
satisfy the fluctuation-dissipation theorem (Proposition 2) if
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we identify the stochastic transient in (23) with the fluctuation,
i.e. w(t) = BT eJtx0 (assuming Ex0 = 0), and the impulse
response as g(t) = BT eJtB. In particular, w(t) is a Gaussian
process of mean zero because x0 is Gaussian and has mean
zero.

Theorem 2 showed that memoryless dissipative systems can
be arbitrarily well approximated by lossless systems. Hence we
cannot distinguish between the two using only input-output
experiments. One reason for preferring the lossless model
is that its transient also explains the thermal noise that is
predicted by the fluctuation-dissipation theorem.

To explain the fluctuation-dissipation theorem for systems
with memory (Proposition 3), one can repeat the above
arguments by making a lossless approximation of ks (see
Theorem 1). The anti symmetric part ka does not need to
be approximated but can be included directly in the lossless
system by using the anti symmetric direct term D in (12).

Proposition 3 captures the notion of a heat bath, modelling it
(as described in Theorem 1) with a lossless system so large that
for moderate inputs and within the chosen time horizon, the
interaction with its environment is not significantly affected.

That the Langevin equation (21) is a valid state-space model
for (18) is shown by a direct calculation. If we assume that
(20) is a low-order approximation for a high-order linear
lossless system (23), in the sense of Theorem 2, it is enough
to require that both systems are at thermal equilibrium with
the same temperature T in order to be described by the same
stochastic equation (18), at least in the time interval in which
the approximation is valid.

B. Nonlinear lossless approximations and thermal noise

Lossless approximations are not unique. We showed in
Section II-D that low-order nonlinear lossless approximations
can be constructed. As seen next, these do not satisfy the
fluctuation-dissipation theorem. This is not surprising since
they can also model active systems. If they are used to
implement linear dissipative systems, the linearized form is
not in the form (1). By studying the thermal noise of a system,
it is in principle possible to determine what type of lossless
approximation that is used.

Consider the nonlinear lossless approximation (14) of
y(t) = ku(t), where k is scalar and can be either positive or
negative. The approximation only works well when the initial
total energy E0 is large. To study the effect of thermal noise,
we add a random Gaussian perturbation Δx0 to the initial state
so that the system has temperature T at t = 0 according to
Definition 1 and Proposition 4. This gives the system

ẋE(t) =
k√
2E0

u(t)2, xE(0) =
√

2E0 + Δx0, EΔx0 = 0,

yE(t) =
k√
2E0

xE(t)u(t), EΔx2
0 = kBT.

(28)
The solution to the lossless approximation (28) is given by

yE(t) = ku(t) + ws(t) + wd(t), (29)

where

wd(t) =
k2

2E0
u(t)

∫ t

0

u(s)2ds, ws(t) =
kΔx0√

2E0

u(t). (30)

We call wd(t) the deterministic implementation noise and
ws(t) the stochastic thermal noise. The ratio between the
deterministic and stochastic noise is

wd(t)
ws(t)

=
k√

2E0Δx0

∫ t

0

u(s)2ds =
ku(0)2√
2E0Δx0

t + O(t2),

as t → 0, if u(t) is continuous. Hence, for sufficiently small
times t and if Δx0 �= 0, the stochastic noise ws(t) is the
dominating noise in the lossless approximation (28). Since Δx
belongs to a Gaussian distribution, there is zero probability that
Δx0 = 0. Hence, the solution yE(t) can be written

yE(t) = ku(t) + ws(t) + O(t),

Ews(t) = 0, Ews(t)2 =
k2kBT

2E0
u(t)2.

(31)

Just as in Proposition 3, the noise variance is proportional
to the temperature T . Notice, however, that the noise is
significantly smaller in (31) than in Proposition 3. There the
noise is white and unbounded for each t. The expression (31)
is further used in Section IV.

C. Summary

In Section III, we have seen that uncertainty in the initial
state of a linear lossless approximation gives a simple explana-
tion for the fluctuation-dissipation theorem. We have also seen
seen that uncertainty in the initial state of a nonlinear lossless
approximation gives rise to noise, which does not satisfy the
fluctuation-dissipation theorem. In all cases, the variance of
the noise is proportional to the temperature of the system.
Only when the initial state is perfectly know, that is when
the system has temperature zero, perfect approximation using
lossless systems can be achieved.

IV. LIMITS ON MEASUREMENTS AND BACK ACTION

In this section, we study measurement strategies and devices
using the developed theory. In quantum mechanics, the prob-
lem of measurements and their interpretation have been much
studied and debated. Also in classical physics there have been
studies on limits on measurement accuracy. Two examples
are [42], [43], where thermal noise in measurement devices
is analyzed and bounds on possible measurement accuracy
derived. Nevertheless, the effect of the measurement device on
the measured system, the “back action”, is usually neglected
in classical physics. That such effects exist also in classical
physics is well known, however, and is called the “observer
effect”. Also in control engineering these effects are usually
neglected: The sensor is normally modeled to interact with the
controlled plant only through the feedback controller.

Using the theory developed in this paper, we will quantify
and give limits on observer effects in a fairly general setting.
These limitations should be of practical importance for control
systems on the small physical scale, such as for MEMS and
in systems biology.
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[0, tm]

S

M

u(t)

um(t)

y(t)

Fig. 2. Circuit diagram of an idealized measurement device M and the
measured system S. The measurement is performed in the time interval
[0, tm]. The problem is to estimate the potential y(tm) as well as possible,
given the flow measurement um = −u.

A. Measurement problem formulation

Assume that the problem is to estimate the scalar potential
y(tm) (an output) of a linear dissipative dynamical system S
at some time tm > 0. Furthermore, assume that the conjugate
variable of y is u (the “flow” variable). Then the product
y(t)u(t) is a work rate. As has been shown in Section II-C,
all single-input–single-output linear dissipative systems can be
arbitrarily well approximated by a dynamical system in the
form,

S :

{
ẋ(t) = Jx(t) + Bu(t), x(0) = x0,

y(t) = BT x(t), y(0) = y0 = BT x0,
(32)

for a fixed initial state x0. Note that this system evolves
deterministically since x0 is fixed. Let us also define the
parameter C by BT B =: 1/C. Then 1/C is the first Markov
parameter of the transfer function of S. If S is an electrical
capacitor and the measured quantity a voltage, C coincides
with the capacitance.

To estimate the potential y(tm), an idealized measurement
device called M is connected to S in the time interval [0, tm],
see Fig. 2. The validity of Kirchoff’s laws is assumed in the
interconnection. That is, the flow out of S goes into M, and
the potential difference y(t) over the devices is the same (a
lossless interconnection). The device M has an ideal flow
meter that gives the scalar value um(t) = −u(t). Therefore
the problem is to estimate the potential of S given knowledge
of the flow u(t). For this problem, two related effects are
studied next, the back action b(tm), and the estimation error
e(tm). By back action we mean how the interconnection with
M effects the state of S. It quantifies how much the state of
S deviates from its natural trajectory after the measurement.
Estimation error is the difference between the actual potential
and the estimated potential. Next we consider two measure-
ment strategies and their lossless approximations in order to
study the impact of physical implementation.

Remark 5: The reason the initial state x0 in S is fixed is
that we want to compare how different measurement strategies
succeed when used on exactly the same system. We also
assume that y0 = BT x0 is completely unknown to the
measurement device before the measurement starts.

B. Memoryless dissipative measurement device

This measurement device, called M1, connected to S is
modeled by a memoryless system with (a known) admittance

[0, tm] [0, tm]

S S

km km −km

u(t) u(t)

um(t) um(t)
y(t)

Fig. 3. Circuit diagrams of the memoryless dissipative measurement device
M1 (left) and the memoryless active measurement device M2 (right).

km > 0,

M1 :

⎧⎨
⎩

um(t) = −u(t) = kmy(t)

ym(t) =
um(t)
km

= y(t).

The signal ym(t) is the measurement signal produced by M1.
The dynamics of the interconnected measured system becomes

SM1 :

{
ẋ1(t) = (J − kmBBT )x1(t), x1(0) = x0,

y1(t) = BT x1(t),

where x1(t) is the state of S when it is interconnected to M1.
If the measurement circuit is closed in the time interval [0, tm],
then the state of the system S gets perturbed from its natural
trajectory by a quantity

b(tm) := x1(tm) − x(tm) = e(J−kmBBT )tmx0 − eJtmx0

= −kmy0Btm + O(t2m),

where x(t) is satisfies (32) with u(t) = 0, and b(tm) is the
back action. By making the measurement time tm small, the
back action can be made arbitrarily small.

In this situation, a good estimation policy for the potential
y1(tm) is to choose ŷ(tm) = ym(tm), since the estimation
error e(tm) is identically zero in this case,

e(tm) := ŷ(tm) − y1(tm) = 0.

The signal ŷ(tm) should here, and in the following, be
interpreted as the best possible estimate of the potential of S
for someone who has access to the measurement signal ym(t),
0 ≤ t ≤ tm. Note that the estimation error e is defined with
respect to the perturbed system SM1. Given that we already
have defined back action it is easy to give a relation to the
unperturbed system S by

y(tm) = ŷ(tm) − e(tm) − BT b(tm), (33)

which is valid for non-zero estimation errors also.
Remark 6: Whether one is interested in the perturbed po-

tential y1(tm) or the unperturbed potential y(tm) of S depends
on the reason for the measurement. For a control engineer
who wants to act on the measured system, y1(tm) is likely
to be of most interest. A physicist, on the other hand, who is
curious about the uncontrolled system may be more interested
in y(tm). Either way, knowing the back action b, one can
always get y(tm) from y1(tm) using (33).
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1) Lossless realization M̂1: Next we make a linear lossless
realization of the admittance km > 0 in M1, using Proposi-
tion 3, so that it satisfies the fluctuation-dissipation theorem.
Linear physical implementations of M1 inevitably exhibit this
type of Johnson-Nyquist noise. We obtain

M̂1 :

⎧⎪⎨
⎪⎩

um(t) = −u(t) = kmy(t) +
√

2kmkBTmw(t),

ym(t) =
um(t)
km

= y(t) +
√

2kBTm

km
w(t),

where Tm is the temperature of the measurement device, and
w(t) is unit-intensity white noise. As shown before, the noise
can be interpreted as due to our ignorance of the exact initial
state of the measurement device. The interconnected measured
system SM̂1 satisfies a Langevin-type equation,

SM̂1 :

⎧⎪⎨
⎪⎩

ẋ1(t) = (J − kmBBT )x1(t) −
√

2kmkBTmBw(t),
x1(0) = x0,

y1(t) = BT x1(t).

The solution for SM̂1 is

x1(t) = e(J−kmBBT )tx0

−
∫ t

0

e(J−kmBBT )(t−s)B
√

2kmkBTmw(s)ds.

The back action can be calculated as

b(tm) = x1(tm) − x(tm) = bd(tm) + bs(tm),

bd(tm) := Ex1(tm) − x(tm) = e(J−kmBBT )tmx0 − eJtmx0

= −kmy0Btm + O(t2m),
bs(tm) := x1(tm) − Ex1(tm)

= −
∫ tm

0

e(J−kmBBT )(tm−s)B
√

2kmkBTmw(s)ds,

where we have split the back action into deterministic and
stochastic parts. The deterministic back action coincides with
the back action for M1. The stochastic back action comes
from the uncertainty in the lossless realization of the measure-
ment device. The measurement device M̂1 injects a stochastic
perturbation into the measured system S.

The covariance P of the back action b at time tm is

P (tm) := E[b(tm) − Eb(tm)][b(tm) − Eb(tm)]T

= Ebs(tm)bs(tm)T = 2kmkBTm

∫ tm

0

e(J−kmBBT )(tm−s)B

×BT (e(J−kmBBT )(tm−s))T ds = 2BBT kmkBTmtm+O(t2m).
(34)

It holds that P (tm) → kBTmIn and Ex1(t) → 0 as tm →
∞, see [30, Propositions 1 and 2], and the measured system
attains temperature Tm after an infinitely long measurement.
It is therefore reasonable to keep tm small if one wants to
have a small back action.

Next we analyze and bound the estimation error. The
measurement equation is given by

ym(t) =
um(t)
km

= y1(t) +
√

2kBTm

km
w(t).

Note that ŷ(tm) = ym(tm) is now a poor estimator of y1(tm),
since the variance of the estimation error e(t) = ŷ(t)−y1(t) is
infinite due to the white noise w(t). Using filtering theory, we
can construct an optimal estimator that achieves a fundamental
lower bound on the possible accuracy (minimum variance)
given ym(t) in the interval 0 ≤ t ≤ tm. The solution is the
Kalman filter,

˙̂x1(t) = (J − kmBBT )x̂1(t) + K(t)[ym(t) − BT x̂1(t)],

ŷ(t) = BT x̂1(t),
(35)

where K(t) is the Kalman gain (e.g. [44]). The mini-
mum possible variance of the estimation error, M∗(tm) =
minE(ŷ(tm)−y1(tm))2 (∗ denotes optimal) can be computed
from the differential Riccati equation

Ẋ(t) = Jkm
X(t) + X(t)JT

km
+ 2kmkBTmBBT

− km

2kBTm
(X(t) − 2kBTmIn)B

× BT (X(t) − 2kBTmIn)T , (36)

M∗(tm) = BT X(tm)B, Jkm
:= J − kmBBT .

A series expansion X(t) = 1
t X−1 + X0 + tX1 + . . . of the

solution to (36) yields that the coefficient X−1 should satisfy
X−1 = km

2kBTm
X−1BBT X−1. Note that X−1 is independent

on Jkm
. From the X1 equation, we yield that

M∗(tm) =
2kBTm

kmtm
+ O(1),

since M∗(t) = 1
t B

T X−1B +BT X0B + tBT X1B + . . . Here
the boundary condition M∗(0) = +∞ has been used, since
it is assumed that y0 is completely unknown, see Remark 5.
It is easy to verify that M∗(tm) → 0 as tm → ∞, and given
an infinitely long measurement a perfect estimate is obtained.
This comes at the expense of a large back action.

To implement the Kalman filter (35) requires a complete
model (J,B, km, Tm) which is not always reasonable to
assume. Nevertheless, the Kalman filter is optimal and the
variance of the estimation error, M(t) := Ee(t)2, of any
other estimator, in particular those that do not require complete
model knowledge, must satisfy

M(tm) ≥ M∗(tm) =
2kBTm

kmtm
+ O(1). (37)

2) Back action and estimation error trade-off: Define the
root mean square back action and the root mean square
estimation error of the potential y by

|Δy(tm)| :=
√

BT P (tm)B, |Δŷ(tm)| :=
√

M(tm).

This is the typical magnitude of the change of the potential y
and the estimation error after a measurement. Using (34) and
(37), the appealing relation

|Δy(tm)||Δŷ(tm)| ≥ 2kBTm/C + O(tm), (38)

where 1/C = BT B, is obtained. Hence, there is a direct trade-
off between the accuracy of estimation and the perturbation
in the potential, independently on (small) tm and admittance
km. It is seen that the more “capacitance” (C) S has, the less



12

important the trade-off is. One can interpret C as a measure of
the physical size or inertia of the system. The trade-off is more
important for “small” system in “hot” environments. Using an
optimal filter, the trade-off is satisfied with equality.

C. Memoryless active measurement device

A problem with the device M1 is that it causes back action b
even in the most ideal situation. If active elements are allowed
in the measurement device, this perturbation can apparently be
easily eliminated, but of course with the inherent costs of an
active device. Consider the measurement device M2 to the
right in Fig. 3. It is modeled by

M2 :

⎧⎪⎪⎨
⎪⎪⎩

um(t) = kmy(t),
u(t) = um(t) − kmy(t) = 0,

ym(t) =
um(t)
km

= y(t),

where an active element −km exactly compensates for the
back action in M1. It is clear that there is no back action and
no estimation error using this device,

b(tm) = 0, e(tm) = 0,

for all tm. Next, a lossless approximation of M2 is performed.
1) Lossless realization M̂2: Let the dissipative element km

in M2 be implemented with a linear lossless system, see
Proposition 3, and the active element −km be implemented
using the nonlinear lossless system in (28). This approximation
of M2 captures the reasonable assumption that the measure-
ment device must be charged with energy to behave like an
active device, and that its linear dissipative element satisfies
the fluctuation-dissipation theorem.

Assume that the temperature of the measurement device M̂2

is Tm and the deterministic part of the total energy of the active
element is Em. Then the interconnected system becomes

SM̂2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ2(t) = (J − kmBBT )x2(t)

+
km√
2Em

xr(t)BBT x2(t)

− B
√

2kmkBTmw(t), x2(0) = x0,

ẋr(t) =
km√
2Em

(BT x2(t))2,

xr(0) =
√

2Em + Δxr0,

EΔxr0 = 0, EΔx2
r0 = kBTm,

ym(t) =
um(t)
km

= BT x2(t) +
√

2kBTm

km
w(t),

where x2 is the state of S, and xr is the state of the active
element. Using the closed-form solution (29)–(30) to eliminate
xr, we can also write the equations as

SM̂2 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ2(t) =
(

J +
kmΔxr0√

2Em

BBT

)
x2(t)

+ Bwd(t) − B
√

2kmkBTmw(t), x2(0) = x0,

ym(t) =
um(t)
km

= BT x2(t) +
√

2kBTm

km
w(t),

(39)

with the deterministic perturbation wd(t) = k2
my3

0
2Em

t + O(t2).
The solution to (39) can be expanded as

x2(t) = x0 −
√

2kmkBTmBW (t)

+
(

J +
kmΔxr0√

2Em

BBT

)
x0t

−
√

2kmkBTm

(
J +

kmΔxr0√
2Em

BBT

)

× B

∫ t

0

W (s)ds + B
k2

my3
0

4Em
t2 + o(t2), (40)

where W (t) =
∫ t

0
w(s)ds = O(

√
t) is integrated white noise

(a Brownian motion). It can be seen that the white noise
disturbance w is much more important than the deterministic
disturbance wd. The back action becomes

b(tm) = x2(tm) − x(tm) = bd(tm) + bs(tm)

bd(tm) := Ex2(tm) − x(tm) =
k2

my3
0

4Em
Bt2m + O(t3m),

bs(tm) := x2(tm) − Ex2(tm)

= −
√

2kmkBTmBW (tm) +
kmΔxr0√

2Em

By0tm

+ O(tm
√

tm),

where we used that the covariance between Δxr0 and W is
zero. The covariance of the back action becomes

P (tm) := Ebs(tm)bs(tm)T = 2kmkBTmBBT tm + O(t2m).
(41)

It is seen that the dominant term in the stochastic back action
is the same as for M̂1, but the deterministic back action bd is
much smaller.

Remark 7: Using a nonlinear lossless approximation of
−km of order larger than one, we can make the deterministic
back action smaller for fixed Em, at the expense of model
complexity.

The measurement noise in SM̂2 is the same as in
SM̂1, and we can essentially repeat the argument from
Section IV-B1. The difference between SM̂2 and SM̂1 lies in
the dynamics. In SM̂2, the system matrix is J + kmΔxr0√

2Em
BBT

and there is a deterministic perturbation wd(t). To make an
estimate ŷ(tm), knowledge of ym(t) in the interval [0, tm]
is assumed. If we assume that the model (J,B, km, Tm) is
known plus that the observer somehow knows wd(t) and
Δxr0, then the optimal estimate again has the error covariance
M∗(tm) = 2kBTm

kmtm
+ O(1). Any other estimator that has less

information available must be worse, so that

M(t) ≥ M∗(tm) =
2kBTm

kmtm
+ O(1).

Again, we have the trade-off (38)

|Δy(tm)||Δŷ(tm)| ≥ 2kBTm/C + O(tm),

which holds even though we have inserted an active element
in device. The only effect of the active element is to eliminate
the deterministic back action.
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TABLE I
SUMMARY OF BACK ACTION AND ESTIMATION ERROR AFTER A MEASUREMENT IN THE TIME INTERVAL [0, tm]. bd(tm) - DETERMINISTIC BACK ACTION,

P (tm) - COVARIANCE OF BACK ACTION, |Δy|2 - VARIANCE OF POTENTIAL, AND M∗(tm) - LOWER BOUND ON ESTIMATION ERROR.

Device bd(tm) P (tm) = Ebs(tm)bs(tm)T |Δy(tm)|2 = BT P (tm)B M∗(tm) = min |Δŷ|2
M1 −kmy0Btm + O(t2m) 0 0 0
M̂1 −kmy0Btm + O(t2m) 2kmkBTmBBT tm + O(t2m) 2kmkBTm

C2 tm + O(t2m) 2kBTm
km

t−1
m + O(1)

M2 0 0 0 0

M̂2
y3
0km

4Em
Bt2m + O(t3m) 2kmkBTmBBT tm + O(t2m) 2kmkBTm

C2 tm + O(t2m) 2kBTm
km

t−1
m + O(1)

D. Summary and Discussion

The back action and estimation error of the measurement
devices are summarized in Table I. For the ideal devices
M1 and M2 no real trade-offs exist. However, if we realize
them with lossless elements very reasonable trade-offs appear.
It is only in the limit of infinite available energy and zero
temperature that the trade-offs disappear. The deterministic
back action can be made small with large Em, charging the
measurement device with much energy. However, the effect of
stochastic back action is inescapable for both M̂1 and M̂2,
and the trade-off

|Δy||Δŷ| ≥ 2kBTm/C for small tm, (42)

holds in both cases. The reason for having short measurements
is to minimize the effect of the back action. The lower bound
on the estimation error M∗(tm) tends to zero for large tm,
but at the same time the measured system S tends to a
thermodynamic equilibrium with the measurement device.

It is possible to increase the estimation accuracy by making
the admittance km of the measurement device large, but
only at the expense of making a large stochastic perturbation
of the measured system. Hence, we have quantified a limit
for the observer effect discussed in the introduction of this
section. We conjecture that inequalities like (42) hold for
very general measurement devices as soon as the dissipative
elements satisfy the fluctuation-dissipation theorem. Note, for
example, that if a lossless transmission cable of admittance
km and of temperature Tm is used to interconnect the system
S to an arbitrary measurement device M, then the trade-off
(42) holds. The deterministic back action, on the other hand,
is possible to make smaller by using more elaborate nonlinear
lossless implementations.

V. CONCLUSIONS

In this paper, we constructed lossless approximations of
both dissipative and active systems. We obtained an if-and-
only-if characterization of linear dissipative systems (linear
lossless systems are dense in the linear dissipative systems)
and gave explicit approximation error bounds that depend on
the time horizon, the order, and the available energy of the
approximations. We showed that the fluctuation-dissipation
theorem, that quantifies macroscopic thermal noise, can be
explained by uncertainty in the initial state of a linear lossless
approximation of very high order. We also saw that using these
techniques, it was relatively easy to quantify limitations on the
back action of measurement devices. This gave rise to a trade-
off between process and measurement noise.

APPENDIX A
PROOF OF THEOREM 2

We first show the ’only if’ direction. Assume the opposite:
There is a lossless approximation GN that satisfy (12) for
arbitrarily small ε > 0 even though G is not dissipative. From
Proposition 1 it is seen that we can without loss of generality
assume GN has a minimal realization and x0 = 0. If G is not
dissipative, we can find an input u(t) over the interval [0, τ ]
such that

∫ τ

0
y(t)T u(t)dt = −K1 < 0, i.e., we extract energy

from G even though its initial state is zero. Call ‖u‖L1[0,τ ] =
K2. We have

∫ τ

0
(yN (t) − y(t))T u(t)dt ≤ εK2, by the

assumption that a lossless approximation GN exists and using
the Cauchy-Schwarz inequality. But the lossless approximation
satisfies

∫ τ

0
yN (t)T u(t)dt = 1

2x(τ)T x(τ), since x0 = 0.
Hence, − ∫ τ

0
y(t)T u(t)dt = K1 ≤ εK2 − 1

2xN (τ)T xN (τ) ≤
εK2. But since ε can be made arbitrarily small, this leads to
a contradiction.

To prove the ’if’ direction we explicitly construct a GN

that satisfies (12), when G is dissipative. It turns out that we
can fix the model parameters D = 0 in GN . Furthermore, we
must choose x0 = 0 since otherwise the zero trajectory y = 0
cannot be tracked (see above). We thus need to construct a
lossless system with impulse response gN (t) such that ‖g −
gN‖L2[0,τ0] ≤ ε, where we have denoted the time interval
given in the theorem statement by [0, τ0]. Note that we can
increase this time interval without loss of generality, since if
we prove ‖g − gN‖L2[0,τ ] ≤ ε then ‖g − gN‖L2[0,τ0] ≤ ε, if
τ ≥ τ0.

Let us define the constants

C1 ≥ ‖g(t)‖2, t ≥ 0; C2 =
∫ ∞

0

‖ġ(t)‖1dt;

C3 =
∫ ∞

0

‖g(t)‖1dt; C =
4C1 + 2C2

π
+

4C3

τ0
,

which are all finite by the assumptions of the theorem. It will
become clear later why the constants are defined this way.

Next let us fix the approximation time interval [0, τ ] such
that

δ(τ) :=
∫ ∞

τ

‖g(t)‖1dt ≤ ε2

2C
√

p
, (43)

where τ ≥ τ0. Such a τ always exists since δ(τ) is a
continuously decreasing function that converges to zero. The
lossless approximation is achieved by truncating a Fourier
series keeping N terms. Let us choose the integer N such
that

N ≤ τC2

ε2
≤ N + 1, (44)
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where τ is fixed in (43). We proceed by constructing an
appropriate Fourier series.

A. Fourier expansion

The extended function g̃(t) ∈ L2(−∞,∞) of g(t) is given
by

g̃(t) =

{
g(t), t ≥ 0,

g(−t)T , t < 0.

Let us make a Fourier expansion of g̃(t) on the interval [−τ, τ ],

g̃τ (t) :=
1
2
A0 +

∞∑
k=1

Ak cos
kπt

τ
+ Bk sin

kπt

τ
,

with convergence in L2[−τ, τ ]. For the restriction to [0, τ ] it
holds that ‖g−g̃τ‖L2[0,τ ] = 0. The expressions for the (matrix)
Fourier coefficients are

Ak =
1
τ

∫ τ

0

(g(t) + g(t)T ) cos
kπt

τ
dt

Bk =
1
τ

∫ τ

0

(g(t) − g(t)T ) sin
kπt

τ
dt.

(45)

Note that Ak, Bk ∈ R
p×p, and Ak are symmetric (Ak = AT

k )
and Bk are anti-symmetric (Bk = −BT

k ). Parseval’s formula
becomes

‖g̃τ‖2
L2[0,τ ] =

∫ τ

0

Tr g(t)g(t)T dt

=
τ

4
Tr AT

0 A0 +
τ

2

∞∑
k=1

Tr AT
k Ak + Tr BT

k Bk. (46)

We also need to bound ‖Ak − jBk‖2
2 = Tr AT

k Ak +
Tr BT

k Bk. It holds

Ak − jBk =
1
τ

∫ τ

−τ

g̃(t)e−jπkt/τdt

=
(−1)k

jkπ
(g(τ)T − g(τ)) +

1
jkπ

(g(0) − g(0)T )

+
1

jkπ

∫ τ

0

e−jπkt/τ ġ(t) − ejπkt/τ ġ(t)T dt,

using integration by parts. Then

‖Ak − jBk‖2

≤ 4C1

kπ
+

1
kπ

∣∣∣∣
∣∣∣∣
∫ τ

0

e−jπkt/τ ġ(t) − ejπkt/τ ġ(t)T dt

∣∣∣∣
∣∣∣∣
2

≤ 4C1

kπ
+

2
kπ

∫ τ

0

‖ġ(t)‖1dt ≤ 1
k

4C1 + 2C2

π
.

Furthermore,

‖Ak − jBk‖2 =
∣∣∣∣
∣∣∣∣1τ

∫ τ

−τ

g̃(t)e−jπkt/τdt

∣∣∣∣
∣∣∣∣
2

≤ 2C3

τ0
,

since τ ≥ τ0. If the former bound is multiplied by k and the
latter is multiplied by two and they are added together, we
obtain

‖Ak − jBk‖2 ≤ C

2 + k
, k ≥ 0, (47)

where C was defined above.

B. Lossless approximation GN

Let us now truncate the series g̃τ (t) and keep the terms with
Fourier coefficients A0, . . . , AN−1 and B1, . . . , BN−1. The
truncated impulse response can be realized exactly by a finite-
dimensional lossless system iff A0 ≥ 0 and Ak − jBk ≥ 0,
k = 1, . . . , N − 1, see [28, Theorem 5]. But these inequalities
are not necessarily true. We will thus perturb the coefficients
to ensure the system becomes lossless and yet ensure that the
L2-approximation error is less than ε.

We quantify a number ξ ≥ 0 that ensures that Ak − jBk +
ξIp ≥ 0 for all k. Note that by the assumption of G being
dissipative, it holds that

ĝ(jω) + ĝ(−jω)T =
∫ ∞

−∞
g̃(t)e−jωtdt ≥ 0.

Remember that
∫ τ

−τ
g̃(t)e−jπkt/τdt = τAk − jτBk, and

therefore

Ak − jBk + Δk ≥ 0

where Δk := 1
τ

∫ ∞
τ

g(t)e−jπkt/τ + g(t)T ejπkt/τdt. The size
of Δk can be bounded and we have

‖Δk‖2 =
√

Tr Δ∗
kΔk ≤ 2

τ

∫ ∞

τ

‖g(t)‖1dt ≤ ε2

τC
√

p
,

using (43). Thus we can choose

ξ =
ε2

τC
√

p
,

and Ak − jBk + ξIp ≥ 0 for all k, since ρ(Δk) ≤ ‖Δk‖2.
Next we verify that a system GN with impulse response

gN (t) :=
1
2
(A0 + ξIp)

+
N−1∑
k=1

(Ak + ξIp) cos
kπt

τ
+ Bk sin

kπt

τ
, (48)

where τ , N , ξ are fixed above satisfies the statement of the
theorem. By the construction of ξ, GN is lossless. It remains
to show that the approximation error ‖g − gN‖L2[0,τ ] is less
than ε. Using Parseval’s formula (46), it holds

‖g − gN‖2
L2[0,τ ] = ‖g̃τ − gN‖2

L2[0,τ ]

=

∣∣∣∣∣
∣∣∣∣∣12ξI +

N−1∑
k=1

ξI cos
kπt

τ
+

∞∑
k=N

Ak cos
kπt

τ
+ Bk sin

kπt

τ

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ τ

2
Nξ2p+

τ

2

∞∑
k=N

‖Ak−jBk‖2
2 ≤ τ

2
Nξ2p+

τ

2

∞∑
k=N

C2

(2 + k)2

≤ τ

2
τC2

ε2
ε4

τ2C2p
p +

τ

2
C2

N + 1
≤ ε2

2
+

τ

2
C2ε2

τC2
= ε2,

where the bounds (44) and (47) are used. The result has been
proved.
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APPENDIX B
PROOF OF THEOREM 3

We first show the ’if’ direction. Then there exists a lossless
and time-reversible approximation GN of G. Theorem 2 shows
that G is dissipative. Theorem 8 in [28] shows that GN

necessarily is reciprocal. Since GN is an arbitrarily good
approximation it follows that G also is reciprocal, which
concludes the ’if’ direction of the proof.

Next we show the ’only if’ direction. Then G is dissipative
and reciprocal. Theorem 2 shows that there exists an arbitrarily
good lossless approximation GN , and we will use the approx-
imation (48). That G is reciprocal means that there exists a
signature matrix Σe (a matrix with diagonal entries +1 and
−1) such that Σeg(t) = g(t)T Σe. Using this and the definition
of Ak and Bk in (45), it is seen that

Σe(Ak + ξIp) = (Ak + ξIp)T Σe, ΣeBk = BT
k Σe.

Thus the chosen GN is also reciprocal, ΣegN (t) = gN (t)T Σe,
and Theorem 8 in [28] shows GN is time reversible. This
concludes the proof.
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